INFINEON SGB15N60_06

SGB15N60
Fast IGBT in NPT-technology
C
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
G
E
PG-TO-263-3-2
1
• Qualified according to JEDEC for target applications
• Pb-free lead plating; RoHS compliant
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SGB15N60
VCE
IC
VCE(sat)
Tj
Marking
Package
600V
15A
2.3V
150°C
G15N60
PG-TO-263-3-2
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
Unit
600
V
A
TC = 25°C
31
TC = 100°C
15
Pulsed collector current, tp limited by Tjmax
ICpul s
62
Turn off safe operating area
-
62
Gate-emitter voltage
VGE
±20
V
Avalanche energy, single pulse
EAS
85
mJ
tSC
10
µs
Ptot
139
W
-55...+150
°C
VCE ≤ 600V, Tj ≤ 150°C
IC = 15 A, VCC = 50 V, RGE = 25 Ω ,
start at Tj = 25°C
2
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Tj , Tstg
Operating junction and storage temperature
Soldering temperature (reflow soldering, MSL1)
1
2
245
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Rev.2.3
Nov 06
SGB15N60
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.9
K/W
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Thermal resistance,
junction – ambient
1)
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2
2.4
T j =1 5 0° C
-
2.3
2.8
3
4
5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15 V , I C = 15 A
T j =2 5 °C
Gate-emitter threshold voltage
VGE(th)
I C = 40 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
40
T j =1 5 0° C
-
-
2000
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 15 A
3
10.9
-
S
Input capacitance
Ciss
V C E = 25 V ,
-
800
960
pF
Output capacitance
Coss
V G E = 0V ,
-
84
101
Reverse transfer capacitance
Crss
f= 1 MH z
-
52
62
Gate charge
QGate
V C C = 48 0 V, I C =1 5 A
-
76
99
nC
-
7
-
nH
-
150
-
A
Dynamic Characteristic
V G E = 15 V
LE
Internal emitter inductance
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 1 5 0° C
1)
2
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Rev.2.3
Nov 06
SGB15N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
32
38
-
23
28
-
234
281
-
46
55
-
0.30
0.36
-
0.27
0.35
-
0.57
0.71
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 40 0 V, I C = 1 5 A,
V G E = 0/ 15 V ,
R G = 21 Ω,
1)
L σ = 18 0 nH ,
1)
C σ = 25 0 pF
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
31
38
-
23
28
-
261
313
-
54
65
-
0.45
0.54
-
0.41
0.53
-
0.86
1.07
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
1)
T j =1 5 0° C
V C C = 40 0 V, I C = 1 5 A,
1)
L σ =1 8 0n H,
1)
C σ = 2 50 pF
V G E = 0/ 15 V ,
R G = 21 Ω
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
3
Rev.2.3
Nov 06
SGB15N60
100A
80A
Ic
tp=5µs
70A
15µs
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
60A
50A
40A
TC=80°C
30A
20A
10A
0A
10Hz
TC=110°C
10A
50µs
200µs
1A
1ms
Ic
DC
0.1A
100Hz
1kHz
10kHz
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 21Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
35A
140W
30A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
120W
100W
80W
60W
40W
20A
15A
10A
5A
20W
0W
25°C
25A
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Rev.2.3
Nov 06
50A
50A
45A
45A
40A
40A
35A
30A
25A
20A
15A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SGB15N60
VGE=20V
15V
13V
11V
9V
7V
5V
10A
5A
0A
0V
1V
2V
3V
4V
30A
15V
13V
11V
9V
7V
5V
25A
20A
15A
10A
0A
0V
5V
45A
Tj=+25°C
-55°C
+150°C
40A
35A
30A
25A
20A
15A
10A
5A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
50A
IC, COLLECTOR CURRENT
VGE=20V
5A
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
35A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
3.5V
IC = 30A
3.0V
2.5V
IC = 15A
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Rev.2.3
Nov 06
SGB15N60
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
td(on)
100ns
tf
td(on)
tr
10ns
5A
10A
tr
15A
20A
25A
10ns
0Ω
30A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 21Ω,
Dynamic test circuit in Figure E)
20Ω
40Ω
60Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 15A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.5V
t, SWITCHING TIMES
td(off)
100ns
tf
tr
td(on)
10ns
0°C
50°C
100°C
150°C
5.0V
4.5V
4.0V
max.
3.5V
typ.
3.0V
2.5V
min.
2.0V
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 15A, RG = 2 1Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.4mA)
6
Rev.2.3
Nov 06
SGB15N60
1.4mJ
1.8mJ
1.4mJ
1.2mJ
1.0mJ
Eon*
0.8mJ
Eoff
0.6mJ
0.4mJ
Ets*
1.0mJ
0.8mJ
Eoff
0.6mJ
Eon*
0.4mJ
0.2mJ
0.2mJ
0.0mJ
0A
*) Eon and Ets include losses
due to diode recovery.
1.2mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
1.6mJ
Ets*
*) Eon and Ets include losses
due to diode recovery.
5A
10A
15A
20A
25A
30A
0.0mJ
0Ω
35A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 21Ω,
Dynamic test circuit in Figure E)
20Ω
40Ω
60Ω
80Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 15A,
Dynamic test circuit in Figure E)
1.0mJ
0.8mJ
0
Ets*
0.6mJ
Eon*
0.4mJ
Eoff
0.2mJ
0.0mJ
0°C
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
10 K/W
D=0.5
0.2
-1
10 K/W
0.1
0.05
0.02
R,(1/W)
0.5321
0.2047
0.1304
0.0027
-2
10 K/W
0.01
-3
10 K/W
τ, (s)
0.04968
2.58*10-3
2.54*10-4
3.06*10-4
R1
R2
single pulse
C 1= τ1/R 1
C 2= τ2/R 2
-4
50°C
100°C
10 K/W
1µs
150°C
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 15A, RG = 2 1Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Rev.2.3
Nov 06
SGB15N60
25V
1nF
Ciss
15V
120V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
480V
10V
Crss
5V
0V
0nC
25nC
50nC
75nC
10pF
0V
100nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 15A)
20V
30V
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
250A
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
25 µ s
tsc, SHORT CIRCUIT WITHSTAND TIME
Coss
100pF
11V
12V
13V
14V
200A
150A
100A
50A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Rev.2.3
Nov 06
SGB15N60
PG-TO263-3-2
9
Rev.2.3
Nov 06
SGB15N60
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
TC
Figure D. Thermal equivalent
circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
=180nH
Leakage inductance Lσ
an d Stray capacity C σ
=250pF.
10
Rev.2.3
Nov 06
SGB15N60
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/30/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
11
Rev.2.3
Nov 06