RENESAS R61505U

R61505U
262,144-color, 240RGB x 320 dot graphics liquid crystal
controller driver for Amorphous-Silicon TFT Panel
REJxxxxxxx-xxxx
Rev.1.0
September 13, 2006
Description ......................................................................................................... 6
Features
......................................................................................................... 7
Difference between R61505 and R61505U................................................................................................................. 10
Block Diagram .................................................................................................... 11
Block Function .................................................................................................... 12
1. System Interface .................................................................................................................................................... 12
2. External Display Interface (RGB, VSYNC interfaces) ....................................................................................... 13
3. Address Counter (AC) ........................................................................................................................................... 13
4. Graphics RAM (GRAM) ....................................................................................................................................... 14
5. Grayscale Voltage Generating Circuit ................................................................................................................. 14
6. Liquid crystal drive power supply circuit ............................................................................................................. 14
7. Timing Generator .................................................................................................................................................. 14
8. Oscillator (OSC) .................................................................................................................................................... 14
9. Liquid crystal driver Circuit.................................................................................................................................. 14
10. Internal logic power supply regulator .................................................................................................................. 14
Pin Function ........................................................................................................ 15
PAD arrangement................................................................................................ 22
PAD coordinates ................................................................................................. 24
BUMP arrangement ............................................................................................ 39
Connection example............................................................................................ 40
GRAM address map ............................................................................................ 41
Instruction ......................................................................................................... 43
Outline .......................................................................................................................................................................... 43
Instruction Data Format ............................................................................................................................................. 43
Index (IR) ..................................................................................................................................................................... 44
Display control ............................................................................................................................................................. 44
Device code read (R00h)........................................................................................................................................ 44
Rev. 1.0 September 13, 2006, page 1 of 199
R61505U
Driver Output Control (R01h)................................................................................................................................45
LCD Driving Wave Control (R02h) .......................................................................................................................45
Entry Mode (R03h) .................................................................................................................................................46
Resizing Control (R04h) .........................................................................................................................................49
Display Control 1 (R07h) .......................................................................................................................................50
Display Control 2 (R08h) .......................................................................................................................................52
Note on Setting BP and FP.....................................................................................................................................52
Display Control 3 (R09h) .......................................................................................................................................53
Display Control 4 (R0Ah).......................................................................................................................................55
External Display Interface Control 1 (R0Ch)........................................................................................................55
Frame Marker Position (R0Dh) .............................................................................................................................57
External Display Interface Control 2 (R0Fh) ........................................................................................................58
Power control ...............................................................................................................................................................59
Power Control 1 (R10h) .........................................................................................................................................59
Power Control 2 (R11h) .........................................................................................................................................62
Power Control 3 (R12h) .........................................................................................................................................63
Power Control 4 (R13h) .........................................................................................................................................65
Power Control 5 (R17h) .........................................................................................................................................65
RAM access instruction ...............................................................................................................................................66
RAM Address Set (Horizontal Address) (R20h) RAM Address Set (Vertical Address) (R21h) ............................66
Write Data to GRAM (R22h)..................................................................................................................................67
Read Data from GRAM (R22h) ..............................................................................................................................70
NVM(NON-VOLATILE MEMORY) write control instruction.................................................................................71
NVM read data (R28h), VCOM High Voltage (R29h, R2Ah)................................................................................71
γ Control .......................................................................................................................................................................74
γ Control 1 ~ 14 (R30h to R3Dh) ...........................................................................................................................74
Window address control instruction............................................................................................................................76
Window Horizontal RAM Address Start/End (R50h/ R51h) ..................................................................................76
Window Vertical RAM Address Start/End (R52h/R53h) .......................................................................................76
Base image display control instruction .......................................................................................................................77
Driver Output Control (R60h),...............................................................................................................................77
Base Image Display Control (R61h) ......................................................................................................................77
Vertical Scroll Control (R6Ah)...............................................................................................................................77
Partial display control instruction...............................................................................................................................80
Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h)......................80
Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h)......................80
Panel interface control instruction .............................................................................................................................81
Panel interface control 1(R90h).............................................................................................................................81
Panel interface control 2(R92h).............................................................................................................................82
Panel interface control 3(R93h).............................................................................................................................83
Panel interface control 4(R95h).............................................................................................................................84
Panel interface control 5(R97h).............................................................................................................................86
Panel interface control 6(R98h).............................................................................................................................86
NVM(NON-VOLATILE MEMORY) control .............................................................................................................87
NVM access control 1 (RA0h), NVM access control 2 (RA1h) .............................................................................87
Calibration control (RA4h) ....................................................................................................................................88
Setting disabled instruction (Inhibition RA5h ~ RFFh) ...........................................................................................89
Rev.1.0 September 13, 2006, page 2 of 199
R61505U
Instruction List .................................................................................................... 90
Reset Function..................................................................................................... 91
Basic mode operation of the R61505U ............................................................... 93
Interface and data format .................................................................................... 94
System Interface.................................................................................................. 97
80-system 18-bit Bus Interface .................................................................................................................................... 98
80-system 16-bit Bus Interface .................................................................................................................................... 99
Data Transfer Synchronization in 16-bit Bus Interface operation ........................................................................... 101
80-system 9-bit Bus Interface ...................................................................................................................................... 102
Data Transfer Synchronization in 9-bit Bus Interface operation ............................................................................. 103
80-system 8-bit Bus Interface ...................................................................................................................................... 104
Data Transfer Synchronization in 8-bit Bus Interface operation ............................................................................. 106
Serial Interface............................................................................................................................................................. 107
VSYNC Interface ................................................................................................ 110
Notes to VSYNC Interface operation .......................................................................................................................... 112
External Display Interface................................................................................... 114
RGB Interface .............................................................................................................................................................. 115
Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals ............................................................................ 115
RGB Interface Timing ................................................................................................................................................. 116
16-/18-bit RGB Interface Timing ........................................................................................................................... 116
6-bit RGB Interface Timing.................................................................................................................................... 117
RAM access via system interface in RGB interface operation .................................................................................. 118
6-bit RGB interface ...................................................................................................................................................... 120
Data Transfer Synchronization in 6-bit Bus Interface operation ............................................................................. 121
16-bit RGB interface .................................................................................................................................................... 122
18-bit RGB interface .................................................................................................................................................... 123
Notes to external display interface operation ............................................................................................................. 124
RAM Address and Display Position on the Panel .............................................. 126
Restrictions in setting display control instruction...................................................................................................... 127
Instruction setting example ......................................................................................................................................... 129
Resizing function ................................................................................................ 131
Resizing setting............................................................................................................................................................. 132
Example of 1/2 resizing ............................................................................................................................................... 133
Resizing instruction ..................................................................................................................................................... 133
Notes to Resizing function ........................................................................................................................................... 134
FMARK function ................................................................................................ 135
FMP setting example ................................................................................................................................................... 136
Display operation synchronous data transfer using FMARK................................................................................... 137
Notes to display operation synchronous data transfer using FMARK signal .......................................................... 139
Rev.1.0 September 13, 2006, page 3 of 199
R61505U
High-speed RAM Write Function....................................................................... 140
Notes to high-speed RAM write function....................................................................................................................141
High-speed RAM data write in a window address area .............................................................................................142
Window Address Function ................................................................................. 143
Scan Mode Setting .............................................................................................. 144
8-color Display Mode ......................................................................................... 145
Line Inversion AC Drive .................................................................................... 146
Alternating Timing.......................................................................................................................................................147
Frame-Frequency Adjustment Function ............................................................. 148
Relationship between liquid crystal drive duty and frame frequency .......................................................................148
Partial Display Function ..................................................................................... 149
Liquid crystal panel interface timing .................................................................. 150
Internal clock operation...............................................................................................................................................150
RGB interface operation..............................................................................................................................................151
Oscillator
......................................................................................................... 152
γ Correction function .......................................................................................... 153
γ Correction registers ...................................................................................................................................................153
γ Correction register settings and γ curve relationship ..............................................................................................155
Power-supply Generating Circuit ....................................................................... 156
Power supply circuit connection example 1 (VCI1 = VCIOUT) ...............................................................................156
Power supply circuit connection example 2 (VCI1 = VCI direct input) ...................................................................157
Specifications of Power-supply Circuit External Elements................................ 158
Voltage Setting Pattern Diagram ........................................................................ 159
Liquid crystal application voltage waveform and electrical potential.......................................................................160
VCOMH voltage adjustment sequence............................................................... 161
NVM control sequence ....................................................................................... 163
NVM Write In Sequence..............................................................................................................................................164
NVM Read Out Sequence ............................................................................................................................................164
Power supply Instruction Setting ........................................................................ 167
Notes to Power Supply ON sequence ................................................................. 168
Instruction setting................................................................................................ 169
Rev.1.0 September 13, 2006, page 4 of 199
R61505U
Display ON/OFF sequences ........................................................................................................................................ 169
Sleep mode SET/EXIT sequences ............................................................................................................................... 170
Deep standby mode IN/EXIT sequences..................................................................................................................... 171
8-color mode setting..................................................................................................................................................... 174
Partial display setting................................................................................................................................................... 174
Absolute Maximum Ratings ........................................................................................................................................ 175
Electrical Characteristics..................................................................................... 176
DC characteristics (VCC= 2.50V~3.30V,IOVCC=1.65V~3.30V,Ta=-40C~+85C See note 1)...................... 176
Step-Up Circuit Characteristics............................................................................................................................. 178
Internal Reference Voltage (Condition: VCC= 2.50V~3.30V, Ta=-40℃~+85℃) .......................................... 178
AC Characteristics ....................................................................................................................................................... 179
1. Clock Characteristics ......................................................................................................................................... 179
2. 80-System Bus Interface Timing Characteristics (18-/ 16- bit interface) ....................................................... 179
3. 80-System Bus Interface Timing Characteristics (9-/ 8- bit interface) ............................................................. 181
4. Clock-synchronized Serial Interface Timing Characteristics............................................................................ 182
5. Reset Timing Characteristics (IOVCC=1.65~3.30V)........................................................................................ 182
6. RGB Interface Timing Characteristics .............................................................................................................. 183
7. LCD driver Output Characteristics ................................................................................................................... 184
Notes on Electrical Characteristics ....................................................................................................................... 185
Rev.1.0 September 13, 2006, page 5 of 199
R61505U
Description
The R61505U is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, comprising RAM for
a maximum 240 RGB x 320 dot graphics display, source driver, gate driver and power supply circuit. For
efficient data transfer, the R61505U supports high-speed interface via 8-/9-/16-/18-bit ports as system
interface to the microcomputer and high-speed RAM write function. As moving picture interface, the
R61505U supports RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0).
Also, the R61505U incorporates step-up circuit and voltage follower circuit to generate TFT liquid crystal
panel drive voltages.
The R61505U’s power management functions such as 8-color display and deep standby and so on make
this LSI an ideal driver for the medium or small sized portable products with color display systems such as
digital cellular phones or small PDAs, where long battery life is a major concern.
Rev.1.0 September 13, 2006, page 6 of 199
R61505U
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum
240RGB x 320dots graphics display on amorphous TFT panel in 262k colors
System interface
– High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
– Clock synchronous serial interface
Moving picture display interface
– 6-, 16-, 18-bit RGB interface (VSYNC, HSYNC, DOTCLK, ENABLE, DB17-0)
– VSYNC interface (System interface + VSYNC)
– FMARK interface (System interface + FMARK)
High-speed RAM write function
Window address function to specify a rectangular area in the internal RAM to write data
Write data within a rectangular area in the internal RAM via moving picture interface
Reduce data transfer by specifying the area in the RAM to rewrite data
Enable displaying the data in the still picture RAM area with a moving picture simultaneously
Resizing function (x 1/2, x 1/4)
Abundant color display and drawing functions
– Programmable γ-correction function for 262k-color display
– Partial display function
Low -power consumption architecture (allowing direct input of interface I/O power supply)
– Deep standby function
– 8-color display function
– Input power supply voltages: VCC = 2.5V ~ 3.3 V (logic regulator power supply)
IOVCC = 1.65V ~ 3.3 V (interface I/O power supply)
VCI = 2.5V ~ 3.3 V (liquid crystal analog circuit power supply)
Incorporates a liquid crystal drive power supply circuit
– Source driver liquid crystal drive/VCOM power supply: DDVDH-GND = 4.5V ~ 6.0 V
VCL-GND = -1.9V ~ -3.0V
VCI-VCL ≤ 6.0V
– Gate drive power supply: VGH-GND = 10.0V ~ 20.0 V
VGL-GND = -4.5V ~ -13.5V
VGH-VGL ≤ 28.0V
– VCOM drive (VCOM power supply): VCOMH = 3.0V ~ (DDVDH-0.5)V
VCOML = (VCL+0.5)V ~ 0V
VCOMH-VCOML amplitude = 6.0V (max.)
Liquid crystal power supply startup sequencer
TFT storage capacitance: Cst only (common VCOM formula)
172,800-byte internal RAM
Internal 720-channel source driver and 320-channel gate driver
Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass
substrate
Internal NVM: User identification code, 4 bits, VCOM level adjustment, 5 bits x 2 sets
Rev.1.0 September 13, 2006, page 7 of 199
R61505U
•
Internal reference voltage: to generate VREG1OUT (VCIR)
Product Number
•
The R61505U has two variations of frequencies enabling users to choose whichever suitable for display
system.
Product Number
Oscillation Frequency
R61505U0
376KHz
R61505U1
600KHz
Rev.1.0 September 13, 2006, page 8 of 199
R61505U
•
Power supply specifications
Table 1
No.
Item
R61505U
1
TFT data lines
720
2
TFT gate lines
320
3
TFT display storage capacitance
Cst only (Common VCOM formula)
4
Liquid crystal
drive output
S1~S720
V0 ~ V31 grayscales
G1~320
VGH-VGL
VCOM
Change VCOMH-VCOML amplitude with electronic volume
Change VCOMH with either electronic volume or from
VCOMR
5
Input voltage
IOVCC
(interface voltage)
1.65V ~ 3.30V
Power supply to IM0/ID, IM1-3, RESET*, DB17-0, RD*, SDI,
SDO, WR/SCL, RS, CS*, VSYNC, HSYNC, DOTCLK,
ENABLE, FMARK
Connect to VCC and VCI on the FPC when the electrical
potentials are the same.
VCC
(logic regulator power
supply)
2.50V ~ 3.30V
VCI
(liquid crystal drive
power supply voltage)
2.50V ~ 3.30V
VPP
(NVM power supply)
VPP1: 9.0±0.1V
Connect to IOVCC and VCI on the FPC when the electrical
potentials are the same.
Connect to IOVCC and VCC on the FPC when the electrical
potentials are the same.
VPP2: 7.5±0.1V
VPP3: GND
6
6
Liquid crystal
drive
voltages
Internal
step-up
circuits
DDVDH
4.5V ~ 6.0V
VGH
10.0V ~ 20.0V
VGL
-4.5V ~ -13.5V
VGH-VGL
Max. 28.0V
VCL
-1.9V ~ -3.0V
VCI-VCL
Max. 6.0V
VLOUT1 (DDVDH)
VCI1 x 2, x 3
VLOUT2 (VGH)
VCI1 x 6, x 7, x 8
VLOUT3 (VGL)
VCI1 x -3, x -4, x -5
VCL
VCI1 x -1
Rev.1.0 September 13, 2006, page 9 of 199
R61505U
Difference between R61505 and R61505U
Table 2 R61505
BT[3:0]
4’h0
DDVDH
VCL
VGH
VGL
Capacitor connection pins
VLOUT1, VLOUT2, VLOUT3,
VCL, C11±, C12±, C13±, C21
±, C22±, C23±
VCI1 x 2
-VCI1
DDVDH x 4
-(VCI1+DDVDH x 2)
[x 2]
[x -1]
[x 8]
[x -5]
VCL
VGH
VGL
Capacitor connection pins
See “Specifications of Powersupply Circuit External Elements”.
C23±may be omitted.
Table 3 R61505U
BT[3:0]
4’h0
DDVDH
VCI1 x 2
-VCI1
DDVDH x 3
-(VCI1+DDVDH x 2)
[x 2]
[x -1]
[x 6]
[x -5]
Table 4 VCOM amplitude
VCOM amplitude (Max.)
R61505
R61505U
VREG1OUT x 1.0
VREG1OUT x 1.24
R61505
R61505U
External resistor
Internal resistor
Table 5 Oscillator
RC Oscillation
Rev.1.0 September 13, 2006, page 10 of 199
R61505U
Block Diagram
RGND
GND
Index
register (IR)
AGND
Control
register
(CR)
IOGND
Address
counter
IOVCC
18
RD*
Read data
latch
SDI
SDO
DB0-17
VSYNC
Write data 18
latch
18
Graphics RAM
(GRAM)
172,800 bytes
Latch circuit
WR/SCL
18
18-bit
16-bit
9-bit
8-bit
8-bit serial
Latch circuit
RS
Latch circuit
BGR circuit
CS*
M alternating timing
System
interface
Source line drive circuit
IM3-1,IM0/ID
External display
interface
HSYNC
timing
generator
RESET*
grayscale voltage
generating circuit
ENABLE
V31-0
VSYNC
HSYNC
DOTCLK
ENABLE
DB17-0
γ-correction circuit
DOTCLK
S1-720
VGS
VTEST
V0T
V31T
VMON
FMARK
CPG
Internal reference
voltage generating
circuit
VCC
gate line drive circuit
scan data generating circuit
TS8-0
TSC
VPP1-3
Internal logic
power supply
regulator
TEST1
TEST2
TEST3
TEST4
TEST5
VREFC
VRTEST
VREF
VDDTEST
VREFD
VDD
Figure 1
Rev.1.0 September 13, 2006, page 11 of 199
TESTA5
Vcom
VcomL
VcomR
VcomH
VREG1OUT
VCL
VLOUT2
VGH
VLOUT3
VGL
VLOUT1
DDVDH
C22+/C22C23+/C23-
VCI1
C11+/C11C12+/C12C13+/C13C21+/C21-
VCIOUT
VCI
Liquid crystal drive level generating circuit
VCILVL
G1-G320
R61505U
Block Function
1.
System Interface
The R61505U supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock
synchronous serial interface. The interface is selected by setting the IM3-0 pins.
The R61505U has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data
register (RDR). The IR is the register to store index information from control register and internal GRAM.
The WDR is the register to temporarily store data to be written to control register and internal GRAM.
The RDR is the register to temporarily store the data read from the GRAM. The data from the MPU to be
written to the internal GRAM is first written to the WDR and then automatically written to the internal
GRAM in internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data
is sent to the data bus when the R61505U performs the first read operation from the internal GRAM. Valid
data is read out when the R61505U performs the second and subsequent read operation.
The instruction execution time except that of starting oscillation takes 0 clock cycle to allow writing
instructions consecutively.
Table 6 Register Selection (80-system 8/9/16/18-bit Parallel Interface)
WR*
RD*
RS
Function
0
1
0
Write index to IR
1
0
0
Setting disabled
0
1
1
Write to control register or internal GRAM via WDR
1
0
1
Read from internal GRAM and register via RDR
Table 7 Register Selection (Clock synchronous serial interface)
Start byte
R/W
RS
Function
0
0
Write index to IR
1
0
Setting disabled
0
1
Write to control register or internal GRAM via WDR
1
1
Read from internal GRAM and register via RDR
Rev.1.0 September 13, 2006, page 12 of 199
R61505U
Table 8
Instruction write
transfer
IM3 IM2 IM1 IM0 System interface DB pins RAM write data
0
0
0
0
0
0
0
1
Setting disabled
-
-
-
Setting disabled
-
-
-
0
0
1
0
80-system 16-bit
interface
DB17-10,
DB8-1
Single transfer (16 bits)
2 transfers (1st: 2 bits, 2nd: 16 bits)
2 transfers (1st: 16 bits, 2nd: 2 bits)
0
0
1
1
80-system 8-bit
interface
DB17-10
2 transfers (1st: 8 bits, 2nd: 8 bits)
3 transfers (1st: 6 bits, 2nd: 6 bits, 3rd: 6 bits)
0
1
0
*
Clock synchronous
serial interface
(SDI, SDO) 2 transfers (1st: 8 bits, 2nd: 8 bits)
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
Setting disabled
-
-
-
Setting disabled
-
-
-
Setting disabled
-
-
-
Setting disabled
-
-
-
1
0
1
0
80-system 18-bit
interface
DB17-0
Single transfer (18 bits)
Single transfer (16 bits)
1
0
1
1
80-system 9-bit
interface
DB17-9
2 transfers (1st: 9 bits, 2nd: 9 bits)
2 transfers
(1st: 8 bits, 2nd: 8 bits)
1
1
*
*
Setting disabled
2.
External Display Interface (RGB, VSYNC interfaces)
-
Single transfer
(16 bits)
2 transfers
(1st: 8 bits, 2nd: 8 bits)
2 transfers
(1st: 8 bits, 2nd: 8 bits)
-
The R61505U supports RGB interface and VSYNC interface as the external interface to display moving
picture. When the RGB interface is selected, the display operation is synchronized with externally
supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface operation, data (DB17-0) is written
in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation
in order to prevent flicker while updating display data.
In VSYNC interface operation, the display operation is synchronized with the internal clock except frame
synchronization, which synchronizes the display operation with the VSYNC signal. The display data is
written to the internal GRAM via system interface. When writing data via VSYNC interface, there are
constraints in speed and method in writing data to the internal RAM. For details, see the “VSYNC
interface” section.
The R61505U allows switching interface by instruction according to the display, i.e. still and/or moving
picture(s). The R61505U writes all display data via RGB interface to the internal GRAM in order to
transfer data only when updating the data and thereby reduce the data transfer and power consumption for
moving picture display.
3.
Address Counter (AC)
The address counter (AC) gives an address to the internal GRAM. When the index of the register to set a
RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As the
R61505U writes data to the internal GRAM, the address in the AC is automatically updated plus or minus
1. The window address function enables writing data only within the rectangular area specified in the
GRAM.
Rev.1.0 September 13, 2006, page 13 of 199
R61505U
4.
Graphics RAM (GRAM)
GRAM is graphics RAM, which can store bit-pattern data of 172,800 (240RGB x 320 (dots) x 18(bits))
bytes at maximum, using 18 bits per pixel.
5.
Grayscale Voltage Generating Circuit
The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale
data in the γ-correction registers to enable 262k-color display. For details, see the γ-Correction Register
section.
6.
Liquid crystal drive power supply circuit
The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive
liquid crystal.
7.
Timing Generator
The timing generator generates a timing signal for the operation of internal circuit such as the internal
GRAM. The timing signal for display operation such as RAM read operation and the timing signal for
internal operation such as RAM access from the MPU are generated separately in order to avoid mutual
interference.
8.
Oscillator (OSC)
The R61505U generates the RC oscillation clock by internal RC oscillator. Adjusting the frequency by
external resistance is impossible. Adjust the oscillation frequency and line numbers by Frame-Frequency
Adjustment Function. During the deep standby mode, RC oscillation halts to reduce power consumption.
See “Oscillator” for details.
9.
Liquid crystal driver Circuit
The liquid crystal driver circuit of the R61505U consists of a 720-output source driver (S1 ~ S720) and a
320-output gate driver (G1~G320). The display pattern data is latched when 720 bits of data are inputted.
The latched data control the source driver and output drive waveforms. The gate driver for scanning gate
lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver
can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be
changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit.
Sets the gate driver pin arrangement in combination with the GS bit to select the optimal scan mode for the
module.
10. Internal logic power supply regulator
The internal logic power supply regulator generates internal logic power supply VDD.
Rev.1.0 September 13, 2006, page 14 of 199
R61505U
Pin Function
Table 9 Interface
Signal
I/O
IM3-1,
IM0/ID
I
Connect
Function
to
IOGND or Select a mode to interface to an MPU. In serial interface operation,
IOVCC
the IM0 pin is used to set the ID bit of device code.
IM3
IM2
IM1
IM0/I
D
Interface Mode
DB Pin
Colors
0
0
0
0
Setting disabled
-
0
0
0
1
Setting disabled
-
-
DB17-10,
DB8-1
262,144
0
0
0
0
1
1
0
80-system 16-bit
interface
When not
in use
-
-
see Note 1
262,144
1
80-system 8-bit interface
DB17-10
-
65,536
see Note 2
0
1
0
*(ID)
Clock synchronous serial
interface
0
1
1
0
Setting disabled
-
-
0
1
1
1
Setting disabled
-
-
1
0
0
0
Setting disabled
-
-
1
0
0
1
Setting disabled
-
-
DB17-0
262,144
1
0
1
0
80-system 18-bit
interface
1
0
1
1
80-system 9-bit interface
DB17-9
262,144
1
1
0
0
Setting disabled
-
-
1
1
0
1
Setting disabled
-
-
1
1
1
0
Setting disabled
-
-
1
1
1
1
Setting disabled
-
-
Notes: 1. 65,536 colors in one transfer mode
2. 65,536 colors in two transfers mode
CS*
I
MPU
Chip select signal. Amplitude: IOVCC-IOGND
Low: the R61505U is selected and accessible
High: the R61505U is not selected and not accessible.
IOVCC
RS
I
MPU
Register select signal. Amplitude: IOVCC-IOGND
Low: select Index or status register
High: select control register
IOVCC
WR*/SCL
I
MPU
Write strobe signal in 80-system bus interface operation and enables
write operation when WR* is low. Synchronous clock signal (SCL) in
serial interface operation. Amplitude: IOVCC-IOGND
IOVCC
RD*
I
MPU
Read strobe signal in 80-system bus interface operation and enables
read operation when RD* is low. Amplitude: IOVCC-IOGND
IOVCC
SDI
I
MPU
SDO
I/O
MPU
Serial data input (SDI) pin in serial interface operation. The data is
IOGND or
inputted on the rising edge of the SCL signal. Amplitude: IOVCCIOVCC
IOGND
Serial data output (SDO) pin in serial interface operation. The data is Open
outputted on the falling edge of the SCL signal.
Amplitude: IOVCC-IOGND
Rev.1.0 September 13, 2006, page 15 of 199
R61505U
Signal
I/O
DB0-DB17
I/O
Connect
to
MPU
When not
in use
18-bit parallel bi-directional data bus for 80-system interface operation IOGND or
IOVCC
(Amplitude: IOVCC-IOGND).
Function
8-bit I/F: DB17-DB10 are used.
9-bit I/F: DB17-DB9 are used.
16-bit I/F: DB17-DB10 and DB8-1 are used.
18-bit I/F: DB17-DB0 are used.
18-bit parallel bi-directional data bus for RGB interface operation
(Amplitude: IOVCC-IOGND).
6-bit I/F: DB17-DB12 are used.
16-bit I/F: DB17-DB13 and DB11-1 are used.
18-bit I/F: DB17-DB0 are used.
ENABLE
I
MPU
Data enable signal for RGB interface operation.
(Amplitude: IOVCC-IOGND).
IOGND or
IOVCC
Low: accessible (select)
High: Not accessible (Not select)
The polarity of ENABLE signal can be inverted by setting the EPL bit.
VSYNC
I
MPU
Frame synchronous signal for RGB interface operation. Low active.
(Amplitude: IOVCC-IOGND).
IOGND or
IOVCC
HSYNC
I
MPU
Line synchronous signal for RGB interface operation. Low active.
(Amplitude: IOVCC-IOGND).
IOGND or
IOVCC
DOTCLK
I
MPU
Dot clock signal for RGB interface operation. The data input timing is IOGND or
on the rising edge of DOTCLK. (Amplitude: IOVCC-IOGND).
IOVCC
FMARK
O
MPU
Frame head pulse signal, which is used when writing data to the
internal RAM. (Amplitude: IOVCC-IOGND).
Open
Table 10 Reset, RC oscillation
Signal
I/O
RESET*
I
OSC1
OSC2
I
O
Connect
to
MPU or
external
RC circuit
Open
Function
Reset signal. Initializes the R61505U when it is low. Make sure to
execute a power-on reset when turning on power supply (IOVCCIOGND amplitude signal).
Leave them open.
Rev.1.0 September 13, 2006, page 16 of 199
When not
in use
-
Open
R61505U
Table 11 Power supply
Connect
to
Power
supply
When not
in use
-
Signal
I/O
VCC
-
GND
-
Power
supply
Internal logic GND: GND = 0V.
-
RGND
-
Power
supply
Internal RAM GND. RGND must be at the same electrical potential as
GND. In case of COG, connect to GND on the FPC to prevent noise.
-
VDD
O
Stabilizing Internal logic regulator output, which is used as the power supply to
capacitor internal logic. Connect a stabilizing capacitor.
-
IOVCC
-
Power
supply
Power supply to the interface pins: RESET*, CS*, WR, RD*, RS,
DB17-0, VSYNC, HSYNC, DOTCLK, ENABLE.
IOVCC = 1.65V ~ 3.3V. VCC ≥ IOVCC. In case of COG, connect to
VCC on the FPC if IOVCC=VCC, to prevent noise.
-
IOGND
-
Power
supply
GND for the interface pins: RESET*, CS*, WR, RD*, RS, DB17-0,
VSYNC, HSYNC, DOTCLK, ENABLE. IOGND = 0V. In case of COG,
connect to GND on the FPC to prevent noise.
-
AGND
-
Power
supply
Analog GND (for logic regulator and liquid crystal power supply
circuit): AGND = 0V. In case of COG, connect to GND on the FPC to
prevent noise.
-
VCI
I
Power
supply
Power supply to the liquid crystal power supply analog circuit.
Connect to an external power supply of 2.5V ~ 3.3V.
-
VCILVL
I
Reference VCILVL must be at the same electrical potential as VCI.
power
VCILVL = 2.5V ~ 3.3V. Connect to external power supply. In case of
supply
COG, connect to VCI on the FPC to prevent noise.
VPP1
I
Power
supply or
open
VPP2
I
Power
supply or
open
Operation mode VPP1
VPP2
VPP3
NVM write
9.0±0.1V
7.5±0.1V
GND
Power
supply or
open
NVM read
Open
Open
Open or GND
VPP3
I
Function
Power supply to internal logic regulator circuit: VCC = 2.5V~3.3V.
VCC ≥ IOVCC
Internal NVM power supply. Apply the following voltages on VPP1 ~
VPP3 respectively according to the power supply ON sequence.
Rev.1.0 September 13, 2006, page 17 of 199
-
Open
Open
Open or
GND
R61505U
Table 12 Step-up circuit
Signal
I/O
VCIOUT
O
Connect
to
Stabilizing
capacitor,
VCI1
VCI1
I/O
VCIOUT
VLOUT1
O
Stabilizing Output voltage from the step-up circuit 1, generated from VCI1. The
capacitor, step-up factor is set by instruction (BT bits). Make sure to connect to
DDVDH
stabilizing capacitor. VLOUT1 = 4.5V ~ 6.0V
-
DDVDH
I
VLOUT1
-
VLOUT2
O
Stabilizing Output voltage from the step-up circuit 2, generated from VCI1 and
capacitor, DDVDH. The step-up factor is set by instruction (BT bits). Make sure
VGH
to connect to stabilizing capacitor. VLOUT2 = max 20.0V
-
VGH
I
VLOUT2
-
VLOUT3
O
Stabilizing Output voltage from the step-up circuit 2, generated from VCI1 and
capacitor, DDVDH. The step-up factor is set by instruction (BT bits). Make sure
VGL
to connect to stabilizing capacitor. VLOUT3 = min –13.5V
-
VGL
I
VLOUT3
-
VCL
O
Stabilizing VCOML drive power supply. Make sure to connect to stabilizing
capacitor capacitor. VCL = -1.9V ~ -3.0V
-
C11+, C11C12+, C12-
I
O
Step-up
capacitor
Capacitor connection pins for the step-up circuit 1.
-
C13+, C13C21+, C21C22+, C22C23+, C23-
I
O
Step-up
capacitor
Capacitor connection pins for the step-up circuit 2. Connect
capacitors to C23± according to the step-up factor.
-
Function
Output voltage from the step-up circuit 1, generated from the
reference voltage. The output factor is set by VC bits. Make sure to
connect to stabilizing capacitor.
Reference voltage of step-up circuit 1. Make sure the output voltage
levels from VLOUT1, VLOUT2, VLOUT3 do not exceed the respective
setting ranges.
Power supply for the source driver liquid crystal drive unit and VCOM
drive. Connect to VLOUT1. DDVDH = 4.5V ~ 6.0V
Liquid crystal drive power supply. Connect to VLOUT2.
Liquid crystal drive power supply. Connect to VLOUT3.
Rev.1.0 September 13, 2006, page 18 of 199
When not
in use
-
-
R61505U
Table 13 LCD drive
Signal
I/O
VREG1
OUT
O
Connect
Function
to
Stabilizing Output voltage generated from the reference voltage (VCILVL or
capacitor VCIR). The factor is determined by instruction (VRH bits).
When not
in use
Open
VREG1OUT is used for (1) source driver grayscale reference voltage,
(2) VCOMH level reference voltage, and (3) VCOM amplitude
reference voltage. Connect to a stabilizing capacitor when in use.
VREG1OUT = 4.0V ~ (DDVDH – 0.5)V
VCOM
O
TFT panel Power supply to TFT panel’s common electrode. VCOM alternates
Open
common between VCOMH and VCOML. The alternating cycle is set by internal
electrode register. Also, the VCOM output can be started and halted by register
setting.
VCOMH
O
Stabilizing The High level of VCOM amplitude. The output level can be adjusted Open
capacitor by either external resistor (VCOMR) or electronic volume. Make sure
to connect to stabilizing capacitor.
VCOML
O
Stabilizing The Low level of VCOM amplitude. The output level can be adjusted
capacitor by instruction (VDV bits). VCOML = (VCL+0.5)V ~ 0V. Make sure to
connect to stabilizing capacitor.
VCOMR
I
Variable
Connect a variable resistor when adjusting the VCOMH level between Open
resistor or VREG1OUT and GND.
open
VGS
I
GND
Reference level for the grayscale voltage generating circuit.
S1~S720
O
LCD
Liquid crystal application voltages. To change the shift direction of
segment signal output, set the SS bit as follows.
Open
Open
When SS = 0, the data in the RAM address h00000 is outputted from
S1. When SS = 1, the data in the RAM address h00000 is outputted
from S720.
G1~G320
O
LCD
Gate line output signals.
VGH: gate line select level
VGL: gate line non-select level
Rev.1.0 September 13, 2006, page 19 of 199
Open
R61505U
Table 14 Others (test, dummy pins)
I/O
Connect
to
Open
Test pins. Leave them open.
When not
in use
Open
VTEST
O
Open
Test pin. Leave it open.
Open
VREFC
I
AGND
Test pin. Make sure to fix to the AGND level.
VREF
O
Open
Test pin. Leave it open.
VDDTEST
I
AGND
Test pin. Make sure to fix to the AGND level.
VREFD
O
Open
Test pin. Leave it open.
Open
VMON
O
Open
Test pin. Leave it open.
Open
TESTA5
O
Open
Test pin. Leave it open.
Open
IOVCCDUM1-2
O
-
Use them to fix the electrical potentials of unused interface pins and
fixed pins. When not in use, leave it open.
Open
VCCDUM1
O
-
Test pin. Leave it open
Open
IOGNDDUM1-3
O
-
Use them to fix the electrical potentials of unused interface pins and
fixed pins. When not in use, leave it open.
Open
OSC1DUM1-4
O
-
Test pins. Leave them open.
Open
OSC2DUM1-2
O
-
Test pins. Leave them open.
Open
AGNDDUM1-4
O
-
Use them to fix VREFC, VDDTEST.
Open
DUMMYR
1-10
-
-
DUMMYR1 and DUMMYR10, DUMMYR2 and DUMMYR9,
DUMMYR3 and DUMMYR4, DUMMYR5 and DUMMYR8, and
DUMMYR6 and DUMMYR7 are short-circuited within the chip for
COG contact resistance measurement.
Open
VGLDMY
1-4
O
-
Dummy pads. Leave them open.
Open
Signal
I/O
V0T, V31T
Function
Rev.1.0 September 13, 2006, page 20 of 199
Open
-
R61505U
Signal
I/O
TESTO1-38
O
Connect
to
-
Dummy pads. Leave them open.
When not
in use
Open
TEST1, 2
I
IOGND
Test pins. Connect to IOGND.
IOGND
TEST3
TEST4
I
IOVCC
Test pin. Connect to IOVCC.
IOVCC
I
IOVCC
Test pin. Connect to IOVCC.
IOVCC
TEST5
I
IOGND
NVM operation enable pin. Connect to IOGND.
IOGND
TSC
I
IOGND
Test pin. Connect to IOGND.
IOGND
TS8-0
O
Open
Test pins. Leave them open.
Open
Function
Patents of dummy pin which is used to fix pin to VCC or GND are pending or granted.
PATENT ISSUED: United States Patent No. 6,323,930
PATENT PENDING: Japanese Application No. 10-514484, Korean Application No. 19997002322
Taiwanese Application No.086103756, (PCT/JP96/02728(W098/12597)
Rev.1.0 September 13, 2006, page 21 of 199
R61505U PAD arrangement
Rev0.0 2005.11.30
●Chip size: 21.56mm× 1.28mm
●Chip thickness: 280/400μm(typ.)
●PAD coordinates: PAD center
●Coordinates origin: Chip center
□
□
□
(1-a)
●Au BUMP size:
(1) 50.00 μm x 80.00μm
No.1 - 298
(2) 21.00μm x 100.00μm
No.299 - 1354
●Au BUMP pitch: See PAD coordinates Table
●Au BUMP height: 15μm(typ.)
●No. in the Figure corresponds to No. in PAD
coordinates Table
●Alignment mark
(1-a), (1-b)
100μm
40
30
50
100μm
30
50
30
40
30
Top View
BUMP
Chip
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
No.1
No.298
DUMMYR1 □
DUMMYR2 □
TESTO1 □
VCCDUM1 □
VPP1 □
VPP1 □
VPP1 □
VPP2 □
VPP2 □
VPP2 □
VPP2 □
VPP2 □
VPP3 □
VPP3 □
VPP3 □
TESTO2 □
IOGNDDUM1 □
TESTO3 □
TEST1 □
TEST2 □
TEST4 □
TEST5 □
TEST3 □
IM0/ID □
IM1 □
IM2 □
IM3 □
TESTO4 □
IOVCCDUM1 □
TESTO5 □
RESET* □
VSYNC □
HSYNC □
DOTCLK □
ENABLE □
DB17 □
DB16 □
DB15 □
DB14 □
DB13 □
DB12 □
DB11 □
DB10 □
DB9 □
DB8 □
TESTO6 □
IOGNDDUM2 □
TESTO7 □
DB7 □
DB6 □
DB5 □
DB4 □
DB3 □
DB2 □
DB1 □
DB0 □
SDO □
SDI □
RD* □
WR*/SCL □
RS □
CS* □
TESTO8 □
IOVCCDUM2 □
TESTO9 □
FMARK □
TS8 □
TS7 □
TS6 □
TS5 □
TS4 □
TS3 □
TS2 □
TS1 □
TS0 □
TSC □
TESTO10 □
IOGNDDUM3 □
TESTO11 □
TESTO12 □
OSC1DUM1 □
OSC1DUM2 □
OSC1 □
OSC1DUM3 □
OSC1DUM4 □
OSC2 □
OSC2DUM1 □
OSC2DUM2 □
DUMMYR3 □
DUMMYR4 □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
TESTO13 □
VREFD □
TESTO14 □
VREF □
TESTO15 □
VREFC □
TESTO16 □
VDDTEST □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
GND □
GND □
GND □
GND □
GND □
GND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
TESTO17 □
VTEST □
TESTO18 □
VGS □
TESTO19 □
V0T □
TESTO20 □
VMON □
TESTO21 □
V31T □
VCOM □
VCOM □
VCOM □
VCOM □
VCOM □
VCOM □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOML □
VCOML □
VCOML □
VCOML □
VCOML □
VCOML □
TESTO22 □
TESTO23 □
VREG1OUT □
TESTO24 □
TESTA5 □
TESTO25 □
VCOMR □
TESTO26 □
VCL □
VCL □
VCL □
VLOUT1 □
VLOUT1 □
VLOUT1 □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
VCIOUT □
VCIOUT □
VCIOUT □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCILVL □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
C12- □
C12- □
C12- □
C12- □
C12- □
C12+ □
C12+ □
C12+ □
C12+ □
C12+ □
C11- □
C11- □
C11- □
C11- □
C11- □
C11+ □
C11+ □
C11+ □
C11+ □
C11+ □
AGNDDUM1 □
VLOUT3 □
VLOUT3 □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
AGNDDUM2 □
AGNDDUM3 □
AGNDDUM4 □
VLOUT2 □
VLOUT2 □
VGH □
VGH □
VGH □
VGH □
TESTO27 □
C13- □
C13- □
C13- □
TESTO28 □
C13+ □
C13+ □
C13+ □
TESTO29 □
C21- □
C21- □
C21- □
C21+ □
C21+ □
C21+ □
C22- □
C22- □
C22- □
C22+ □
C22+ □
C22+ □
C23- □
C23- □
C23- □
C23+ □
C23+ □
C23+ □
TESTO30 □
DUMMYR5 □
DUMMYR6 □
□
□
□
□
□
DUMMYR1-DUMMYR10: short -circuit
DUMMYR2-DUMMYR9: short-circuit
□
□
□
□
□
□
□
□
□
TESTO38
TESTO37
DUMMYR10
DUMMYR9
VGLDMY4
G2
G4
G6
G8
G10
G312
G314
G316
G318
G320
VGLDMY3
TESTO36
60μm
□
□
□
□
□
□
□
□
□
TESTO35
S1
S2
S3
S4
S5
S6
S7
S8
R61505U
Staggered output
Top View
(Bump View)
Y
X
□
□
□
□
□
□
S716
S717
S718
S719
S720
TESTO34
220μm
□
□
□
□
□
□
□
□
□
DUMMYR5-DUMMYR8: short-circuit
DUMMYR6-DUMMYR7: short-circuit
□
□
□
□
(1-b)
□
□
□
□
TESTO33
VGLDMY2
G319
G317
G315
G313
G311
G9
G7
G5
G3
G1
VGLDMY1
DUMMYR8
DUMMYR7
TESTO32
TESTO31
R61505U
● Chip size: 21.56 mm x 1.28 mm
● Chip thickness: 280/400μm (typ.)
● PAD coordinates: PAD center
● PAD coordinates origin: Chip center
a
● Au bump size
(1) 50μm× 80μm
I/O output side:
No. 1 - No. 298
(2) 21μm× 100μm
Liquid crystal output side:
No. 299 - No. 1354
● Au bump pitch: See PAD coordinates table
● Au bump height: 15μm(typ.)
● No. in the Figure corresponds to No. in the
PAD coordinates table
Type A
b
e
f
Non-pattern area
X
-10613.0
10613.0
c
d
● Alignment mark
Alignment mark shape
g
Type A
Y
-468.0
-468.0
Rev.1.0 September 13, 2006, page 23 of 199
Unit (μm)
e: 40
a: 30
f: 30
b: 40
g: 100
c: 30
h: 100
d: 30
h
R61505U Pad Coordinate (Unit:μm)
pad No
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
pad name
DUMMYR1
DUMMYR2
TESTO1
VCCDUM1
VPP1
VPP1
VPP1
VPP2
VPP2
VPP2
VPP2
VPP2
VPP3A
VPP3A
VPP3B
TESTO2
IOGNDDUM1
TESTO3
TEST1
TEST2
TEST4
TEST5
PROTECT
IM0/ID
IM1
IM2
IM3
TESTO4
IOVCCDUM1
TESTO5
RESET*
VSYNC
HSYNC
DOTCLK
ENABLE
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
TESTO6
IOGNDDUM2
TESTO7
DB7
DB6
X
-10395.0
-10325.0
-10255.0
-10185.0
-10115.0
-10045.0
-9975.0
-9905.0
-9835.0
-9765.0
-9695.0
-9625.0
-9555.0
-9485.0
-9415.0
-9345.0
-9275.0
-9205.0
-9135.0
-9065.0
-8995.0
-8925.0
-8855.0
-8785.0
-8715.0
-8645.0
-8575.0
-8505.0
-8435.0
-8365.0
-8295.0
-8225.0
-8155.0
-8085.0
-8015.0
-7945.0
-7875.0
-7805.0
-7735.0
-7665.0
-7595.0
-7525.0
-7455.0
-7385.0
-7315.0
-7245.0
-7175.0
-7105.0
-7035.0
-6965.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
2005.11.30 rev0.1
pad No
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
pad name
DB5
DB4
DB3
DB2
DB1
DB0
SDO
SDI
RD*
WR*/SCL
RS
CS*
TESTO8
IOVCCDUM2
TESTO9
FMARK
TS8
TS7
TS6
TS5
TS4
TS3
TS2
TS1
TS0
TSC
TESTO10
IOGNDDUM3
TESTO11
TESTO12
OSC1DUM1
OSC1DUM2
OSC1
OSC1DUM3
OSC1DUM4
OSC2
OSC2DUM1
OSC2DUM2
DUMMYR3
DUMMYR4
IOGND
IOGND
IOGND
IOGND
IOGND
IOGND
IOGND
IOVCC
IOVCC
IOVCC
X
-6895.0
-6825.0
-6755.0
-6685.0
-6615.0
-6545.0
-6475.0
-6405.0
-6335.0
-6265.0
-6195.0
-6125.0
-6055.0
-5985.0
-5915.0
-5845.0
-5775.0
-5705.0
-5635.0
-5565.0
-5495.0
-5425.0
-5355.0
-5285.0
-5215.0
-5145.0
-5075.0
-5005.0
-4935.0
-4865.0
-4795.0
-4725.0
-4655.0
-4585.0
-4515.0
-4445.0
-4375.0
-4305.0
-4235.0
-4165.0
-4095.0
-4025.0
-3955.0
-3885.0
-3815.0
-3745.0
-3675.0
-3605.0
-3535.0
-3465.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
R61505U Pad Coordinate (Unit:μm)
pad No
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
pad name
IOVCC
IOVCC
IOVCC
IOVCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VDDOUT
VDDOUT
VDDOUT
VDDOUT
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
TESTO13
VREFD
TESTO14
VREF
TESTO15
VREFC
TESTO16
VDDTEST
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
X
-3395.0
-3325.0
-3255.0
-3185.0
-3115.0
-3045.0
-2975.0
-2905.0
-2835.0
-2765.0
-2695.0
-2625.0
-2555.0
-2485.0
-2415.0
-2345.0
-2275.0
-2205.0
-2135.0
-2065.0
-1995.0
-1925.0
-1855.0
-1785.0
-1715.0
-1645.0
-1575.0
-1505.0
-1435.0
-1365.0
-1295.0
-1225.0
-1155.0
-1085.0
-1015.0
-945.0
-875.0
-805.0
-735.0
-665.0
-595.0
-525.0
-455.0
-385.0
-315.0
-245.0
-175.0
-105.0
-35.0
35.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
2005.11.30 rev0.1
pad No
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
pad name
RGND
RGND
RGND
RGND
RGND
RGND
RGND
RGND
RGND
RGND
TESTO17
VTEST
TESTO18
VGS
TESTO19
V0T
TESTO20
VMON
TESTO21
V31T
VCOM
VCOM
VCOM
VCOM
VCOM
VCOM
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOMH
VCOML
VCOML
VCOML
VCOML
VCOML
VCOML
TESTO22
TESTO23
VREG1OUT
TESTO24
TESTA5
TESTO25
VCOMR
TESTO26
VCL
VCL
VCL
VLOUT1
X
105.0
175.0
245.0
315.0
385.0
455.0
525.0
595.0
665.0
735.0
805.0
875.0
945.0
1015.0
1085.0
1155.0
1225.0
1295.0
1365.0
1435.0
1505.0
1575.0
1645.0
1715.0
1785.0
1855.0
1925.0
1995.0
2065.0
2135.0
2205.0
2275.0
2345.0
2415.0
2485.0
2555.0
2625.0
2695.0
2765.0
2835.0
2905.0
2975.0
3045.0
3115.0
3185.0
3255.0
3325.0
3395.0
3465.0
3535.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
R61505U Pad Coordinate (Unit:μm)
pad No
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
pad name
VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCILVL
VCI
VCI
VCI
VCI
VCI
VCI
VCI
VCI
C12C12C12C12C12C12+
C12+
C12+
C12+
C12+
C11C11C11C11C11C11+
C11+
C11+
C11+
C11+
AGNDDUM1
VLOUT3
VLOUT3
VGL
X
3605.0
3675.0
3745.0
3815.0
3885.0
3955.0
4025.0
4095.0
4165.0
4235.0
4305.0
4375.0
4445.0
4515.0
4585.0
4655.0
4725.0
4795.0
4865.0
4935.0
5005.0
5075.0
5145.0
5215.0
5285.0
5355.0
5425.0
5495.0
5565.0
5635.0
5705.0
5775.0
5845.0
5915.0
5985.0
6055.0
6125.0
6195.0
6265.0
6335.0
6405.0
6475.0
6545.0
6615.0
6685.0
6755.0
6825.0
6895.0
6965.0
7035.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
2005.11.30 rev0.1
pad No
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
pad name
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
VGL
AGNDDUM2
AGNDDUM3
AGNDDUM4
VLOUT2
VLOUT2
VGH
VGH
VGH
VGH
TESTO27
C13C13C13TESTO28
C13+
C13+
C13+
TESTO29
C21C21C21C21+
C21+
C21+
C22C22C22C22+
C22+
C22+
C23C23C23C23+
C23+
C23+
TESTO30
DUMMYR5
DUMMYR6
TESTO31
TESTO32
X
7105.0
7175.0
7245.0
7315.0
7385.0
7455.0
7525.0
7595.0
7665.0
7735.0
7805.0
7875.0
7945.0
8015.0
8085.0
8155.0
8225.0
8295.0
8365.0
8435.0
8505.0
8575.0
8645.0
8715.0
8785.0
8855.0
8925.0
8995.0
9065.0
9135.0
9205.0
9275.0
9345.0
9415.0
9485.0
9555.0
9625.0
9695.0
9765.0
9835.0
9905.0
9975.0
10045.0
10115.0
10185.0
10255.0
10325.0
10395.0
10670.0
10650.0
Y
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
-517.5
511.5
386.5
R61505U Pad Coordinate (Unit:μm)
pad No
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
pad name
DUMMYR7
DUMMYR8
VGLDMY1
G1
G3
G5
G7
G9
G11
G13
G15
G17
G19
G21
G23
G25
G27
G29
G31
G33
G35
G37
G39
G41
G43
G45
G47
G49
G51
G53
G55
G57
G59
G61
G63
G65
G67
G69
G71
G73
G75
G77
G79
G81
G83
G85
G87
G89
G91
G93
X
10630.0
10610.0
10590.0
10570.0
10550.0
10530.0
10510.0
10490.0
10470.0
10450.0
10430.0
10410.0
10390.0
10370.0
10350.0
10330.0
10310.0
10290.0
10270.0
10250.0
10230.0
10210.0
10190.0
10170.0
10150.0
10130.0
10110.0
10090.0
10070.0
10050.0
10030.0
10010.0
9990.0
9970.0
9950.0
9930.0
9910.0
9890.0
9870.0
9850.0
9830.0
9810.0
9790.0
9770.0
9750.0
9730.0
9710.0
9690.0
9670.0
9650.0
Y
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
2005.11.30 rev0.1
pad No
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
pad name
G95
G97
G99
G101
G103
G105
G107
G109
G111
G113
G115
G117
G119
G121
G123
G125
G127
G129
G131
G133
G135
G137
G139
G141
G143
G145
G147
G149
G151
G153
G155
G157
G159
G161
G163
G165
G167
G169
G171
G173
G175
G177
G179
G181
G183
G185
G187
G189
G191
G193
X
9630.0
9610.0
9590.0
9570.0
9550.0
9530.0
9510.0
9490.0
9470.0
9450.0
9430.0
9410.0
9390.0
9370.0
9350.0
9330.0
9310.0
9290.0
9270.0
9250.0
9230.0
9210.0
9190.0
9170.0
9150.0
9130.0
9110.0
9090.0
9070.0
9050.0
9030.0
9010.0
8990.0
8970.0
8950.0
8930.0
8910.0
8890.0
8870.0
8850.0
8830.0
8810.0
8790.0
8770.0
8750.0
8730.0
8710.0
8690.0
8670.0
8650.0
Y
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
R61505U Pad Coordinate (Unit:μm)
pad No
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
pad name
G195
G197
G199
G201
G203
G205
G207
G209
G211
G213
G215
G217
G219
G221
G223
G225
G227
G229
G231
G233
G235
G237
G239
G241
G243
G245
G247
G249
G251
G253
G255
G257
G259
G261
G263
G265
G267
G269
G271
G273
G275
G277
G279
G281
G283
G285
G287
G289
G291
G293
X
8630.0
8610.0
8590.0
8570.0
8550.0
8530.0
8510.0
8490.0
8470.0
8450.0
8430.0
8410.0
8390.0
8370.0
8350.0
8330.0
8310.0
8290.0
8270.0
8250.0
8230.0
8210.0
8190.0
8170.0
8150.0
8130.0
8110.0
8090.0
8070.0
8050.0
8030.0
8010.0
7990.0
7970.0
7950.0
7930.0
7910.0
7890.0
7870.0
7850.0
7830.0
7810.0
7790.0
7770.0
7750.0
7730.0
7710.0
7690.0
7670.0
7650.0
Y
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
2005.11.30 rev0.1
pad No
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
pad name
G295
G297
G299
G301
G303
G305
G307
G309
G311
G313
G315
G317
G319
VGLDMY2
TESTO33
TESTO34
S720
S719
S718
S717
S716
S715
S714
S713
S712
S711
S710
S709
S708
S707
S706
S705
S704
S703
S702
S701
S700
S699
S698
S697
S696
S695
S694
S693
S692
S691
S690
S689
S688
S687
X
7630.0
7610.0
7590.0
7570.0
7550.0
7530.0
7510.0
7490.0
7470.0
7450.0
7430.0
7410.0
7390.0
7370.0
7350.0
7130.0
7110.0
7090.0
7070.0
7050.0
7030.0
7010.0
6990.0
6970.0
6950.0
6930.0
6910.0
6890.0
6870.0
6850.0
6830.0
6810.0
6790.0
6770.0
6750.0
6730.0
6710.0
6690.0
6670.0
6650.0
6630.0
6610.0
6590.0
6570.0
6550.0
6530.0
6510.0
6490.0
6470.0
6450.0
Y
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
pad name
S686
S685
S684
S683
S682
S681
S680
S679
S678
S677
S676
S675
S674
S673
S672
S671
S670
S669
S668
S667
S666
S665
S664
S663
S662
S661
S660
S659
S658
S657
S656
S655
S654
S653
S652
S651
S650
S649
S648
S647
S646
S645
S644
S643
S642
S641
S640
S639
S638
S637
X
6430.0
6410.0
6390.0
6370.0
6350.0
6330.0
6310.0
6290.0
6270.0
6250.0
6230.0
6210.0
6190.0
6170.0
6150.0
6130.0
6110.0
6090.0
6070.0
6050.0
6030.0
6010.0
5990.0
5970.0
5950.0
5930.0
5910.0
5890.0
5870.0
5850.0
5830.0
5810.0
5790.0
5770.0
5750.0
5730.0
5710.0
5690.0
5670.0
5650.0
5630.0
5610.0
5590.0
5570.0
5550.0
5530.0
5510.0
5490.0
5470.0
5450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
pad name
S636
S635
S634
S633
S632
S631
S630
S629
S628
S627
S626
S625
S624
S623
S622
S621
S620
S619
S618
S617
S616
S615
S614
S613
S612
S611
S610
S609
S608
S607
S606
S605
S604
S603
S602
S601
S600
S599
S598
S597
S596
S595
S594
S593
S592
S591
S590
S589
S588
S587
X
5430.0
5410.0
5390.0
5370.0
5350.0
5330.0
5310.0
5290.0
5270.0
5250.0
5230.0
5210.0
5190.0
5170.0
5150.0
5130.0
5110.0
5090.0
5070.0
5050.0
5030.0
5010.0
4990.0
4970.0
4950.0
4930.0
4910.0
4890.0
4870.0
4850.0
4830.0
4810.0
4790.0
4770.0
4750.0
4730.0
4710.0
4690.0
4670.0
4650.0
4630.0
4610.0
4590.0
4570.0
4550.0
4530.0
4510.0
4490.0
4470.0
4450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
pad name
S586
S585
S584
S583
S582
S581
S580
S579
S578
S577
S576
S575
S574
S573
S572
S571
S570
S569
S568
S567
S566
S565
S564
S563
S562
S561
S560
S559
S558
S557
S556
S555
S554
S553
S552
S551
S550
S549
S548
S547
S546
S545
S544
S543
S542
S541
S540
S539
S538
S537
X
4430.0
4410.0
4390.0
4370.0
4350.0
4330.0
4310.0
4290.0
4270.0
4250.0
4230.0
4210.0
4190.0
4170.0
4150.0
4130.0
4110.0
4090.0
4070.0
4050.0
4030.0
4010.0
3990.0
3970.0
3950.0
3930.0
3910.0
3890.0
3870.0
3850.0
3830.0
3810.0
3790.0
3770.0
3750.0
3730.0
3710.0
3690.0
3670.0
3650.0
3630.0
3610.0
3590.0
3570.0
3550.0
3530.0
3510.0
3490.0
3470.0
3450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
pad name
S536
S535
S534
S533
S532
S531
S530
S529
S528
S527
S526
S525
S524
S523
S522
S521
S520
S519
S518
S517
S516
S515
S514
S513
S512
S511
S510
S509
S508
S507
S506
S505
S504
S503
S502
S501
S500
S499
S498
S497
S496
S495
S494
S493
S492
S491
S490
S489
S488
S487
X
3430.0
3410.0
3390.0
3370.0
3350.0
3330.0
3310.0
3290.0
3270.0
3250.0
3230.0
3210.0
3190.0
3170.0
3150.0
3130.0
3110.0
3090.0
3070.0
3050.0
3030.0
3010.0
2990.0
2970.0
2950.0
2930.0
2910.0
2890.0
2870.0
2850.0
2830.0
2810.0
2790.0
2770.0
2750.0
2730.0
2710.0
2690.0
2670.0
2650.0
2630.0
2610.0
2590.0
2570.0
2550.0
2530.0
2510.0
2490.0
2470.0
2450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
pad name
S486
S485
S484
S483
S482
S481
S480
S479
S478
S477
S476
S475
S474
S473
S472
S471
S470
S469
S468
S467
S466
S465
S464
S463
S462
S461
S460
S459
S458
S457
S456
S455
S454
S453
S452
S451
S450
S449
S448
S447
S446
S445
S444
S443
S442
S441
S440
S439
S438
S437
X
2430.0
2410.0
2390.0
2370.0
2350.0
2330.0
2310.0
2290.0
2270.0
2250.0
2230.0
2210.0
2190.0
2170.0
2150.0
2130.0
2110.0
2090.0
2070.0
2050.0
2030.0
2010.0
1990.0
1970.0
1950.0
1930.0
1910.0
1890.0
1870.0
1850.0
1830.0
1810.0
1790.0
1770.0
1750.0
1730.0
1710.0
1690.0
1670.0
1650.0
1630.0
1610.0
1590.0
1570.0
1550.0
1530.0
1510.0
1490.0
1470.0
1450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
pad name
S436
S435
S434
S433
S432
S431
S430
S429
S428
S427
S426
S425
S424
S423
S422
S421
S420
S419
S418
S417
S416
S415
S414
S413
S412
S411
S410
S409
S408
S407
S406
S405
S404
S403
S402
S401
S400
S399
S398
S397
S396
S395
S394
S393
S392
S391
S390
S389
S388
S387
X
1430.0
1410.0
1390.0
1370.0
1350.0
1330.0
1310.0
1290.0
1270.0
1250.0
1230.0
1210.0
1190.0
1170.0
1150.0
1130.0
1110.0
1090.0
1070.0
1050.0
1030.0
1010.0
990.0
970.0
950.0
930.0
910.0
890.0
870.0
850.0
830.0
810.0
790.0
770.0
750.0
730.0
710.0
690.0
670.0
650.0
630.0
610.0
590.0
570.0
550.0
530.0
510.0
490.0
470.0
450.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
pad name
S386
S385
S384
S383
S382
S381
S380
S379
S378
S377
S376
S375
S374
S373
S372
S371
S370
S369
S368
S367
S366
S365
S364
S363
S362
S361
S360
S359
S358
S357
S356
S355
S354
S353
S352
S351
S350
S349
S348
S347
S346
S345
S344
S343
S342
S341
S340
S339
S338
S337
X
430.0
410.0
390.0
370.0
350.0
330.0
310.0
290.0
270.0
250.0
230.0
210.0
190.0
170.0
150.0
130.0
110.0
90.0
70.0
50.0
30.0
10.0
-10.0
-30.0
-50.0
-70.0
-90.0
-110.0
-130.0
-150.0
-170.0
-190.0
-210.0
-230.0
-250.0
-270.0
-290.0
-310.0
-330.0
-350.0
-370.0
-390.0
-410.0
-430.0
-450.0
-470.0
-490.0
-510.0
-530.0
-550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
pad name
S336
S335
S334
S333
S332
S331
S330
S329
S328
S327
S326
S325
S324
S323
S322
S321
S320
S319
S318
S317
S316
S315
S314
S313
S312
S311
S310
S309
S308
S307
S306
S305
S304
S303
S302
S301
S300
S299
S298
S297
S296
S295
S294
S293
S292
S291
S290
S289
S288
S287
X
-570.0
-590.0
-610.0
-630.0
-650.0
-670.0
-690.0
-710.0
-730.0
-750.0
-770.0
-790.0
-810.0
-830.0
-850.0
-870.0
-890.0
-910.0
-930.0
-950.0
-970.0
-990.0
-1010.0
-1030.0
-1050.0
-1070.0
-1090.0
-1110.0
-1130.0
-1150.0
-1170.0
-1190.0
-1210.0
-1230.0
-1250.0
-1270.0
-1290.0
-1310.0
-1330.0
-1350.0
-1370.0
-1390.0
-1410.0
-1430.0
-1450.0
-1470.0
-1490.0
-1510.0
-1530.0
-1550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
pad name
S286
S285
S284
S283
S282
S281
S280
S279
S278
S277
S276
S275
S274
S273
S272
S271
S270
S269
S268
S267
S266
S265
S264
S263
S262
S261
S260
S259
S258
S257
S256
S255
S254
S253
S252
S251
S250
S249
S248
S247
S246
S245
S244
S243
S242
S241
S240
S239
S238
S237
X
-1570.0
-1590.0
-1610.0
-1630.0
-1650.0
-1670.0
-1690.0
-1710.0
-1730.0
-1750.0
-1770.0
-1790.0
-1810.0
-1830.0
-1850.0
-1870.0
-1890.0
-1910.0
-1930.0
-1950.0
-1970.0
-1990.0
-2010.0
-2030.0
-2050.0
-2070.0
-2090.0
-2110.0
-2130.0
-2150.0
-2170.0
-2190.0
-2210.0
-2230.0
-2250.0
-2270.0
-2290.0
-2310.0
-2330.0
-2350.0
-2370.0
-2390.0
-2410.0
-2430.0
-2450.0
-2470.0
-2490.0
-2510.0
-2530.0
-2550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
pad name
S236
S235
S234
S233
S232
S231
S230
S229
S228
S227
S226
S225
S224
S223
S222
S221
S220
S219
S218
S217
S216
S215
S214
S213
S212
S211
S210
S209
S208
S207
S206
S205
S204
S203
S202
S201
S200
S199
S198
S197
S196
S195
S194
S193
S192
S191
S190
S189
S188
S187
X
-2570.0
-2590.0
-2610.0
-2630.0
-2650.0
-2670.0
-2690.0
-2710.0
-2730.0
-2750.0
-2770.0
-2790.0
-2810.0
-2830.0
-2850.0
-2870.0
-2890.0
-2910.0
-2930.0
-2950.0
-2970.0
-2990.0
-3010.0
-3030.0
-3050.0
-3070.0
-3090.0
-3110.0
-3130.0
-3150.0
-3170.0
-3190.0
-3210.0
-3230.0
-3250.0
-3270.0
-3290.0
-3310.0
-3330.0
-3350.0
-3370.0
-3390.0
-3410.0
-3430.0
-3450.0
-3470.0
-3490.0
-3510.0
-3530.0
-3550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
pad name
S186
S185
S184
S183
S182
S181
S180
S179
S178
S177
S176
S175
S174
S173
S172
S171
S170
S169
S168
S167
S166
S165
S164
S163
S162
S161
S160
S159
S158
S157
S156
S155
S154
S153
S152
S151
S150
S149
S148
S147
S146
S145
S144
S143
S142
S141
S140
S139
S138
S137
X
-3570.0
-3590.0
-3610.0
-3630.0
-3650.0
-3670.0
-3690.0
-3710.0
-3730.0
-3750.0
-3770.0
-3790.0
-3810.0
-3830.0
-3850.0
-3870.0
-3890.0
-3910.0
-3930.0
-3950.0
-3970.0
-3990.0
-4010.0
-4030.0
-4050.0
-4070.0
-4090.0
-4110.0
-4130.0
-4150.0
-4170.0
-4190.0
-4210.0
-4230.0
-4250.0
-4270.0
-4290.0
-4310.0
-4330.0
-4350.0
-4370.0
-4390.0
-4410.0
-4430.0
-4450.0
-4470.0
-4490.0
-4510.0
-4530.0
-4550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
pad name
S136
S135
S134
S133
S132
S131
S130
S129
S128
S127
S126
S125
S124
S123
S122
S121
S120
S119
S118
S117
S116
S115
S114
S113
S112
S111
S110
S109
S108
S107
S106
S105
S104
S103
S102
S101
S100
S99
S98
S97
S96
S95
S94
S93
S92
S91
S90
S89
S88
S87
X
-4570.0
-4590.0
-4610.0
-4630.0
-4650.0
-4670.0
-4690.0
-4710.0
-4730.0
-4750.0
-4770.0
-4790.0
-4810.0
-4830.0
-4850.0
-4870.0
-4890.0
-4910.0
-4930.0
-4950.0
-4970.0
-4990.0
-5010.0
-5030.0
-5050.0
-5070.0
-5090.0
-5110.0
-5130.0
-5150.0
-5170.0
-5190.0
-5210.0
-5230.0
-5250.0
-5270.0
-5290.0
-5310.0
-5330.0
-5350.0
-5370.0
-5390.0
-5410.0
-5430.0
-5450.0
-5470.0
-5490.0
-5510.0
-5530.0
-5550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
pad name
S86
S85
S84
S83
S82
S81
S80
S79
S78
S77
S76
S75
S74
S73
S72
S71
S70
S69
S68
S67
S66
S65
S64
S63
S62
S61
S60
S59
S58
S57
S56
S55
S54
S53
S52
S51
S50
S49
S48
S47
S46
S45
S44
S43
S42
S41
S40
S39
S38
S37
X
-5570.0
-5590.0
-5610.0
-5630.0
-5650.0
-5670.0
-5690.0
-5710.0
-5730.0
-5750.0
-5770.0
-5790.0
-5810.0
-5830.0
-5850.0
-5870.0
-5890.0
-5910.0
-5930.0
-5950.0
-5970.0
-5990.0
-6010.0
-6030.0
-6050.0
-6070.0
-6090.0
-6110.0
-6130.0
-6150.0
-6170.0
-6190.0
-6210.0
-6230.0
-6250.0
-6270.0
-6290.0
-6310.0
-6330.0
-6350.0
-6370.0
-6390.0
-6410.0
-6430.0
-6450.0
-6470.0
-6490.0
-6510.0
-6530.0
-6550.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
pad name
S36
S35
S34
S33
S32
S31
S30
S29
S28
S27
S26
S25
S24
S23
S22
S21
S20
S19
S18
S17
S16
S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
TESTO35
TESTO36
VGLDMY3
G320
G318
G316
G314
G312
G310
G308
G306
G304
G302
G300
X
-6570.0
-6590.0
-6610.0
-6630.0
-6650.0
-6670.0
-6690.0
-6710.0
-6730.0
-6750.0
-6770.0
-6790.0
-6810.0
-6830.0
-6850.0
-6870.0
-6890.0
-6910.0
-6930.0
-6950.0
-6970.0
-6990.0
-7010.0
-7030.0
-7050.0
-7070.0
-7090.0
-7110.0
-7130.0
-7150.0
-7170.0
-7190.0
-7210.0
-7230.0
-7250.0
-7270.0
-7290.0
-7350.0
-7370.0
-7390.0
-7410.0
-7430.0
-7450.0
-7470.0
-7490.0
-7510.0
-7530.0
-7550.0
-7570.0
-7590.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
pad name
G298
G296
G294
G292
G290
G288
G286
G284
G282
G280
G278
G276
G274
G272
G270
G268
G266
G264
G262
G260
G258
G256
G254
G252
G250
G248
G246
G244
G242
G240
G238
G236
G234
G232
G230
G228
G226
G224
G222
G220
G218
G216
G214
G212
G210
G208
G206
G204
G202
G200
X
-7610.0
-7630.0
-7650.0
-7670.0
-7690.0
-7710.0
-7730.0
-7750.0
-7770.0
-7790.0
-7810.0
-7830.0
-7850.0
-7870.0
-7890.0
-7910.0
-7930.0
-7950.0
-7970.0
-7990.0
-8010.0
-8030.0
-8050.0
-8070.0
-8090.0
-8110.0
-8130.0
-8150.0
-8170.0
-8190.0
-8210.0
-8230.0
-8250.0
-8270.0
-8290.0
-8310.0
-8330.0
-8350.0
-8370.0
-8390.0
-8410.0
-8430.0
-8450.0
-8470.0
-8490.0
-8510.0
-8530.0
-8550.0
-8570.0
-8590.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
pad name
G198
G196
G194
G192
G190
G188
G186
G184
G182
G180
G178
G176
G174
G172
G170
G168
G166
G164
G162
G160
G158
G156
G154
G152
G150
G148
G146
G144
G142
G140
G138
G136
G134
G132
G130
G128
G126
G124
G122
G120
G118
G116
G114
G112
G110
G108
G106
G104
G102
G100
X
-8610.0
-8630.0
-8650.0
-8670.0
-8690.0
-8710.0
-8730.0
-8750.0
-8770.0
-8790.0
-8810.0
-8830.0
-8850.0
-8870.0
-8890.0
-8910.0
-8930.0
-8950.0
-8970.0
-8990.0
-9010.0
-9030.0
-9050.0
-9070.0
-9090.0
-9110.0
-9130.0
-9150.0
-9170.0
-9190.0
-9210.0
-9230.0
-9250.0
-9270.0
-9290.0
-9310.0
-9330.0
-9350.0
-9370.0
-9390.0
-9410.0
-9430.0
-9450.0
-9470.0
-9490.0
-9510.0
-9530.0
-9550.0
-9570.0
-9590.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
pad No
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
pad name
G98
G96
G94
G92
G90
G88
G86
G84
G82
G80
G78
G76
G74
G72
G70
G68
G66
G64
G62
G60
G58
G56
G54
G52
G50
G48
G46
G44
G42
G40
G38
G36
G34
G32
G30
G28
G26
G24
G22
G20
G18
G16
G14
G12
G10
G8
G6
G4
G2
VGLDMY4
X
-9610.0
-9630.0
-9650.0
-9670.0
-9690.0
-9710.0
-9730.0
-9750.0
-9770.0
-9790.0
-9810.0
-9830.0
-9850.0
-9870.0
-9890.0
-9910.0
-9930.0
-9950.0
-9970.0
-9990.0
-10010.0
-10030.0
-10050.0
-10070.0
-10090.0
-10110.0
-10130.0
-10150.0
-10170.0
-10190.0
-10210.0
-10230.0
-10250.0
-10270.0
-10290.0
-10310.0
-10330.0
-10350.0
-10370.0
-10390.0
-10410.0
-10430.0
-10450.0
-10470.0
-10490.0
-10510.0
-10530.0
-10550.0
-10570.0
-10590.0
Y
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
386.5
511.5
2005.11.30 rev0.1
pad No
1351
1352
1353
1354
pad name
DUMMYR9
DUMMYR10
TESTO37
TESTO38
X
-10610.0
-10630.0
-10650.0
-10670.0
Y
386.5
511.5
386.5
511.5
R61505U Pad Coordinate (Unit:μm)
Alignment mark
1-a
1-b
X
-10613.0
10613.0
Y
-468.0
-468.0
2005.11.30 rev0.1
R61505U
BUMP arrangement
20
21
100
S1 ~ S720,
G1 ~ G320
DUMMY*
DUMMYR*
TESTO*
VGLDMY*
(No.299 ~ No.1354)
25
225
S = 2100 μm2
Unit: μm
50
I/O pins
(No.1 ~ No.298)
20
S = 4000 μm2
80
Min. 70
Figure 2
Rev.1.0 September 13, 2006, page 39 of 199
Unit: μm
■R61505U Recommended connection example and resistance
Rev1.1 2006.02.16
□
□
□
PAD No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
□
(1-a)
open
open
open
open
VPP1
≦25ohm
VPP2
≦15ohm
VPP3
≦25ohm
open
open
IOVCC
≦100ohm
IM0/ID
IM1
IM2
IM3
≦100ohm
≦100ohm
≦100ohm
≦100ohm
RESET*
VSYNC
HSYNC
DOTCLK
ENABLE
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
open
open
open
open
open
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
SDO
SDI
RD*
WR*/SCL
RS
CS*
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
≦100ohm
FMARK
≦100ohm
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
open
≦10ohm
IOVCC
≦10ohm
VCC
≦10ohm
1uF
≦5ohm
open
open
open
open
open
open
≦5ohm
≦15ohm
GND
≦5ohm
open
open
open
VGS
≦100ohm
open
open
open
open
open
open
≦10ohm
1u
≦10ohm
1u
≦10ohm
open
open
1uF
open
open
open
open
1uF
≦25ohm
1uF
≦10ohm
1uF
≦10ohm
≦100ohm
VCI
≦5ohm
1uF
≦15ohm
≦15ohm
1uF
≦15ohm
≦15ohm
open
1uF
≦10ohm
open
open
open
1uF
≦20ohm
open
1uF
≦25ohm
open
≦25ohm
open
1uF
≦25ohm
≦25ohm
1uF
≦25ohm
≦25ohm
1uF
≦25ohm
≦25ohm
open
open
open
DUMMYR1 □
DUMMYR2 □
TESTO1 □
VCCDUM1 □
VPP1 □
VPP1 □
VPP1 □
VPP2 □
VPP2 □
VPP2 □
VPP2 □
VPP2 □
VPP3 □
VPP3 □
VPP3 □
TESTO2 □
IOGNDDUM1 □
TESTO3 □
TEST1 □
TEST2 □
TEST4 □
TEST5 □
TEST3 □
IM0/ID □
IM1 □
IM2 □
IM3 □
TESTO4 □
IOVCCDUM1 □
TESTO5 □
RESET* □
VSYNC □
HSYNC □
DOTCLK □
ENABLE □
DB17 □
DB16 □
DB15 □
DB14 □
DB13 □
DB12 □
DB11 □
DB10 □
DB9 □
DB8 □
TESTO6 □
IOGNDDUM2 □
TESTO7 □
DB7 □
DB6 □
DB5 □
DB4 □
DB3 □
DB2 □
DB1 □
DB0 □
SDO □
SDI □
RD* □
WR*/SCL □
RS □
CS* □
TESTO8 □
IOVCCDUM2 □
TESTO9 □
FMARK □
TS8 □
TS7 □
TS6 □
TS5 □
TS4 □
TS3 □
TS2 □
TS1 □
TS0 □
TSC □
TESTO10 □
IOGNDDUM3 □
TESTO11 □
TESTO12 □
OSC1DUM1 □
OSC1DUM2 □
OSC1 □
OSC1DUM3 □
OSC1DUM4 □
OSC2 □
OSC2DUM1 □
OSC2DUM2 □
DUMMYR3 □
DUMMYR4 □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOGND □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
IOVCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VCC □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
VDD □
TESTO13 □
VREFD □
TESTO14 □
VREF □
TESTO15 □
VREFC □
TESTO16 □
VDDTEST □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
AGND □
GND □
GND □
GND □
GND □
GND □
GND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
RGND □
TESTO17 □
VTEST □
TESTO18 □
VGS □
TESTO19 □
V0T □
TESTO20 □
VMON □
TESTO21 □
V31T □
VCOM □
VCOM □
VCOM □
VCOM □
VCOM □
VCOM □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOMH □
VCOML □
VCOML □
VCOML □
VCOML □
VCOML □
VCOML □
TESTO22 □
TESTO23 □
VREG1OUT □
TESTO24 □
TESTA5 □
TESTO25 □
VcomR □
TESTO26 □
VCL □
VCL □
VCL □
VLOUT1 □
VLOUT1 □
VLOUT1 □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
DDVDH □
VCIOUT □
VCIOUT □
VCIOUT □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCI1 □
VCILVL □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
VCI □
C12- □
C12- □
C12- □
C12- □
C12- □
C12+ □
C12+ □
C12+ □
C12+ □
C12+ □
C11- □
C11- □
C11- □
C11- □
C11- □
C11+ □
C11+ □
C11+ □
C11+ □
C11+ □
AGNDDUM1 □
VLOUT3 □
VLOUT3 □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
VGL □
AGNDDUM2 □
AGNDDUM3 □
AGNDDUM4 □
VLOUT2 □
VLOUT2 □
VGH □
VGH □
VGH □
VGH □
TESTO27 □
C13- □
C13- □
C13- □
TESTO28 □
C13+ □
C13+ □
C13+ □
TESTO29 □
C21- □
C21- □
C21- □
C21+ □
C21+ □
C21+ □
C22- □
C22- □
C22- □
C22+ □
C22+ □
C22+ □
C23- □
C23- □
C23- □
C23+ □
C23+ □
C23+ □
TESTO30 □
DUMMYR5 □
DUMMYR6 □
No.1
□
□
□
□
□
□
□
□
□
□
□
□
□
TESTO38
TESTO37
DUMMYR10
DUMMYR9
VGLDMY4
G2
G4
G6
G8
G10
G312
G314
G316
G318
G320
VGLDMY3
TESTO36
60um
□
□
□
□
□
□
□
□
□
TESTO35
S1
S2
S3
S4
S5
S6
S7
S8
R61505U
Staggered output
Top View
(Bump View)
Y
X
□
□
□
□
□
□
S716
S717
S718
S719
S720
TESTO34
220um
□
□
□
□
□
□
□
□
□
□
□
□
No.298
(1-b)
□
□
□
□
□
FPC
Glass substrate
Note: The wiring resistance is a recommended value and it is desirable to set the resistance as small as possible.
TESTO33
VGLDMY2
G319
G317
G315
G313
G311
G9
G7
G5
G3
G1
VGLDMY1
DUMMYR8
DUMMYR7
TESTO32
TESTO31
R61505U
GRAM address map
GS=0 GS=1
S720
S719
S718
S717
S716
S715
S714
S713
S712
S711
S710
......
S709
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2
S/G pin
S1
Table 15 GRAM address and display position on the panel (SS = 0, BGR = 0)
WD[17:0]
WD[17:0]
WD[17:0]
WD[17:0]
.....
WD[17:0]
WD[17:0]
WD[17:0]
WD[17:0]
G1
G320
h00000
h00001
h00002
h00003
......
h000EC
h000ED
h000EE
h000EF
G2
G319
h00100
h00101
h00102
h00103
......
h001EC
h001ED
h001EE
h001EF
G3
G318
h00200
h00201
h00202
h00203
......
h002EC
h002ED
h002EE
h002EF
G4
G317
h00300
h00301
h00302
h00303
......
h003EC
h003ED
h003EE
h003EF
G5
G316
h00400
h00401
h00402
h00403
......
h004EC
h004ED
h004EE
h004EF
G6
G315
h00500
h00501
h00502
h00503
......
h005EC
h005ED
h005EE
h005EF
G7
G314
h00600
h00601
h00602
h00603
......
h006EC
h006ED
h006EE
h006EF
G8
G313
h00700
h00701
h00702
h00703
......
h007EC
h007ED
h007EE
h007EF
G9
G312
h00800
h00801
h00802
h00803
......
h008EC
h008ED
h008EE
h008EF
G10
G311
h00900
h00901
h00902
h00903
......
h009EC
h009ED
h009EE
h009EF
G11
G310
h00A00
h00A01
h00A02
h00A03
......
h00AEC
h00AED
h00AEE
h00AEF
G12
G309
h00B00
h00B01
h00B02
h00B03
......
h00BEC
h00BED
h00BEE
h00BEF
G13
G308
h00C00
h00C01
h00C02
h00C03
......
h00CEC
h00CED
h00CEE
h00CEF
G14
G307
h00D00
h00D01
h00D02
h00D03
......
h00DEC
h00DED
h00DEE
h00DEF
G15
G306
h00E00
h00E01
h00E02
h00E03
......
h00EEC
h00EED
h00EEE
h00EEF
G16
G305
h00F00
h00F01
h00F02
h00F03
......
h00FEC
h00FED
h00FEE
h00FEF
G17
G304
h01000
h01001
h01002
h01003
......
h010EC
h010ED
h010EE
h010EF
G18
G303
h01100
h01101
h01102
h01103
......
h011EC
h011ED
h011EE
h011EF
G19
G302
h01200
h01201
h01202
h01203
......
h012EC
h012ED
h012EE
h012EF
G20
G301
h01300
h01301
h01302
h01303
......
h013EC
h013ED
h013EE
h013EF
:
:
:
:
:
:
:
:
:
:
:
G305
G16
h13000
h13001
h13002
h13003
......
h130EC
h130ED
h130EE
h130EF
G306
G15
h13100
h13101
h13102
h13103
......
h131EC
h131ED
h131EE
h131EF
G307
G14
h13200
h13201
h13202
h13203
......
h132EC
h132ED
h132EE
h132EF
G308
G13
h13300
h13301
h13302
h13303
......
h133EC
h133ED
h133EE
h133EF
G309
G12
h13400
h13401
h13402
h13403
......
h134EC
h134ED
h134EE
h134EF
G310
G11
h13500
h13501
h13502
h13503
......
h135EC
h135ED
h135EE
h135EF
G311
G10
h13600
h13601
h13602
h13603
......
h136EC
h136ED
h136EE
h136EF
G312
G9
h13700
h13701
h13702
h13703
......
h137EC
h137ED
h137EE
h137EF
G313
G8
h13800
h13801
h13802
h13803
......
h138EC
h138ED
h138EE
h138EF
G314
G7
h13900
h13901
h13902
h13903
......
h139EC
h139ED
h139EE
h139EF
G315
G6
h13A00
h13A01
h13A02
h13A03
......
h13AEC
h13AED
h13AEE
h13AEF
G316
G5
h13B00
h13B01
h13B02
h13B03
......
h13BEC
h13BED
h13BEE
h13BEF
G317
G4
h13C00
h13C01
h13C02
h13C03
......
h13CEC
h13CED
h13CEE
h13CEF
G318
G3
h13D00
h13D01
h13D02
h13D03
......
h13DEC
h13DED
h13DEE
h13DEF
G319
G2
h13E00
h13E01
h13E02
h13E03
......
h13EEC
h13EED
h13EEE
h13EEF
G320
G1
h13F00
h13F01
h13F02
h13F03
......
h13FEC
h13FED
h13FEE
h13FEF
Rev.1.0 September 13, 2006, page 41 of 199
R61505U
GS=0 GS=1
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
......
S12
S709
S710
S711
S712
S713
S714
S715
S716
S717
S718
S719
S/G pin
S720
Table 16 GRAM address and display position on the panel (SS = 1, BGR = 1)
WD[17:0]
WD[17:0]
WD[17:0]
WD[17:0]
.....
WD[17:0]
WD[17:0]
WD[17:0]
WD[17:0]
G1
G320
h00000
h00001
h00002
h00003
......
h000EC
h000ED
h000EE
h000EF
G2
G319
h00100
h00101
h00102
h00103
......
h001EC
h001ED
h001EE
h001EF
G3
G318
h00200
h00201
h00202
h00203
......
h002EC
h002ED
h002EE
h002EF
G4
G317
h00300
h00301
h00302
h00303
......
h003EC
h003ED
h003EE
h003EF
G5
G316
h00400
h00401
h00402
h00403
......
h004EC
h004ED
h004EE
h004EF
G6
G315
h00500
h00501
h00502
h00503
......
h005EC
h005ED
h005EE
h005EF
G7
G314
h00600
h00601
h00602
h00603
......
h006EC
h006ED
h006EE
h006EF
G8
G313
h00700
h00701
h00702
h00703
......
h007EC
h007ED
h007EE
h007EF
G9
G312
h00800
h00801
h00802
h00803
......
h008EC
h008ED
h008EE
h008EF
G10
G311
h00900
h00901
h00902
h00903
......
h009EC
h009ED
h009EE
h009EF
G11
G310
h00A00
h00A01
h00A02
h00A03
......
h00AEC
h00AED
h00AEE
h00AEF
G12
G309
h00B00
h00B01
h00B02
h00B03
......
h00BEC
h00BED
h00BEE
h00BEF
G13
G308
h00C00
h00C01
h00C02
h00C03
......
h00CEC
h00CED
h00CEE
h00CEF
G14
G307
h00D00
h00D01
h00D02
h00D03
......
h00DEC
h00DED
h00DEE
h00DEF
G15
G306
h00E00
h00E01
h00E02
h00E03
......
h00EEC
h00EED
h00EEE
h00EEF
G16
G305
h00F00
h00F01
h00F02
h00F03
......
h00FEC
h00FED
h00FEE
h00FEF
G17
G304
h01000
h01001
h01002
h01003
......
h010EC
h010ED
h010EE
h010EF
G18
G303
h01100
h01101
h01102
h01103
......
h011EC
h011ED
h011EE
h011EF
G19
G302
h01200
h01201
h01202
h01203
......
h012EC
h012ED
h012EE
h012EF
G20
G301
h01300
h01301
h01302
h01303
......
h013EC
h013ED
h013EE
h013EF
:
:
:
:
:
:
:
:
:
:
:
G305
G16
h13000
h13001
h13002
h13003
......
h130EC
h130ED
h130EE
h130EF
G306
G15
h13100
h13101
h13102
h13103
......
h131EC
h131ED
h131EE
h131EF
G307
G14
h13200
h13201
h13202
h13203
......
h132EC
h132ED
h132EE
h132EF
G308
G13
h13300
h13301
h13302
h13303
......
h133EC
h133ED
h133EE
h133EF
G309
G12
h13400
h13401
h13402
h13403
......
h134EC
h134ED
h134EE
h134EF
G310
G11
h13500
h13501
h13502
h13503
......
h135EC
h135ED
h135EE
h135EF
G311
G10
h13600
h13601
h13602
h13603
......
h136EC
h136ED
h136EE
h136EF
G312
G9
h13700
h13701
h13702
h13703
......
h137EC
h137ED
h137EE
h137EF
G313
G8
h13800
h13801
h13802
h13803
......
h138EC
h138ED
h138EE
h138EF
G314
G7
h13900
h13901
h13902
h13903
......
h139EC
h139ED
h139EE
h139EF
G315
G6
h13A00
h13A01
h13A02
h13A03
......
h13AEC
h13AED
h13AEE
h13AEF
G316
G5
h13B00
h13B01
h13B02
h13B03
......
h13BEC
h13BED
h13BEE
h13BEF
G317
G4
h13C00
h13C01
h13C02
h13C03
......
h13CEC
h13CED
h13CEE
h13CEF
G318
G3
h13D00
h13D01
h13D02
h13D03
......
h13DEC
h13DED
h13DEE
h13DEF
G319
G2
h13E00
h13E01
h13E02
h13E03
......
h13EEC
h13EED
h13EEE
h13EEF
G320
G1
h13F00
h13F01
h13F02
h13F03
......
h13FEC
h13FED
h13FEE
h13FEF
Rev.1.0 September 13, 2006, page 42 of 199
R61505U
Instruction
Outline
The R61505U adopts 18-bit bus architecture in order to interface to high-performance microcomputer in
high speed. The R61505U starts internal processing after storing control information of externally sent
data (16, 8, 1 bit(s)) in the instruction register (IR) and the data register (DR). Since the internal operation
of the R61505U is controlled by the signals sent from the microcomputer, the register selection signal (RS),
the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 ~ IB0) are called instruction.
When accessing the R61505U’s internal RAM, data is processed in units of 18 bits. The following are the
kinds of instruction of the R61505U.
1.
2.
3.
4.
Specify index
Display control
Power management control
Set internal GRAM address
5.
6.
7.
8.
Transfer data to and from the internal GRAM
γ-correction
Window address control
Panel Display Control
Normally, the instruction to write data is used the most often. The internal GRAM address is updated
automatically as data is written to the internal GRAM, which, in combination with the window address
function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer. The
R61505U writes instructions consecutively by executing the instruction within the cycle when it is written
(instruction execution time: 0 cycle).
Instruction Data Format
As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different
according to the interface format. Make sure to transfer the instruction bits according to the format of the
selected interface.
Rev.1.0 September 13, 2006, page 43 of 199
R61505U
The following are detail descriptions of instruction bits (IB15-0). Note that the instruction bits IB[15:0] in
the following figures are transferred according to the format of the selected interface.
Index (IR)
R/W
W
RS
0
IB15
*
IB14
*
IB13
IB12
*
*
IB11
*
IB10
*
IB9
*
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
*
ID
[7]
ID
[6]
ID
[5]
ID
[4]
ID
[3]
ID
[2]
ID
[1]
ID
[0]
The index register specifies the index R00h to RFFh of the control register or RAM control to be accessed
using a binary number from “0000_0000” to “1111_1111”. The access to the register and instruction bits
in it is prohibited unless the index is specified in the index register.
Display control
Device code read (R00h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
R
1
0
0
0
1
0
1
0
1
0
0
0
0
0
1
0
1
The device code “1505”H is read out when reading out this register forcibly.
Rev.1.0 September 13, 2006, page 44 of 199
R61505U
Driver Output Control (R01h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
W
1
0
0
0
0
0
SM
0
SS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
SS: Sets the shift direction of output from the source driver.
When SS = “0”, the source driver output shift from S1 to S720.
When SS = “1”, the source driver output shift from S720 to S1.
The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 ~
S720.
When SS = “0” and BGR = “0”, RGB dots are assigned one to one from S1 to S720.
When SS = “1” and BGR = “1”, RGB dots are assigned one to one from S720 to S1.
When changing the SS and BGR bits, RAM data must be rewritten.
SM: Controls the scan mode in combination with GS setting. See “ Scan mode setting”.
LCD Driving Wave Control (R02h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
W
1
0
0
0
0
0
1
BC0
EOR
0
0
0
0
0
0
0
NW0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
Default value
NW0: When BC0=1, NW bit sets number of line, N, as alternating cycle of line inversion. Line inversion
is operated every N+1 line cycle. NW bit can be set to 1 or 2.
BC0: Selects the liquid crystal drive waveform VCOM. See “Line Inversion AC Drive” for details.
BC = 0: frame inversion waveform is selected.
BC = 1: line inversion waveform is selected when EOR = 1.
In either liquid crystal drive method; the polarity inversion is halted in blank period (back and front porch
periods).
EOR: Enables liquid-crystal line-inversion drive when EOR = 1 and BC0 = 1
Rev.1.0 September 13, 2006, page 45 of 199
R61505U
Entry Mode (R03h)
R/W
RS
W
1
Default value
IB15 IB14 IB13
TRIR
DFM
0
EG
0
0
0
IB12
IB11
IB10
IB9
IB8
IB7
IB6
BGR
0
0
HWM
0
ORG
0
0
0
0
0
0
0
0
IB5
I/D
[1]
IB4
I/D
[0]
1
1
IB3
IB2
IB1
IB0
AM
0
0
0
0
0
0
0
The entry mode register includes instruction bits for setting how to write data from the microcomputer to
the internal GRAM of the R61505U.
AM: Sets either horizontal or vertical direction in updating the address counter automatically as the
R61505U writes data to the internal GRAM.
AM = “0”, sets the horizontal direction.
AM = “1”, sets the vertical direction.
When making a window address area, the data is written only within the area in the direction determined
by I/D1-0, AM bits.
I/D[1:0]: Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is
written to the GRAM. The I/D[0] bit sets either increment or decrement in horizontal direction (updates
the address AD[7:0]). The I/D[1] bit sets either increment or decrement in vertical direction (updates the
address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address
counter automatically when writing data to the internal RAM.
ORG: Moves the origin address according to the ID setting when a window address area is made. This
function is enabled when writing data within the window address area using high-speed RAM write
function. Also see Figure 3 and Figure 4.
ORG = 0: The origin address is not moved. In this case, specify the address to start write
operation according to the GRAM address map within the window address area.
ORG = 1: The origin address “h00000” is moved according to the I/D[1:0] setting.
Notes: 1. When ORG = 1, only the origin address “h00000” can be set in the RAM address set registers
(R20h, R21h).
2. In RAM read operation, make sure to set ORG = 0.
HWM: The R61505U writes data in high speed with low power consumption by setting HWM = 1. The
data to be written within the window address area is buffered in order to write the data in units of
horizontal lines. This can minimize the number of RAM access and the power consumption required in
data write operation.
When HWM = 1, make sure to set AM = 0 (horizontal direction) and write the data in each horizontal line
of the window address area at a time. If the data is not enough to rewrite the horizontal line of the window
address area, the GRAM data in that line is not overwritten.
Notes: 1. The R61505U requires no dummy write operation in high-speed write operation.
2. When terminating RAM data write operation in the middle of the line and executing another
instruction, the data in the buffer is cleared.
Rev.1.0 September 13, 2006, page 46 of 199
R61505U
3. When switching from high-speed RAM write operation to index write operation, wait at least 2
normal-write cycle periods (2 tcycw periods).
BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.
BGR = 0:
BGR = 1:
Write data in the order of RGB to the GRAM.
Reverse the order from RGB to BGR in writing data to the GRAM.
BGR = 0
D17
R5
D16
R4
D15
R3
D14
R2
D13
R1
D12
R0
D11
G5
D10
G4
D9
G3
D8
G2
D7
G1
D6
G0
D5
B5
D4
B4
D3
B3
D2
B2
D1
B1
D0
B0
D15
B3
D14
B2
D13
B1
D12
B0
D11
G5
D10
G4
D9
G3
D8
G2
D7
G1
D6
G0
D5
R5
D4
R4
D3
R3
D2
R2
D1
R1
D0
R0
BGR = 1
D17
B5
D16
B4
DFM: In combination with the TRIREG setting, sets the format to develop 16-/8-bit data to 18-bit data
when using either 16-bit or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via
16-bit or 8-bit interface.
TRIREG: Selects the format to transfer data bits via 16-bit or 8-bit interface.
In 8-bit interface operation,
TRIREG = 0: 16-bit RAM data is transferred in two transfers.
TRIREG = 1: 18-bit RAM data is transferred in three transfers.
In 16-bit bus interface operation,
TRIREG = 0: 16-bit RAM data is transferred in one transfer.
TRIREG = 1: 18-bit RAM data is transferred in two transfers.
Make sure TRIREG = 0 when not transferring data via 16-bit or 8-bit interface. Also, set TRIREG = 0
during read operation.
Rev.1.0 September 13, 2006, page 47 of 199
R61505U
ORG = 0
I/D1-0 = "00"
Horizontal: Decrement
Vertical: Decrement
17'h00000
I/D1-0 = "01"
Horizontal: Increment
Vertical: Decrement
17'h00000
I/D1-0 = "10"
Horizontal: Decrement
Vertical: Increment
I/D1-0 ="11"
Horizontal: Increment
Vertical: Increment
17'h00000
17'h00000
AM = "0"
Horizontal
17'h13FEF
17'h13FEF
17'h00000
17'h00000
17'h13FEF
17'h00000
17'h13FEF
17'h00000
AM = "1"
Vertical
17'h13FEF
17'h13FEF
17'h13FEF
17'h13FEF
Figure 3 Automatic address update (ORG = 0, AM, ID)
Note: When writing data within the window address area with ORG = 0, any address within the window
address area can be designated as the starting point of RAM write operation.
ORG = 1
I/D1-0 = "00"
Horizontal: Decrement
Vertical: Decrement
17'h00000
I/D1-0 = "01"
Horizontal: Increment
Vertical: Decrement
17'h00000
I/D1-0 = "10"
Horizontal: Decrement
Vertical: Increment
17'h00000
I/D1-0 = "11"
Horizontal: Increment
Vertical: Increment
17'h00000
S
S
AM = "0"
Horizontal
S
S
17'h13FEF
17'h00000
17'h13FEF
17'h00000
17'h13FEF
17'h00000
17'h13FEF
17'h00000
S
S
AM = "1"
Vertical
S
17'h13FEF
S
17'h13FEF
17'h13FEF
17'h13FEF
Figure 4 Automatic address update (ORG = 1, AM, ID)
Notes: 1. When ORG = 1, make sure to set the address “h00000” in the RAM address set registers
(R210h, R21h). Setting other addresses is inhibited.
2. When ORG = 1, the starting point of writing data within the window address area can be set at
either corner of the window address area (“S” in circle in the above figure).
Rev.1.0 September 13, 2006, page 48 of 199
R61505U
Resizing Control (R04h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
W
1
0
0
0
0
0
0
0
0
0
0
0
0
Default value
IB9
IB8
RCV RCV
[1]
[0]
0
0
IB7
IB6
0
0
0
0
IB5
IB4
RCH RCH
[1]
[0]
0
0
IB3
IB2
0
0
0
0
IB1
RSZ
[1]
IB0
RSZ
[0]
0
0
RSZ[1:0]: Sets the resizing factor. When the RSZ bits are set for resizing, the R61505U writes the data
according to the resizing factor so that the original image is displayed in horizontal and vertical dimensions
contracted according to the factor . See “Resizing function”.
RCH[1:0]: Sets the number of pixels made as the remainder in horizontal direction when resizing a picture.
By specifying the number of remainder pixels with RCH bits, the data can be transferred without taking the
reminder pixels into consideration. Make sure that RCH = 2’h0 when not using the resizing function (RSZ
= 2’h0) or there are no remainder pixels.
RCV[1:0]: Sets the number of pixels made as the remainder in vertical direction when resizing a picture.
By specifying the number of remainder pixels with the RCV bits, the data can be transferred without taking
the reminder pixels into consideration. Make sure that RCV = 2’h0 when not using the resizing function
(RSZ = 2’h0) or there are no remainder pixels.
Table 17 Resizing factor (RSR)
RSZ [1:0]
Resizing Scale
2’h0
No resizing (x1)
2’h1
x 1/2
2’h2
Setting inhibited
2’h3
x 1/4
Table 18 Remainder Pixels in Horizontal Direction (RCH)
RCH [1:0]
Number of remainder Pixels in Horizontal Direction
2’h0
0 pixel
2’h1
1 pixel
2’h2
2 pixels
2’h3
Note:
3 pixels
1 pixel = 1RGB
Table 19 Remainder Pixels in Vertical Direction (RCV)
RCV [1:0]
Number of remainder Pixels in Vertical Direction
2’h0
0 pixel
2’h1
1 pixel
2’h2
2 pixels
2’h3
Note:
3 pixels
1 pixel = 1RGB
Rev.1.0 September 13, 2006, page 49 of 199
R61505U
Display Control 1 (R07h)
R/W
RS
IB15
IB14
W
1
0
0
0
0
Default value
IB13 IB12 IB11
PTDE PTDE
0
[1]
[0]
0
0
IB10
IB9
0
0
0
0
0
IB8
BASE
E
IB7
IB6
IB5
IB4
IB3
IB2
0
VON
GON
DTE
COL
0
0
0
0
0
0
0
0
IB1
D
[1]
IB0
D
[0]
0
0
D[1:0]: A graphics display is turned on when writing D1 = “1”, and is turned off when writing D1 = “0”.
When writing D1 = “0”, the graphics display data is retained in the internal GRAM and the R61505U
displays the data when writing D1 = “1”. When D1 = “0”, i.e. while no display is shown on the panel, all
source outputs becomes the GND level to reduce charging/discharging current, which is generated within
the LCD while driving liquid crystal with AC voltage.
When the display is turned off by setting D1-0 = 2’b01, the R61505U continues internal display operation.
When the display is turned off by setting D1-0 = 2’b00, the R61505U’s internal display operation is halted
completely. In combination with the GON setting, the D[1:0] setting controls display ON/OFF. For
details, see “Instruction Setting”.
Table 20 Source output level and display operation
D[1:0]
BASEE
Source Output (S1-720)
FMARK signal
Internal Operation
2’h0
*
GND
Halt
Halt
2’h1
*
GND
Operation
Operation
2’h2
*
Non-lit display
Operation
Operation
2’h3
0
Non-lit display
Operation
Operation
1
Base-image display
Operation
Operation
Notes: 1: The data write operation from the microcomputer is not affected by the D[1:0] setting.
2: The PTS bits set the source output level for “Non-lit display”.
3: The LCD drive level during non-lit display period is determined by NDL setting.
COL: When COL = 1, 30 grayscale amplifiers other than V0 and V30 halt to display using less power.
When setting 8-color display mode, follow the sequence of 8-color display mode setting.
Table 21
COL
Operating amplifier
Display color
0
32
262,144
1
2
8
Note: When COL = 1, do not write the data corresponding to the grayscales, for which the operation of
amplifier is halted.
Rev.1.0 September 13, 2006, page 50 of 199
R61505U
GON, DTE: The combination of GON and DTE settings set the output level form gate lines (G1 ~ G320).
When GON = 0, the VCOM output level becomes the GND level.
Table 22
APE
0
1
GON
DTE
G1~G320
*
*
VGL (= GND)
0
0
VGH
0
1
VGH
1
0
VGL
1
1
VGH/VGL
VON: Controls VCOMH, VCOML, VCOM amplitude signal output.
Table 23
APE
0
1
AP[1:0]
VON
VCOM output
*
*
GND
0
0
GND
0
1
Setting disabled
1~3
0
GND
1~3
1
VCOMH/VCOML
BASEE: Base image display enable bit.
BASEE = 0: No base image is displayed. The R61505U drives liquid crystal with non-lit display
level or drives only partial image display areas.
BASEE = 1: A base image is displayed on the screen.
The D[1:0] setting has precedence over the BASEE setting.
PTDE[1:0]: PTDE[0] is the display enable bit of partial image 1. PTDE[1] is the display enable bit of
partial image 2. When PTDE1/0 = 0, the partial image is turned off and only base image is displayed on
the screen. When PTDE1/0 = 1, the partial image is displayed on the screen. In this case, turn off the base
image by setting BASEE = 0.
Rev.1.0 September 13, 2006, page 51 of 199
R61505U
Display Control 2 (R08h)
R/W
RS
IB15
IB14
IB13
IB12
W
1
0
0
0
0
0
0
0
0
Default value
IB11
FP
[3]
IB10
FP
[2]
IB9
FP
[1]
IB8
FP
[0]
IB7
IB6
IB5
IB4
0
0
0
0
1
0
0
0
0
0
0
0
IB3
BP
[3]
IB2
BP
[2]
IB1
BP
[1]
IB0
BP
[0]
1
0
0
0
FP [3:0]: Sets the number of lines for a front porch period (a blank period following the end of display).
BP [3:0]: Sets the number of lines for a back porch period (a blank period made before the beginning of
display).
In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNC
signal and the display operation starts after the back porch period. A blank period will start after a front
porch (FP) period and it will continue until next VSYNC input is detected.
Note to Setting BP and FP
Set the BP and FP bits as follows in respective operation modes.
Table 24 BP and FP Settings
Internal clock operation mode
BP ≥ 2 lines
FP ≥ 2 lines
FP + BP ≤ 16 lines
RGB interface operation
BP ≥ 2 lines
FP ≥ 2 lines
FP + BP ≤ 16 lines
VSYNC interface operation
BP ≥ 2 lines
FP ≥ 2 lines
FP + BP = 16 lines
Table 25 Front and Back Porch period (Line periods)
FP[3:0] BP[3:0]
Front and Back Porch period (Line periods)
4’h0
Setting inhibited
4’h1
Setting inhibited
4’h2
2 lines
4’h3
3 lines
4’h4
4 lines
4’h5
5 lines
4’h6
6 lines
4’h7
7 lines
4’h8
8 lines
4’h9
9 lines
4’hA
10 lines
4’hB
11 lines
4’hC
12 lines
4’hD
13 lines
4’hE
14 lines
4’hF
Setting inhibited
Rev.1.0 September 13, 2006, page 52 of 199
R61505U
VSYNC
Back porch
Display area
Front porch
Note : The output timing to the LCD panel is delayed by two line periods
from the synchronous signal (VSYNC) input timing.
Figure 5 Front and Back Porch periods
Display Control 3 (R09h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
W
1
0
0
0
0
0
0
0
0
0
0
Default value
IB10
PTS
[2]
IB9
PTS
[1]
IB8
PTS
[0]
IB7
IB6
0
0
0
0
0
0
0
IB5
PTG
[1]
IB4
PTG
[0]
IB3
ISC
[3]
IB2
ISC
[2]
IB1
ISC
[1]
IB0
ISC
[0]
0
0
0
0
0
0
ISC [3:0]: Set the scan cycle when PTG[1:0] selects interval scan in non-display area drive period. The
scan cycle is defined by n frame periods, where n is an odd number from 3 to 31. The polarity of liquid
crystal drive voltage from the gate driver is inverted in the same timing as the interval scan cycle.
Table 26
ISC[3:0]
Scan cycle
Time for interval when
(fFLM) = 60Hz
ISC[3:0]
Scan cycle
Time for interval when
(fFLM) = 60Hz
4’h0
Setting disabled
-
4’h8
17 frames
284ms
4’h1
3 frames
50ms
4’h9
19 frames
317ms
4’h2
5 frames
84ms
4’hA
21 frames
351ms
4’h3
7 frames
117ms
4’hB
23 frames
384ms
4’h4
9 frames
150ms
4’hC
25 frames
418ms
4’h5
11 frames
184ms
4’hD
27 frames
451ms
4’h6
13 frames
217ms
4’hE
29 frames
484ms
4’h7
15 frames
251ms
4’hF
31 frames
518ms
Rev.1.0 September 13, 2006, page 53 of 199
R61505U
PTG[1:0]: Sets the scan mode in non-display area. The scan mode selected by PTG[1:0] bits is applied in
the non-display area when the base image is turned off and the non-display area other than the first and
second partial display areas.
Table 27
PTG[1]
PTG[0]
Scan mode in nondisplay area
0
0
Normal scan
0
1
Setting disabled
1
0
Interval scan
1
1
Setting disabled
Source output level in
non-display area
VCOM output
PTS[2:0] setting
VCOMH/VCOML
amplitude
PTS[2:0] setting
VCOMH/VCOML
amplitude
-
-
Note: Select frame-inversion AC drive when interval scan is selected.
PTS[2:0]: Sets the source output level in non-display area drive period. When PTS[2] = 1, the operation
of amplifiers which generates the grayscales other than V0 and V31 are halted and the step-up clock
frequency becomes half the normal frequency in non-display drive period in order to reduce power
consumption.
Table 28 Source output level and voltage generating operation in non-display drive period
Source output level
Positive polarity Negative polarity
Grayscale amplifier
in operation
Step-up clock frequency
3’h0
V31
V0 to V31
Register setting (DC0, DC1)
3’h1
Setting inhibited
Setting inhibited
-
-
3’h2
GND
GND
V0 to V31
Register setting (DC0, DC1)
3’h3
Hi-Z
Hi-Z
V0 to V31
Register setting (DC0, DC1)
3’h4
V31
V0
V0 and V31
1/2 the frequency set by DC0, DC1
3’h5
Setting inhibited
Setting inhibited
-
-
3’h6
GND
GND
V0 and V31
1/2 the frequency set by DC0, DC1
3’h7
Hi-Z
Hi-Z
V0 and V31
1/2 the frequency set by DC0, DC1
PTS[2:0]
V0
Notes: 1. The power efficiency improved by halting grayscale amplifiers and slowing down the step-up
clock frequency can be obtained in non-display drive period.
2. The gate output level in non-display drive period is controlled by the PTG setting (off-scan
mode).
Rev.1.0 September 13, 2006, page 54 of 199
R61505U
Display Control 4 (R0Ah)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
IB3
IB2
FMAR FMI
KOE
[2]
0
IB1
FMI
[1]
IB0
FMI
[0]
0
0
0
FMI[2:0]: Sets the output interval of FMARK signal according to the display data rewrite cycle and data
transfer rate.
FMARKOE: When FMARKOE = 1, the R61505U starts outputting FMARK signal from the FMARK pin
in the output interval set by FMI[2:0] bits. See “FMARK ” for details.
Table 29
FMI[2]
FMI[1]
FMI[0]
Output interval
0
0
0
1 frame
0
0
1
2 frames
0
1
1
4 frames
1
0
1
6 frames
Other settings
Setting disabled
External Display Interface Control 1 (R0Ch)
R/W
RS
IB15
W
1
0
Default value
0
IB14
ENC
[2]
IB13
ENC
[1]
IB12
ENC
[0]
IB11
IB10
IB9
IB8
IB7
IB6
0
0
0
RM
0
0
0
0
0
0
0
0
0
0
0
IB5
DM
[1]
IB4
DM
[0]
IB3
IB2
0
0
0
0
0
0
IB1
RIM
[1]
IB0
RIM
[0]
0
0
RIM[1:0]: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM[1:0]
bits before starting display operation via RGB interface. Do not change the setting while the R61505U
performs display operation.
Table 30 RGB interface operation
RIM[1:0]
RGB Interface operation
Colors
2’h0
18-bit RGB interface (1 transfer/pixel) via DB17-0
262,144
2’h1
16-bit RGB interface (1 transfer/pixel) via DB17-13 and DB11-1
65,536
2’h2
6-bit RGB interface (3 transfers/pixel) via DB17-12
262,144
2’h3
Setting inhibited
-
Notes: 1: Instruction bits are set via system interface.
2: Transfer the RGB dot data one by one in synchronization with DOTCLK in 6-bit RGB interface
operation.
Rev.1.0 September 13, 2006, page 55 of 199
R61505U
DM[1:0]: Selects the interface for the display operation. The DM[1:0] setting allows switching between
internal clock operation mode and external display interface operation mode. However, switching between
the RGB interface operation mode and the VSYNC interface operation mode is prohibited.
Table 31 Display Interface
DM[1:0]
Display Interface
2’h0
Internal clock operations
2’h1
RGB interface
2’h2
VSYNC interface
2’h3
Setting inhibited
RM: Selects the interface for RAM access operation. RAM access is possible only via the interface
selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is
possible to write data via system interface while performing display operation via RGB interface.
Table 32 RAM Access Interface
RM
RAM Access Interface
0
System interface/VSYNC interface
1
RGB interface
ENC[2:0]: Sets the RAM write cycle via RGB interface.
Table 25 RAM Write Cycle
ENC[2:0]
RAM Write Cycle (frame periods)
3’h0
1 frame
3’h1
2 frames
3’h2
3 frames
3’h3
4 frames
3’h4
5 frames
3’h5
6 frames
3’h6
7 frames
3’h7
8 frames
Rev.1.0 September 13, 2006, page 56 of 199
R61505U
Frame Marker Position (R0Dh)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
IB8
FMP
[8]
IB7
FMP
[7]
IB6
FMP
[6]
IB5
FMP
[5]
IB4
FMP
[4]
IB3
FMP
[3]
IB2
FMP
[2]
IB1
FMP
[1]
IB0
FMP
[0]
0
0
0
0
0
0
0
0
0
FMP[8:0]: Sets the output position of frame cycle signal (frame marker). When FMP[8:0] = 9’h000, a
high-active pulse FMARK is outputted at the start of back porch period for 1H period (IOVCC-IOGND
amplitude signal). FMARK can be used as the trigger signal for frame synchronous write operation. See
“FMARK ” for details.
Make sure the setting restriction 9’h000 ≤ FMP ≤ BP+NL+FP.
Table 33
FMP[8:0]
FMARK output
position
9’’h000
0 line
9’h001
1 line
9’’h002
2nd line
:
th
st
:
9’’h14E
334th line
9’h14F
335th line
9’’h150~1FF
Setting disabled
Rev.1.0 September 13, 2006, page 57 of 199
R61505U
External Display Interface Control 2 (R0Fh)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
IB4
0
DPL: Sets the signal polarity of DOTCLK pin.
DPL = 0: input data on the rising edge of DOTCLK
DPL = 1: input data on the falling edge of DOTCLK
EPL: Sets the signal polarity of ENABLE pin.
EPL = 0: writes data DB17-0 when ENABLE = “0” and disables data write operation
when ENABLE = “1”.
EPL = 1: writes data DB17-0 when ENABLE = “1” and disables data write operation
when ENABLE = “0”.
HSPL: Sets the signal polarity of HSYNC pin.
HSPL = 0: low active
HSPL = 1: high active
VSPL: Sets the signal polarity of VSYNC pin.
VSPL = 0: low active
VSPL = 1: high active
Rev.1.0 September 13, 2006, page 58 of 199
IB3
VSPL HSPL
0
IB2
IB1
IB0
0
EPL
DPL
0
0
0
R61505U
Power control
Power Control 1 (R10h)
R/W
RS
IB15
IB14
IB13
IB12
W
1
0
0
0
SAP
0
0
0
0
Default value
IB11
BT
[3]
IB10
BT
[2]
IB9
BT
[1]
IB8
BT
[0]
0
0
0
0
IB7
IB6
APE
0
0
0
IB5
AP
[1]
IB4
AP
[0]
IB3
0
0
0
0
IB2
IB1
DSTB SLP
0
0
SLP: When SLP = 1, the R61505U enters the sleep mode. In sleep mode, the internal display operation
except RC oscillation is halted to reduce power consumption. No change to the GRAM data and
instruction setting is accepted and he GRAM data and the instruction setting are maintained in sleep mode.
DSTB: When DSTB = 1, the R61505U enters the deep standby mode. In deep standby mode, the internal
logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are
not maintained when the R61505U enters the deep standby mode, and they must be reset after exiting deep
standby mode.
AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit.
The larger constant current enhances the drivability of the LCD, but it also increases the current
consumption. Adjust the constant current taking the trade-off into account between the display quality and
the current consumption. In no-display period, set AP1-0 = 2’h0 to halt the operational amplifier circuits
and the step-up circuits to reduce current consumption.
Table 34 Constant current in amplifier in LCD power supply, grayscale voltage generating circuits
AP[1:0]
LCD power supply circuits
Grayscale voltage generating circuit
2’h0
Halt operation
Halt operation
2’h1
0.5
0.62
2’h2
0.75
0.71
2’h3
1
1
Note: In this table, the constant current in operational amplifiers is the ratio to the constant current when
AP[1:0] is set to 2’h3.
APE: Liquid crystal power supply enable bit. Set APE = 1 and follow the sequence when starting up the
liquid crystal power supply.
Table 35
APE
Liquid crystal power supply circuit
Grayscale voltage generating circuit
0
Halt
Halt
1
Operate
Operate
BT[3:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating
voltage. To reduce power consumption, set a smaller factor.
Rev.1.0 September 13, 2006, page 59 of 199
IB0
0
0
R61505U
SAP: The grayscale voltage generating circuit is halted by setting SAP = 0. Grayscale voltages are
generated when SAP = 1. When starting the operation of LCD power supply circuit in Power ON
operation and so on, make sure SAP = 0. Set SAP = 1, after starting up the LCD power supply circuit.
Rev.1.0 September 13, 2006, page 60 of 199
R61505U
Table 36 Step up factor and output voltage level
BT[3:0]
DDVDH
VCL
VGH
VGL
Capacitor Connection Pins
(see note 4)
4’h0
DDVDH x 3
–(VCI1 + DDVDH x 2)
[x 6]
[x –5]
–(DDVDH x 2)
4’h1
4’h2
DDVDH x 4
[x –4]
[x 8]
–(VCI1 + DDVDH)
[x –3]
–(VCI1 + DDVDH x 2)
4’h3
4’h4
[x –5]
VCI1 x 2
VCI1 + DDVDH x 3
–(DDVDH x 2)
[x 2]
[x 7]
[x –4]
–(VCI1 + DDVDH)
4’h5
[x –3]
–(DDVDH x 2)
4’h6
4’h7
[x –4]
[x 6]
–(VCI1 + DDVDH)
-VCI1
DDVDH x 3
–(VCI1 + DDVDH x 2)
[x –1]
[x 9]
[x –7]
4’hA
DDVDH x 4
[x –6]
[x 12]
–(VCI1 + DDVDH)
4’hF
C23± may be omitted.
C23± may be omitted.
[x –4]
–(VCI1 + DDVDH x 2)
[x –7]
VCI1 x 3
[x 3]
VCI1 + DDVDH x 3
–(DDVDH x 2)
[x 10]
[x –6]
–(VCI1 + DDVDH)
4’hD
4’hE
C23± may be omitted.
–(DDVDH x 2)
4’h9
4’hC
DDVDH x 3
[x –3]
4’h8
4’hB
C23± may be omitted.
[x –4]
–(DDVDH x 2)
DDVDH x 3
[x –6]
[x 9]
–(VCI1 + DDVDH)
[x –4]
C23± may be omitted.
C23± may be omitted.
Notes: 1. The step-up factor from VCI1 is shown in the brackets [ ].
2. Connect capacitors where required when using DDVDH, VGH, VGL and VCL voltages.
3. Set the following voltages within the respective ranges:
DDVDH = 6.0V (max.)
VGH = 20.0V (max.)
VGL = -13.5V (max.)
VCL=-3.0V(max.)
4. Connect capacitors according to “Specifications of Power-supply Circuit External Elements”. In
this case, comments should be preceded.
Rev.1.0 September 13, 2006, page 61 of 199
R61505U
Power Control 2 (R11h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
W
1
0
0
0
0
0
0
0
0
0
0
Default value
IB10
DC1
[2]
IB9
DC1
[1]
IB8
DC1
[0]
IB7
1
1
0
0
0
Table 37 step-up frequency (Step-up Circuit 1)
DC0[2:0]
Step-up circuit 1: step-up frequency (fDCDC1)
3’h0
fosc
3’h1
fosc / 2
3’h2
fosc / 4
3’h3
fosc / 8
3’h4
fosc / 16
3’h5
Setting inhibited
3’h6
Halt Step-up circuit 1
3’h7
Setting inhibited
Note: Make sure the DC0, DC1 setting restriction: fDCDC1 ≥ fDCDC2.
Table 38 step-up frequency (Step-up Circuit 2)
DC1[2:0]
Step-up circuit 2: step-up frequency (fDCDC2)
3’h0
fosc / 16
3’h1
fosc / 32
3’h2
fosc / 64
3’h3
fosc / 128
3’h4
fosc / 256
3’h5
Setting inhibited
3’h6
Halt Step-up circuit 2
3’h7
Setting inhibited
Note: Make sure the DC0, DC1 setting restriction: fDCDC1 ≥ fDCDC2.
Rev.1.0 September 13, 2006, page 62 of 199
IB6
DC0
[2]
IB5
DC0
[1]
IB4
DC0
[0]
IB3
1
1
0
0
0
IB2
VC
[2]
IB1
VC
[1]
IB0
VC
[0]
0
0
0
R61505U
Table 39 VCIOUT output level
VC[2:0]
VCIOUT (Reference Voltage) (VCI1 Voltage)
3’h0
0.94 x VCILVL
3’h1
0.89 x VCILVL
3’h2
Setting inhibited
3’h3
Setting inhibited
3’h4
0.76 x VCILVL
3’h5
Setting inhibited
3’h6
Setting inhibited
3’h7
1.00 x VCILVL
Power Control 3 (R12h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
IB8
VCM
R[0]
IB7
VRE
G1R
IB6
0
0
0
0
IB5
IB4
PSON PON
0
IB3
VRH
[3]
IB2
VRH
[2]
IB1
VRH
[1]
IB0
VRH
[0]
0
0
0
0
0
VRH[3:0]: Sets the factor to generate VREG1OUT from VCILVL.
Table 40 VREG1OUT
VREG1OUT
Voltage
VREG1OUT
Voltage
(External Reference
Electric potential;
VCILVL)
(Internal Reference
Electric Potential;
VCIR)
4’h0~
4’h3
Halt (Hiz)
Halt(Hiz)
4’h4~
4’h7
Setting inhibited
Setting inhibited
4’h8
VCILVL×1.60
2.5V×1.60 = 4.00V
4’h9
VCILVL×1.65
2.5V×1.65 = 4.13V
4’hA
VCILVL×1.70
2.5V×1.70 = 4.25V
4’hB
VCILVL×1.75
2.5V×1.75 = 4.38V
4’hC
VCILVL×1.80
2.5V×1.80 = 4.50V
4’hD
VCILVL×1.85
2.5V×1.85 = 4.63V
4’hE
VCILVL×1.90
2.5V×1.90 = 4.75V
4’hF
Setting inhibited
Setting inhibited
VRH
Note:
Make sure the VC and VRH setting restrictions: VREG1OUT ≤ (DDVDH-0.5)V.
Rev.1.0 September 13, 2006, page 63 of 199
R61505U
PON: Controls the operation to generate VLOUT3. In setting the PON bit, follows the power-supply
startup sequence.
PON = 0: Halts the step-up operation to generate VLOUT3.
PON = 1: Starts the step-up operation to generate VLOUT3.
PSON: Power supply ON bit. When turning on the power supply, set PSE = 1 first and then set PSON = 1
to start internal power supply operation.
VREG1R: Set reference voltage to generate VREG1OUT.
Table 41
VREG1R
reference voltage for
VREG1OUT
0 (Default
Value)
VCILVL (External)
1
VCIR (Internal
Reference Voltage))
VCMR[0]: Selects either external resistance (VCOMR pin) or internal electronic volume (VCM[4:0]) to
set the electrical potential of VCOMH. The internal electronic volume can be set by VCM1 and VCM2
bits
Table 42
VCMR[0]
VCOMH Electrical Potential setting
0
VCOMR
1
Internal electronic volume
Rev.1.0 September 13, 2006, page 64 of 199
R61505U
Power Control 4 (R13h)
R/W
RS
IB15
IB14
IB13
W
1
0
0
0
0
0
0
Default value
IB12
VDV
[4]
IB11
VDV
[3]
IB10
VDV
[2]
IB9
VDV
[1]
IB8
VDV
[0]
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VDV[4:0]: Set VCOM alternating amplitude in the range of VREG1OUTx0.70 to VREG1OUTx1.24.
Table 43 VDV Setting
VDV[4:0]
VCOM Amplitude
VDV[4:0]
VCOM Amplitude
5’h0
VREG1OUT×0.70
5’h10
VREG1OUT×0.94
5’h1
VREG1OUT×0.72
5’h11
VREG1OUT×0.96
5’h2
VREG1OUT×0.74
5’h12
VREG1OUT×0.98
5’h3
VREG1OUT×0.76
5’h13
VREG1OUT×1.00
5’h4
VREG1OUT×0.78
5’h14
VREG1OUT×1.02
5’h5
VREG1OUT×0.80
5’h15
VREG1OUT×1.04
5’h6
VREG1OUT×0.82
5’h16
VREG1OUT×1.06
5’h7
VREG1OUT×0.84
5’h17
VREG1OUT×1.08
5’h8
VREG1OUT×0.86
5’h18
VREG1OUT×1.10
5’h9
VREG1OUT×0.88
5’h19
VREG1OUT×1.12
5’hA
VREG1OUT×0.90
5’h1A
VREG1OUT×1.14
5’hB
VREG1OUT×0.92
5’h1B
VREG1OUT×1.16
5’hC
VREG1OUT×0.94
5’h1C
VREG1OUT×1.18
5’hD
VREG1OUT×0.96
5’h1D
VREG1OUT×1.20
5’hE
VREG1OUT×0.98
5’h1E
VREG1OUT×1.22
5’hF
VREG1OUT×1.00
5’h1F
VREG1OUT×1.24
Note:
Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less.
Power Control 5 (R17h)
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PSE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
PSE: Power supply startup enable bit.
PSE = 1: The R61505U’s power supply is started by setting PSON when PSE =1. When completing the
power supply generating operation, PSE is set to 0.
PSE = 0: Power supply sequencer is reset. When halting the operating power supply sequencer, set PSE =
0. When starting up power supply without power supply sequencer, set PSE = 0. The power
sequencer enables the register settings sequentially at the designated timing and order.
Rev.1.0 September 13, 2006, page 65 of 199
R61505U
RAM access instruction
RAM Address Set (Horizontal Address) (R20h)
RAM Address Set (Vertical Address) (R21h)
R
20
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AD
[15]
AD
[14]
AD
[13]
AD
[12]
AD
[11]
AD
[10]
AD
[9]
AD
[8]
0
0
0
0
0
0
0
0
Default value
R
21
W
1
Default value
0
0
0
0
0
0
0
AD
[16]
0
0
0
0
0
0
0
0
IB7
AD
[7]
IB6
AD
[6]
IB5
AD
[5]
IB4
AD
[4]
IB3
AD
[3]
IB2
AD
[2]
AD[16:0]: A GRAM address set initially in the AC (Address Counter). The address in the AC is
automatically updated according to the combination of AM, I/D[1:0] settings as the R61505U writes data
to the internal GRAM so that data can be written consecutively without resetting the address in the AC.
The address is not automatically updated when reading data from the internal GRAM.
Note 1: In RGB interface operation (RM = “1”), the address AD16-0 is set in the address counter every
frame on the falling edge of VSYNC.
Note 2: In internal clock operation and VSYNC interface operation (RM = “0”), the address AD16-0 is set
when executing the instruction.
Table 44 GRAM Address setting range
AD[16:0]
GRAM Data Setting
17’h00000 – 17’h000EF
Bitmap data on the first line
17’h00100 – 17’h001EF
Bitmap data on the second line
17’h00200 – 17’h002EF
Bitmap data on the third line
17’h00300 – 17’h003EF
Bitmap data on the fourth line
17’h00400 – 17’h004EF
Bitmap data on the fifth line
:
:
17’h13600 – 17’h13CEF
Bitmap data on the 317th line
17’h13700 – 17’h13DEF
Bitmap data on the 318th line
17’h13800 – 17’h13EEF
Bitmap data on the 319th line
17’h13900 – 17’h13FEF
Bitmap data on the 320th line
Rev.1.0 September 13, 2006, page 66 of 199
IB1
AD
[1]
IB0
AD
[0]
R61505U
Write Data to GRAM (R22h)
R/W
RS
W
1
RAM write data WD[17:0] is transferred via different data bus in different interface operation.
RGB
interface
RAM write data WD[17:0] is transferred via different data bus in different interface operation.
WD[17:0]: The R61505U develops data into 18 bits internally in write operation. The format to develop
data into 18 bits is different in different interface operation.
The GRAM data represents the grayscale level. The R61505U automatically updates the address
according to AM and I/D[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to
develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.
Note: When writing data in the GRAM via system interface while using the RGB interface, make sure
that write operations via two interfaces do not conflict one another.
Rev.1.0 September 13, 2006, page 67 of 199
R61505U
Table 45 GRAM data and corresponding LCD grayscale level (REV =1)
Grayscale level
GRAM
data RGB
Negative
6’h00
V31
6’h01
(V30+V31)/2
6’h02
V30
6’h03
(V29+V30)/2
6’h04
V29
6’h05
(V28+V29)/2
6’h06
V28
6’h07
6’h08
Grayscale level
GRAM
data RGB
Negative
V0
6’h20
V15
V16
(V0+V1)/2
6’h21
(V14+V15)/2
(V16+V17)/2
V1
6’h22
V14
V17
(V1+V2)/2
6’h23
(V13+V14)/2
(V17+V18)/2
V2
6’h24
V13
V18
(V2+V3)/2
6’h25
(V12+V13)/2
(V18+V19)/2
V3
6’h26
V12
V19
(V27+V28)/2
(V3+V4)/2
6’h27
(V11+V12)/2
(V19+V20)/2
V27
V4
6’h28
V11
V20
6’h09
(V26+V27)/2
(V4+V5)/2
6’h29
(V10+V11)/2
(V20+V21)/2
6’h0A
V26
V5
6’h2A
V10
V21
6’h0B
(V25+V26)/2
(V5+V6)/2
6’h2B
(V9+V10)/2
(V21+V22)/2
6’h0C
V25
V6
6’h2C
V9
V22
6’h0D
(V24+V25)/2
(V6+V7)/2
6’h2D
(V8+V9)/2
(V22+V23)/2
6’h0E
V24
V7
6’h2E
V8
V23
6’h0F
(V23+V24)/2
(V7+V8)/2
6’h2F
(V7+V8)/2
(V23+V24)/2
6’h10
V23
V8
6’h30
V7
V24
6’h11
(V22+V23)/2
(V8+V9)/2
6’h31
(V6+V7)/2
(V24+V25)/2
6’h12
V22
V9
6’h32
V6
V25
6’h13
(V21+V22)/2
(V9+V10)/2
6’h33
(V5+V6)/2
(V25+V26)/2
6’h14
V21
V10
6’h34
V5
V26
6’h15
(V20+V21)/2
(V10+V11)/2
6’h35
(V4+V5)/2
(V26+V27)/2
6’h16
V20
V11
6’h36
V4
V27
6’h17
(V19+V20)/2
(V11+V12)/2
6’h37
(V3+V4)/2
(V27+V28)/2
6’h18
V19
V12
6’h38
V3
V28
6’h19
(V18+V19)/2
(V12+V13)/2
6’h39
(V2+V3)/2
(V28+V29)/2
6’h1A
V18
V13
6’h3A
V2
V29
6’h1B
(V17+V18)/2
(V13+V14)/2
6’h3B
(V1+V2)/2
(V29+V30)/2
6’h1C
V17
V14
6’h3C
V1
V30
6’h1D
(V16+V17)/2
(V14+V15)/2
6’h3D
(V0+V1)/2
(V30+V31)/2
Positive
Positive
6’h1E
V16
V15
6’h3E
(V1+2V0)/3
(V30+2V31)/3
6’h1F
(V15+V16)/2
(V15+V16)/2
6’h3F
V0
V31
Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).
Rev.1.0 September 13, 2006, page 68 of 199
R61505U
Table 46 GRAM data and corresponding LCD grayscale level (REV =0)
Grayscale level
GRAM
data RGB
Negative
6’h00
6’h01
Grayscale level
Positive
GRAM
data RGB
Negative
V0
V31
6’h20
V16
V15
(V0+V1)/2
(V30+V31)/2
6’h21
(V16+V17)/2
(V14+V15)/2
6’h02
V1
V30
6’h22
V17
V14
6’h03
(V1+V2)/2
(V29+V30)/2
6’h23
(V17+V18)/2
(V13+V14)/2
6’h04
V2
V29
6’h24
V18
V13
6’h05
(V2+V3)/2
(V28+V29)/2
6’h25
(V18+V19)/2
(V12+V13)/2
6’h06
V3
V28
6’h26
V19
V12
6’h07
(V3+V4)/2
(V27+V28)/2
6’h27
(V19+V20)/2
(V11+V12)/2
6’h08
V4
V27
6’h28
V20
V11
Positive
6’h09
(V4+V5)/2
(V26+V27)/2
6’h29
(V20+V21)/2
(V10+V11)/2
6’h0A
V5
V26
6’h2A
V21
V10
6’h0B
(V5+V6)/2
(V25+V26)/2
6’h2B
(V21+V22)/2
(V9+V10)/2
6’h0C
V6
V25
6’h2C
V22
V9
6’h0D
(V6+V7)/2
(V24+V25)/2
6’h2D
(V22+V23)/2
(V8+V9)/2
6’h0E
V7
V24
6’h2E
V23
V8
6’h0F
(V7+V8)/2
(V23+V24)/2
6’h2F
(V23+V24)/2
(V7+V8)/2
6’h10
V8
V23
6’h30
V24
V7
6’h11
(V8+V9)/2
(V22+V23)/2
6’h31
(V24+V25)/2
(V6+V7)/2
6’h12
V9
V22
6’h32
V25
V6
6’h13
(V9+V10)/2
(V21+V22)/2
6’h33
(V25+V26)/2
(V5+V6)/2
6’h14
V10
V21
6’h34
V26
V5
6’h15
(V10+V11)/2
(V20+V21)/2
6’h35
(V26+V27)/2
(V4+V5)/2
6’h16
V11
V20
6’h36
V27
V4
6’h17
(V11+V12)/2
(V19+V20)/2
6’h37
(V27+V28)/2
(V3+V4)/2
6’h18
V12
V19
6’h38
V28
V3
6’h19
(V12+V13)/2
(V18+V19)/2
6’h39
(V28+V29)/2
(V2+V3)/2
6’h1A
V13
V18
6’h3A
V29
V2
6’h1B
(V13+V14)/2
(V17+V18)/2
6’h3B
(V29+V30)/2
(V1+V2)/2
6’h1C
V14
V17
6’h3C
V30
V1
6’h1D
(V14+V15)/2
(V16+V17)/2
6’h3D
(V30+V31)/2
(V0+V1)/2
6’h1E
V15
V16
6’h3E
(V30+2V31)/3
(V1+2V0)/3
6’h1F
(V15+V16)/2
(V15+V16)/2
6’h3F
V31
V0
Note: (Vn+Vn+1)/2, (Vn+2Vn+1)/3 are the effective grayscale levels by FRC (frame rate control).
Rev.1.0 September 13, 2006, page 69 of 199
R61505U
Read Data from GRAM (R22h)
R/W
RS
R
1
RAM read data RD[17:0] is transferred via different data bus in different interface operation.
RD[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus
in different interface operation.
When the R61505U reads data from the GRAM to the microcomputer, the first word read immediately
after RAM address set is executed is taken in the internal read-data latch and invalid data is sent to the data
bus. Valid data is sent to the data bus when the R61505U reads out the second and subsequent words.
When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.
Note: This register is not available in RGB interface operation.
Set I/D, AM,
HSA, HEA, VSA, and VEA bits
Set address N (AD16-0)
First word
Dummy read (invalid data to DB17-0)
GRAM data ψ read data latch
Second word
Read (data of address N)
Read data latch ψ DB17-0
Set address M (AD16-0)
First word
Dummy read (invalid data to DB17-0)
GRAM data ψ read data latch
Second word
Read (data of address M)
Read data latch ψ DB17-0
Read out data to microcomputer
Figure 6 GRAM Read Sequence
Rev.1.0 September 13, 2006, page 70 of 199
R61505U
NVM(NON-VOLATILE MEMORY) write control instruction
NVM read data (R28h), VCOM High Voltage (R29h, R2Ah)
R28
R29
R2A
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
W
1
0
0
0
0
0
0
0
0
0
0
0
0
Default
0
0
0
0
0
0
0
0
0
0
0
W
1
0
0
0
0
0
0
0
0
0
0
0
Default
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
VCMS
EL
0
0
Default
0
0
0
0
0
0
0
0
0
0
0
W
0
IB3
UID
[3]
IB2
UID
[2]
IB1
UID
[1]
IB0
UID
[0]
0
0
0
0
VCM1 VCM1 VCM1 VCM1 VCM1
[4]
[3]
[2]
[1]
[0]
0
0
0
0
VCM2 VCM2 VCM2 VCM2 VCM2
[4]
[3]
[2]
[1]
[0]
0
0
0
UID[3:0]: The data bits UID[3:0] are written to the designated address in NVM and the written data can be
read out from NVM by instruction setting (CALB) to this register. UID[3:0] can be used to write and read
user identification code in NVM.
The setting value in UID[3:0] bits is enabled when not reading out the setting value from NVM via CALB
setting.
VCM1[4:0]: Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in
VCM1[4:0], make sure to set VCMSEL = 0.
When using the data written in NVM for setting the VCOMH level, the data bits VCM1[4:0] are written to
the designated address in NVM and the written data can be read out from NVM by instruction setting
(CALB) to this register. When the data bits VCM2[4:0] are written in NVM before writing the data bits
VCM1[4:0] to NVM, the VCM1[4:0] setting value written in NVM cannot be used for setting the
VCOMH level.
Rev.1.0 September 13, 2006, page 71 of 199
0
0
0
R61505U
Table 47
VCM1[4:0]
VCOMH voltage
VCM1[4:0]
VCOMH voltage
5’h00
VREG1OUT x 0.69
5’h10
VREG1OUT x 0.85
5’h01
VREG1OUT x 0.70
5’h11
VREG1OUT x 0.86
5’h02
VREG1OUT x 0.71
5’h12
VREG1OUT x 0.87
5’h03
VREG1OUT x 0.72
5’h13
VREG1OUT x 0.88
5’h04
VREG1OUT x 0.73
5’h14
VREG1OUT x 0.89
5’h05
VREG1OUT x 0.74
5’h15
VREG1OUT x 0.90
5’h06
VREG1OUT x 0.75
5’h16
VREG1OUT x 0.91
5’h07
VREG1OUT x 0.76
5’h17
VREG1OUT x 0.92
5’h08
VREG1OUT x 0.77
5’h18
VREG1OUT x 0.93
5’h09
VREG1OUT x 0.78
5’h19
VREG1OUT x 0.94
5’h0A
VREG1OUT x 0.79
5’h1A
VREG1OUT x 0.95
5’h0B
VREG1OUT x 0.80
5’h1B
VREG1OUT x 0.96
5’h0C
VREG1OUT x 0.81
5’h1C
VREG1OUT x 0.97
5’h0D
VREG1OUT x 0.82
5’h1D
VREG1OUT x 0.98
5’h0E
VREG1OUT x 0.83
5’h1E
VREG1OUT x 0.99
5’h0F
VREG1OUT x 0.84
5’h1F
VREG1OUT x 1.00
Notes: 1. Make sure the VCOMH level is set between 3.0V to (DDVDH-0.5)V.
2. The above setting is enabled when selecting internal electronic volume for setting the
VCOMH level.
VCM2[4:0]: Selects the factor of VREG1OUT to generate VCOMH. When enabling the setting valued in
VCM2[4:0], make sure to set VCMSEL = 1. The function of VCM2[4:0] instruction is the same as that of
VCM1[4:0].
Write the setting value in VCM2[4:0] bits and VCMSEL = 1 in the designated addresses of NVM, when
reading out the setting value written in NVM for VCOMH level setting and the data is already written in
the designated address of VCM1[4:0] in the NVM. The VCM2[4:0] data bits written in NVM can be read
out via CALB setting for setting the VCOMH level.
Rev.1.0 September 13, 2006, page 72 of 199
R61505U
Table 48
VCM2[4:0]
VCOMH voltage
VCM2[4:0]
VCOMH voltage
5’h00
VREG1OUT x 0.69
5’h10
VREG1OUT x 0.85
5’h01
VREG1OUT x 0.70
5’h11
VREG1OUT x 0.86
5’h02
VREG1OUT x 0.71
5’h12
VREG1OUT x 0.87
5’h03
VREG1OUT x 0.72
5’h13
VREG1OUT x 0.88
5’h04
VREG1OUT x 0.73
5’h14
VREG1OUT x 0.89
5’h05
VREG1OUT x 0.74
5’h15
VREG1OUT x 0.90
5’h06
VREG1OUT x 0.75
5’h16
VREG1OUT x 0.91
5’h07
VREG1OUT x 0.76
5’h17
VREG1OUT x 0.92
5’h08
VREG1OUT x 0.77
5’h18
VREG1OUT x 0.93
5’h09
VREG1OUT x 0.78
5’h19
VREG1OUT x 0.94
5’h0A
VREG1OUT x 0.79
5’h1A
VREG1OUT x 0.95
5’h0B
VREG1OUT x 0.80
5’h1B
VREG1OUT x 0.96
5’h0C
VREG1OUT x 0.81
5’h1C
VREG1OUT x 0.97
5’h0D
VREG1OUT x 0.82
5’h1D
VREG1OUT x 0.98
5’h0E
VREG1OUT x 0.83
5’h1E
VREG1OUT x 0.99
5’h0F
VREG1OUT x 0.84
5’h1F
VREG1OUT x 1.00
Notes: 1. Make sure the VCOMH level is set between 3.0V to (DDVDH-0.5)V.
2. The above setting is enabled when selecting internal electronic volume for setting the
VCOMH level.
VCMSEL: When VCMSEL = 0, VCM1[4:0] is selected. When VCMSEL = 1, VCM2[4:0] is selected.
Rev.1.0 September 13, 2006, page 73 of 199
R61505U
γ Control
γ Control 1 ~ 14 (R30h to R3Dh)
R
30
R/W
RS
IB15
IB14
IB13
IB12
IB11
W
1
0
0
0
0
0
0
0
0
0
0
Default value
R
31
W
1
Default value
R
32
W
1
Default value
R
33
W
1
Default value
R
34
W
1
Default value
R
35
W
1
Default value
R
36
W
1
Default value
R
37
W
1
Default value
R
38
W
1
Default value
R
39
W
1
Default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IB10 IB9
IB8
P0KP P0KP P0KP
1[2]
1[1]
1[0]
0
0
0
P0KP P0KP P0KP
3[2]
3[1]
3[0]
0
0
0
P0KP P0KP P0KP
5[2]
5[1]
5[0]
IB7
IB6
IB5
IB4
IB3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0FP
1[1]
P0FP
1[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0FP
2[1]
P0FP
2[0]
0
0
0
0
0
0
0
0
0
0
0
0
P0FP
3[1]
P0FP
3[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0RP P0RP P0RP
1[2]
1[1]
1[0]
0
0
0
V0RP V0RP V0RP V0RP V0RP
1[4]
1[3]
1[2]
1[1]
1[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Rev.1.0 September 13, 2006, page 74 of 199
0
0
0
P0K P0K P0K
N1[2] N1[1] N1[0]
0
0
0
P0K P0K P0K
N3[2] N3[1] N3[0]
0
0
0
P0K P0K P0K
N5[2] N5[1] N5[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0KP P0KP P0KP
4[2]
4[1]
4[0]
P0FP
0[0]
0
0
0
0
0
0
0
P0FP
0[1]
0
0
0
P0KP P0KP P0KP
2[2]
2[1]
2[0]
0
0
0
IB2
IB1
IB0
P0KP P0KP P0KP
0[2]
0[1]
0[0]
0
0
0
0
P0RP P0RP P0RP
0[2]
0[1]
0[0]
0
0
0
V0RP V0RP V0RP V0RP V0RP
0[4]
0[3]
0[2]
0[1]
0[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0K P0K P0K
N0[2] N0[1] N0[0]
0
0
0
P0K P0K P0K
N2[2] N2[1] N2[0]
0
0
0
P0K P0K P0K
N4[2] N4[1] N4[0]
0
0
0
R61505U
γ Control 1 ~ 14 (R30h to R3Dh) (continued)
R
3A
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
W
1
0
0
0
0
0
0
0
0
0
0
0
0
Default value
R
3B
W
1
Default value
R
3C
R
3D
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
0
0
0
0
0
W
0
0
0
0
0
0
1
Default value
P0KP5-0[2:0]:
P0FP3-0[1:0]:
P0RP1-0[2:0]:
V0RP1-0[4:0]:
P0KN5-0[2:0]:
P0FN3-0[1:0]:
P0RN1-0[2:0]:
V0RN1-0[4:0]:
0
0
IB9
IB8
P0FN P0FN
1[1]
1[0]
0
0
P0FN P0FN
3[1]
3[0]
0
0
P0RN P0RN P0RN
1[2]
1[1]
1[0]
0
0
0
V0R V0R V0R V0R V0R
N1[4] N1[3] N1[2] N1[1] N1[0]
0
0
0
0
0
IB7
IB6
IB5
IB4
IB3
IB2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
P0FN P0FN
2[1]
2[0]
0
0
P0RN P0RN P0RN
0[2]
0[1]
0[0]
0
0
0
V0R V0R V0R V0R V0R
N0[4] N0[3] N0[2] N0[1] N0[0]
γ fine-adjustment register for positive polarity
γ fine-adjustment register for positive polarity
γ gradient-adjustment register for positive polarity
γ amplitude-adjustment register for positive polarity
γ fine-adjustment register for negative polarity
γ fine-adjustment register for negative polarity
γ gradient-adjustment register for negative polarity
γ amplitude-adjustment register for negative polarity
Rev.1.0 September 13, 2006, page 75 of 199
0
IB1
IB0
P0FN P0FN
0[1]
0[0]
0
0
0
0
0
R61505U
Window address control instruction
Window Horizontal RAM Address Start/End (R50h/ R51h)
Window Vertical RAM Address Start/End (R52h/R53h)
R
50
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HEA
[7]
HEA
[6]
HEA
[5]
HEA
[4]
HEA
[3]
HEA
[2]
HEA
[1]
HEA
[0]
Default value
R
51
W
1
Default value
R
52
W
1
Default value
R
53
W
1
Default value
IB7
HSA
[7]
IB6
HSA
[6]
IB5
HSA
[5]
IB4
HSA
[4]
IB3
HSA
[3]
IB2
HSA
[2]
IB1
HSA
[1]
IB0
HSA
[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
VSA
[8]
VSA
[7]
VSA
[6]
VSA
[5]
VSA
[4]
VSA
[3]
VSA
[2]
VSA
[1]
VSA
[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VEA
[7]
VEA
[6]
VEA
[5]
VEA
[4]
VEA
[3]
VEA
[2]
VEA
[1]
VEA
[0]
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
VEA
[8]
0
0
0
0
0
0
0
1
HSA[7:0], HEA[7:0]: HSA[7:0] and HEA[7:0] are the start and end addresses of the window address area
in horizontal direction, respectively. HSA[7:0] and HEA[7:0] specify the horizontal range to write data.
Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that 8’h00 ≤ HSA
< HEA ≤ 8’hEF and 8’h04 ≤ HEA – HSA.
VSA[8:0], VEA[8:0]: VSA[8:0] and VEA[8:0] are the start and end addresses of the window address area
in vertical direction, respectively. VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set
VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that 9’h000 ≤ VSA <
VEA ≤ 9’h13F.
17'h000-00
HSA
HEA
VSA
Window address area setting range:
8'h00҇*5#㧨*'#҇J'(*'#*5#҈J
9'h000҇85#㧨8'#҇J(
Window
address area
Notes:
1. Make window address area within the GRAM address area.
2. In high-speed write mode, the R61505U writes data to the internal GRAM line by line horizontally.
When writing data to the GRAM, transfer the data to be written in one line at a time.
VEA
3. Set an address within the window address area in RAM address set register (R20h, R21h).
When using hight-speed write function, set an address at the start of a line.
17'h13F-EF
Figure 7 GRAM Address Map and Window Address Area
Rev.1.0 September 13, 2006, page 76 of 199
R61505U
Base image display control instruction
Driver Output Control (R60h),
Base Image Display Control (R61h)
Vertical Scroll Control (R6Ah)
R/W
RS
IB15
IB14
W
1
GS
0
0
R
60
Default value
R
61
W
1
Default value
R
6A
W
1
Default value
IB13
NL
[5]
IB12
NL
[4]
IB11
NL
[3]
IB10
NL
[2]
IB9
NL
[1]
IB8
NL
[0]
IB7
IB6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VL
[7]
VL
[6]
VL
[5]
VL
[4]
VL
[3]
VL
[2]
VL
[1]
VL
[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VL
[8]
0
0
0
0
0
0
0
0
IB5
SCN
[5]
IB4
SCN
[4]
IB3
SCN
[3]
IB2
SCN
[2]
IB1
SCN
[1]
IB0
SCN
[0]
0
0
0
0
0
0
0
0
0
0
0
NDL
VLE
REV
SCN[5:0]: Specifies the gate line where the gate driver starts scan.
NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping
is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than
the number of lines necessary for the size of the liquid crystal panel.
GS: Sets the direction of scan by the gate driver. Set GS bit in combination with SM and SS bits for the
convenience of the display module configuration and the display direction.
REV: Enables the grayscale inversion of the image by setting REV = 1. This enables the R61505U to
display the same image from the same set of data whether the liquid crystal panel is normally black or
white. The source output level during front, back porch periods and blank periods is determined by
register setting (PTS).
Table 49 GRAM Data-grayscale level inversion
REV
0
1
GRAM Data
Source Output Level in Display Area
Positive Polarity
Negative Polarity
18’h00000
V31
V0
:
:
:
18’h3FFFFF
V0
V31
18’h00000
V0
V31
:
18’h3FFFFF
:
V31
Rev.1.0 September 13, 2006, page 77 of 199
:
V0
R61505U
VLE: Vertical scroll display enable bit. When VLE = 1, the R61505U starts displaying the base image
from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling,
which is the number of lines to shift the start line of the display from the first line of the physical display.
Note that the partial image display position is not affected by the base image scrolling.
The vertical scrolling is not available in external display interface operation. In this case, make sure to set
VLE = “0”.
Table 50
VLE
Base image
0
Fixed
1
Enable scrolling
NDL: Sets the source output level in non-lit display area. NDL bit can keep the non-display area lit on.
Table 51
NDL
Non-display area
Positive
Negative
0
V31
V0
1
V0
V31
VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction
and displayed from the line which is determined by VL[8:0]. Make sure VL[8:0] ≤ 320.
Table 52
NL[5:0]
Number of Lines
NL[5:0]
Number of Lines
NL[5:0]
Number of Lines
6’h00
Setting inhibited
6’h0E
Setting inhibited
6’h1C
Setting inhibited
6’h01
Setting inhibited
6’h0F
Setting inhibited
6’h1D
240 (lines)
6’h02
Setting inhibited
6’h10
Setting inhibited
6’h1E
248
6’h03
Setting inhibited
6’h11
Setting inhibited
6’h1F
256
6’h04
Setting inhibited
6’h12
Setting inhibited
6’h20
264
6’h05
Setting inhibited
6’h13
Setting inhibited
6’h21
272
6’h06
Setting inhibited
6’h14
Setting inhibited
6’h22
280
6’h07
Setting inhibited
6’h15
176 lines
6’h23
288
6’h08
Setting inhibited
6’h16
Setting inhibited
6’h24
296
6’h09
Setting inhibited
6’h17
Setting inhibited
6’h25
304
6’h0A
Setting inhibited
6’h18
Setting inhibited
6’h26
312
6’h0B
Setting inhibited
6’h19
Setting inhibited
6’h27
320
6’h0C
Setting inhibited
6’h1A
Setting inhibited
6’h28-6’h3F
Setting inhibited
6’h0D
Setting inhibited
6’h1B
Setting inhibited
Rev.1.0 September 13, 2006, page 78 of 199
R61505U
Table 53
Gate Line No (Scan start position)
SCN[5:0]
SM=0
GS=0
See note.
SM=1
GS=1
GS=0
GS=1
6’h00
G1
G320
G1
G320
6’h01
G9
G312
G17
G304
6’h02
G17
G304
G33
G288
6’h03
G25
G296
G49
G272
6’h04
G33
G288
G65
G256
6’h05
G41
G280
G81
G240
6’h06
G49
G272
G97
G224
6’h07
G57
G264
G113
G208
6’h08
G65
G256
G129
G192
6’h09
G73
G248
G145
G176
6’h0A
G81
G240
G161
G160
6’h0B
G89
G232
G177
G144
6’h0C
G97
G224
G193
G128
6’h0D
G105
G216
G209
G112
6’h0E
G113
G208
G225
G96
6’h0F
G121
G200
G241
G80
6’h10
G129
G192
G257
G64
6’h11
G137
G184
G273
G48
6’h12
G145
G176
G289
G32
6’h13
G153
G168
G305
G16
6’h14
G161
G160
G2
G319
6’h15
G169
G152
G18
G303
6’h16
G177
G144
G34
G287
6’h17
G185
G136
G50
G271
6’h18
G193
G128
G66
G255
6’h19
G201
G120
G82
G239
6’h1A
G209
G112
G98
G223
6’h1B
G217
G104
G114
G207
6’h1C
G225
G96
G130
G191
6’h1D
G233
G88
G146
G175
6’h1E
G241
G80
G162
G159
6’h1F
G249
G72
G178
G143
6’h20
G257
G64
G194
G127
6’h21
G265
G56
G210
G111
6’h22
G273
G48
G226
G95
6’h23
G281
G40
G242
G79
6’h24
G289
G32
G258
G63
6’h25
G297
G24
G274
G47
6’h26
G305
G16
G290
G31
6’h27
G313
G8
G306
G15
Setting disabled
Setting disabled
Setting disabled
Setting disabled
6’h28-6’h3F
Note: Make sure that number of scan start position + number of scan end position is 320 lines or less.
Rev.1.0 September 13, 2006, page 79 of 199
R61505U
Partial display control instruction
Partial Image 1: Display Position (R80h), RAM Address (Start/End Line Address) (R81h/R82h)
Partial Image 2: Display Position (R83h), RAM Address (Start/End Line Address) (R84h/R85h)
R
80
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default value
R
81
W
1
Default value
R
82
W
1
Default value
R
83
W
1
Default value
R
84
W
1
Default value
R
85
W
1
Default value
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
PTDP PTDP PTDP PTDP PTDP PTDP PTDP PTDP PTDP
0[8]
0[7]
0[6]
0[5]
0[4]
0[3]
0[2]
0[1]
0[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTE PTE PTE PTE PTE PTE PTE PTE PTE
A0[8] A0[7] A0[6] A0[5] A0[4] A0[3] A0[2] A0[1] A0[0]
0
0
0
0
0
0
0
0
0
PTDP PTDP PTDP PTDP PTDP PTDP PTDP PTDP PTDP
1[8]
1[7]
1[6]
1[5]
1[4]
1[3]
1[2]
1[1]
1[0]
0
0
0
0
0
0
0
0
0
PTSA PTSA PTSA PTSA PTSA PTSA PTSA PTSA PTSA
1[8]
1[7]
1[6]
1[5]
1[4]
1[3]
1[2]
1[1]
1[0]
0
0
0
0
0
0
0
0
0
PTE PTE PTE PTE PTE PTE PTE PTE PTE
A1[8] A1[7] A1[6] A1[5] A1[4] A1[3] A1[2] A1[1] A1[0]
0
0
0
0
0
0
0
PTDP0[8:0]: Sets the display position of partial image 1.
PTDP1[8:0]: Sets the display position of partial image 2.
The display areas of the partial images 1 and 2 must not overlap each another. In setting, make sure that
Partial image 1 display area < Partial image 2 display area, and
Coordinates of partial image 1 display position: (PTDP0, PTDP0 + (PTEA0 – PTSA0))
Coordinates of partial image 2 display position: (PTDP1, PTDP1 + (PTEA1 – PTSA1))
If PTDP0 = “9’h000”, the partial image 1 is displayed from the first line of the base image.
PTSA0[8:0] and PTEA0[8:0]: Sets the start line and end line addresses of the RAM area, respectively for
the partial image 1. In setting, make sure that PTSA0 ≤ PTEA0.
PTSA1[8:0] and PTEA1[8:0]: Sets the start line and end line addresses of the RAM area, respectively for
the partial image 2. In setting, make sure that PTSA1 ≤ PTEA1.
Rev.1.0 September 13, 2006, page 80 of 199
0
PTSA PTSA PTSA PTSA PTSA PTSA PTSA PTSA PTSA
0[8]
0[7]
0[6]
0[5]
0[4]
0[3]
0[2]
0[1]
0[0]
0
0
R61505U
Panel interface control instruction
Panel interface control 1(R90h)
R/W
RS
W
1
Default value
IB15 IB14
IB13
IB12
IB11
IB10
0
0
0
0
0
0
0
0
0
0
0
0
IB9
DIVI
[1]
IB8
DIVI
[0]
IB7
IB6
IB5
0
0
0
0
0
0
0
0
IB4
IB3
IB2
IB1
IB0
RTNI RTNI RTNI RTNI RTNI
[4]
[3]
[2]
[1]
[0]
1
0
0
0
RTNI[4:0]: Sets 1H (line) period. This setting is enabled while the R61505U’s display operation is
synchronized with internal clock.
DIVI[1:0]: Sets the division ratio of the internal clock frequency. The R61505U’s internal operation is
synchronized with the frequency divided internal clock. When DIVI[1:0] setting is changed, the width of
the reference clock for liquid crystal panel control signals is changed.
The frame frequency can be adjusted by register setting (RTNI and DIVI bits). When changing the
number of lines to drive the liquid crystal panel, adjust the frame frequency too. For details, see “FrameFrequency Adjustment Function”. The setting in DIVI[1:0] is disabled in RGB interface operation.
Frame Frequency Calculation
Frame frequency =
fosc
Clocks per line x division ratio x (line + BP + FP)
[Hz]
fosc : RC oscillation frequency
Line: Number of lines to drive the LCD (NL bits)
Division ratio: DIVI
Clocks per line: RTNI
Table 54 clocks per line (internal clock operation: 1 clock = 1 OSC)
RTNI[4:0]
Clocks per Line
RTNI[4:0]
Clocks per Line
RTNI[4:0]
Clocks per Line
5’h00-5’h0F Setting inhibited
5’h15
21 clocks
5’h1B
27 clocks
5’h10
16 clocks
5’h16
22 clocks
5’h1C
28 clocks
5’h11
17 clocks
5’h17
23 clocks
5’h1D
29 clocks
5’h12
18 clocks
5’h18
24 clocks
5’h1E
30 clocks
5’h13
19 clocks
5’h19
25 clocks
5’h1F
31 clocks
5’h14
20 clocks
5’h1A
26 clocks
Table 55 Division ratio of the internal clock
DIVI[1:0]
Division Ratio
Internal operation clock unit
2’h0
1/1
1 OSC
2’h1
1/2
2 OSC
2’h2
1/4
4 OSC
2’h3
1/8
8 OSC
Rev.1.0 September 13, 2006, page 81 of 199
0
R61505U
Panel interface control 2(R92h)
R/W
RS
W
1
IB15 IB14
Default value
IB12
IB11
0
0
IB13
0
0
0
0
0
0
0
0
IB10
IB9
IB8
NOW NOW NOW
I[2]
I[1]
I[0]
0
0
0
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display
operation synchronizing with the internal clock.
Table 56
NOWI[2:0]
Non-overlap period
*see note
NOWI[2:0]
Non-overlap period
3’h4
4 (internal clock
3’h0
0 (internal clock
3’h1
1
3’h5
5
3’h2
2
3’h6
6
3’h3
3
3’h7
7
Note:
)
*see note
)
The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.
Rev.1.0 September 13, 2006, page 82 of 199
R61505U
Panel interface control 3(R93h)
R/W
RS
W
1
IB15 IB14
Default value
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
0
0
IB13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IB2
MCP
I[2]
IB1
MCP
I[1]
IB0
MCP
I[0]
0
0
0
MCPI[2:0]: Sets the source output timing by the number of internal clock from the reference point. The
setting is enabled in display operation synchronizing with the internal clock.
Table 57
MCPI[2:0]
Source output position
*see note
MCPI[2:0]
Source output position
3’h0
0 (internal clock
3’h4
4 (internal clock)
3’h1
1
3’h5
5
3’h2
2
3’h6
6
3’h3
3
3’h7
7
Note:
)
The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits. The source
output position is measured from the reference point by the number of internal clock cycle.
Rev.1.0 September 13, 2006, page 83 of 199
R61505U
Panel interface control 4(R95h)
R/W
RS
W
1
IB15 IB14
Default value
IB12
IB11
IB10
0
0
IB13
0
0
0
0
0
0
0
0
0
0
IB9
IB8
DIVE DIVE
[1]
[0]
1
0
IB7
IB6
0
0
0
0
IB5
RTN
E[5]
IB4
RTN
E[4]
IB3
RTN
E[3]
IB2
RTN
E[2]
IB1
RTN
E[1]
IB0
RTN
E[0]
0
1
1
1
1
0
RTNE[5:0]: Sets RTNE[5:0] and DIVE[1:0] bits so that the number of DOTCLK calculated from the
following formula becomes the number of DOTCLK which should be inputted in 1H period. The
RTNE[5:0] setting is enabled in display operation via RGB interface.
DIVE[1:0] (division ratio) x RTNE[5:0] (Number of DOTCLK) ≤ Number of DOTCLK in 1H period
DIVE[1:0]: Sets the division ratio of DOTCLK frequency. The R61505U’s internal operation is
synchronized with the frequency divided DOTCLK. The setting in DIVE[1:0] is enabled in RGB interface
operation.
Table 58 Division ratio of DOTCLK
DIVE[1:0]
Division
Ratio
Internal operation clock unit (DOTCLK)
18-bit, 1 transfer RGB interface
2’h0
Setting disabled Setting disabled
2’h1
1/4
2’h2
2’h3
DOTCLK = 5 MHz 8-bit, 3 transfers RGB interface
DOTCLK = 15 MHz
-
Setting disabled
-
4 DOTCLKs
0.8μs
12 DOTCLKs
0.8μs
1/8
8 DOTCLKs
1.6μs
24 DOTCLKs
1.6μs
1/16
16 DOTCLKs
3.2μs
48 DOTCLKs
3.2μs
Rev.1.0 September 13, 2006, page 84 of 199
R61505U
Table 59 DOTCLK per line (1H period)
RTNE[5:0]
DOTCLK per line (1H)
RTNE[5:0]
DOTCLK per line (1H)
6’h00
Setting disabled
6’h20
32 clocks
6’h01
Setting disabled
6’h21
33 clocks
6’h02
Setting disabled
6’h22
34 clocks
6’h03
Setting disabled
6’h23
35 clocks
6’h04
Setting disabled
6’h24
36 clocks
6’h05
Setting disabled
6’h25
37 clocks
6’h06
Setting disabled
6’h26
38 clocks
6’h07
Setting disabled
6’h27
39 clocks
6’h08
Setting disabled
6’h28
40 clocks
6’h09
Setting disabled
6’h29
41 clocks
6’h0A
Setting disabled
6’h2A
42 clocks
6’h0B
Setting disabled
6’h2B
43 clocks
6’h0C
Setting disabled
6’h2C
44 clocks
6’h0D
Setting disabled
6’h2D
45 clocks
6’h0E
Setting disabled
6’h2E
46 clocks
6’h0F
Setting disabled
6’h2F
47 clocks
6’h10
16 clocks
6’h30
48 clocks
6’h11
17 clocks
6’h31
49 clocks
6’h12
18 clocks
6’h32
50 clocks
6’h13
19 clocks
6’h33
51 clocks
6’h14
20 clocks
6’h34
52 clocks
6’h15
21 clocks
6’h35
53 clocks
6’h16
22 clocks
6’h36
54 clocks
6’h17
23 clocks
6’h37
55 clocks
6’h18
24 clocks
6’h38
56 clocks
6’h19
25 clocks
6’h39
57 clocks
6’h1A
26 clocks
6’h3A
58 clocks
6’h1B
27 clocks
6’h3B
59 clocks
6’h1C
28 clocks
6’h3C
60 clocks
6’h1D
29 clocks
6’h3D
61 clocks
6’h1E
30 clocks
6’h3E
62 clocks
6’h1F
31 clocks
6’h3F
63 clocks
Rev.1.0 September 13, 2006, page 85 of 199
R61505U
Panel interface control 5(R97h)
R/W
RS
W
1
IB15 IB14
Default value
IB13
IB12
0
0
0
0
0
0
0
0
IB11 IB10
IB9
IB8
NOW NOW NOW NOW
E[3] E[2] E[1] E[0]
0
0
0
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IB2
MCP
E[2]
IB1
MCP
E[1]
IB0
MCP
E[0]
0
0
0
0
NOWE[3:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled in display
operation via RGB interface.
Table 60
NOWE[3:0]
Non-overlap period
*see note
NOWE[3:0]
Non-overlap period
4’h8
8 (clocks
4’h0
0 (clock
4’h1
1
4’h9
9
4’h2
2
4’hA
10
4’h3
3
4’hB
11
4’h4
4
4’hC
12
4’h5
5
4’hD
13
4’h6
6
4’hE
14
4’h7
7
4’hF
15
Note:
)
*see note)
1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].
Panel interface control 6(R98h)
R/W
RS
W
1
IB15 IB14
Default value
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MCPE[2:0]: Sets the source output timing by the number of internal clock from the reference point. The
setting is enabled in display operation via RGB interface.
Table 61
MCPE[2:0]
Source output position
MCPE[2:0]
Source output position
3’h0
Setting Disabled
3’h4
4 (clocks
3’h1
1 clock
3’h5
5
3’h2
2
3’h6
6
3
3’h7
7
3’h3
Note:
*see note
)
1 clock = (Number of data transfers/pixel) x DIVE (division ratio) [DOTCLK].
Rev.1.0 September 13, 2006, page 86 of 199
R61505U
NVM(NON-VOLATILE MEMORY) control
NVM access control 1 (RA0h), NVM access control 2 (RA1h)
RA0
R/W
RS
IB15
IB14
IB13
IB12
IB11
IB10
IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
W
1
0
0
0
0
0
0
0
0
TE
0
EOP
[1]
EOP
[0]
0
0
EAD
[1]
EAD
[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ED
[7]
0
0
ED
[4]
ED
[3]
ED
[2]
ED
[1]
ED
[0]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Default
RA1
W
Default
EAD[1:0]: Designates the address in NVM, where the data is written. See also description of ED7 and
ED4-0 bits below.
Table 62
EAD[1:0]
Data written in NVM
2’h0
UID[3:0]
2’h1
VCM1[4:0]
2’h2
VCMSEL, VCM2[4:0]
2’h3
Setting disabled
EOP[1:0]: Internal NVM control bits to write-in data to NVM, halt write-in operation, and store write-in
data to register.
Table 63
EOP[1:0]
NVM control
2’h0
Halt
2’h1
Write
2’h2
Setting disabled
2’h3
Setting disabled
TE: Enable internal NVM control bit (EOP). Follow the NVM control sequence when setting TE.
ED[7], [4:0]: The data written in the Internal NVM.
Table 64
EAD[1:0]
ED7
ED6
ED5
ED4
ED3
ED2
ED1
ED0
2’h0
0
0
0
0
UID[3]
UID[2]
UID[1]
UID[0]
2’h1
0
0
0
VCM1[4]
VCM1[3]
VCM1[2]
VCM1[1]
VCM1[0]
2’h2
VCMSEL
0
0
VCM2[4]
VCM2[3]
VCM2[2]
VCM2[1]
VCM2[0]
Rev.1.0 September 13, 2006, page 87 of 199
R61505U
Calibration control (RA4h)
R/W RS
R
A4
W
Default
Value
1
IB15 IB14 IB13 IB12 IB11 IB10 IB9
IB8
IB7
IB6
IB5
IB4
IB3
IB2
IB1
IB0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CALB: Instruction to read in data on NVM. When CALB=1, data written to NVM is read out to internal
register. CALB sets oscillation frequency at 376kHz +/- 7% (R61505U0) or 600kHz +/- 7% (R61505U1).
(IOVCC=VCC=3V, 25C).
Rev.1.0 September 13, 2006, page 88 of 199
R61505U
Setting disabled instruction (Inhibition RA5h ~ RFFh)
Setting is inhibited for the registers listed as follows. DO NOT ACCESS TO THESE REGISTERS.
R05h-R06h, R0Bh, R0Eh, R14h-R16h, R18h-R1Fh, R23h-R27h, R2Bh-R2Fh, R54h-R5Fh, R62h-R69h,
R6Bh-R6Fh, R86h-R8Fh, R91h, R94h, R96h, R99h-R9Fh, RA5h-RAFh, RB*h-RF*h
Rev.1.0 September 13, 2006, page 89 of 199
●R61505U Instruction List
Main Category
Upper Index
Index
1*
Power Control
Index
-
6 Sept. 2006 Rev1.0
Sub Category
Command
Index
IB15
*
IB14
*
IB13
*
Upper Code
IB12
IB11
*
*
00h
Device Code Read
0
0
0
1
0
01h
Driver Output Control
0
0
0
0
0
IB10
*
1
SM
(0)
1
(1)
02h
LCD Drive Waveform Cotrol
0
0
0
0
0
03h
Entry Mode
TRIREG
(0)
DFM
(0)
0
BGR
(0)
0
0
04h
Resize Control
0
0
0
0
0
0
05h-06h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Display Control 1
0
0
Setting
inhibited
PTDE[0]
(0)
Setting
inhibited
07h
Setting
inhibited
PTDE[1]
(0)
08h
Display Control 2
0
0
0
0
IB9
*
0
0
BC0
(0)
HWM
(0)
RCV[1]
(0)
Setting
inhibited
IB8
*
1
SS
(0)
EOR
(0)
0
0
0
0
FP[3]
(1)
FP[2]
(0)
PTS[2]
(0)
FP[1]
(0)
PTS[1]
(0)
RCV[0]
(0)
Setting
inhibited
BASEE
(0)
FP[0]
(0)
PTS[0]
(0)
IB5
ID5
Lower Code
IB4
IB3
ID4
ID3
0
0
0
0
1
0
1
0
0
0
0
0
0
NW0
(0)
0
0
ORG
(0)
0
0
0
0
0
0
ID0
(1)
RCH[0]
(0)
Setting
inhibited
DTE
(0)
AM
(0)
0
0
0
0
0
Setting
inhibited
VON
(0)
ID1
(1)
RCH[1]
(0)
Setting
inhibited
GON
(0)
0
0
Setting
inhibited
0
0
0
0
PTG[0]
(0)
Setting
inhibited
COL
(0)
BP[3]
(1)
ISC[3]
(0)
FMARKOE
(0)
Setting
inhibited
RSZ[1]
(0)
Setting
inhibited
D[1]
(0)
BP[1]
(0)
ISC[1]
(0)
FMI[1]
(0)
Setting
inhibited
RIM[1]
(0)
FMP[1]
(0)
Setting
inhibited
EPL
(0)
SLP
(0)
VC[1]
(0)
VRH[1]
(0)
RSZ[0]
(0)
Setting
inhibited
D[0]
(0)
BP[0]
(0)
ISC[0]
(0)
FMI[0]
(0)
Setting
inhibited
RIM[0]
(0)
FMP[0]
(0)
Setting
inhibited
DPL
(0)
Setting
inhibited
0
0
0
0
0
0
0
0
PTG[1]
(0)
0
0
0
0
0
0
0
0
0
0
0
0
0Bh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
0
0
0
0Dh
Frame Marker Control
0
0
0
0
0
0
0
0Eh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
RM
(0)
FMP[8]
(0)
Setting
inhibited
Setting
inhibited
0
Setting
inhibited
ENC[0]
(0)
Setting
inhibited
External Display Interface Control 1
Setting
inhibited
ENC[1]
(0)
Setting
inhibited
0Ch
Setting
inhibited
ENC[2]
(0)
Setting
inhibited
DM[1]
(0)
FMP[5]
(0)
Setting
inhibited
0Fh
External Display Interface Control 2
0
0
0
0
0
0
0
0
10h
Power Control 1
0
0
0
SAP
(0)
BT[3]
(0)
11h
Power Control 2
0
0
0
0
0
BT[2]
(0)
DC1[2]
(1)
BT[1]
(0)
DC1[1]
(1)
12h
Power Control 3
0
0
0
AP[1]
(0)
DC0[1]
(1)
PSON
(0)
13h
Power Control 4
0
0
0
14h-16h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
BT[0]
(0)
DC1[0]
(0)
VCMR[0]
(0)
VDV[0]
(0)
Setting
inhibited
Setting
inhibited
DM[0]
(0)
FMP[4]
(0)
Setting
inhibited
VSPL
(0)
AP[0]
(0)
DC0[0]
(0)
PON
(0)
0
0
0
VDV[3]
(0)
Setting
inhibited
VDV[2]
(0)
Setting
inhibited
VDV[1]
(0)
Setting
inhibited
0
0
FMP[7]
(0)
Setting
inhibited
FMP[6]
(0)
Setting
inhibited
0
0
0
FMP[3]
(0)
Setting
inhibited
HSPL
(0)
FMP[2]
(0)
Setting
inhibited
0
0
APE(0)
0
0
DC0[2]
(1)
VREG1R
(0)
0
0
0
0
0
0
0
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
0
0
VRH[3]
(0)
Power Control 5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
AD[7]
(0)
AD[15]
(0)
Setting
inhibited
AD[6]
(0)
AD[14]
(0)
Setting
inhibited
AD[5]
(0)
AD[13]
(0)
Setting
inhibited
AD[4]
(0)
AD[12]
(0)
Setting
inhibited
AD[3]
(0)
AD[11]
(0)
Setting
inhibited
AD[2]
(0)
AD[10]
(0)
Setting
inhibited
AD[1]
(0)
AD[9]
(0)
Setting
inhibited
UID[1]
(0)
VCM1[1]
(0)
VCM2[1]
(0)
Setting
inhibited
P0KP0[1]
(0)
P0KP2[1]
(0)
P0KP4[1]
(0)
P0FP0[1]
(0)
P0FP2[1]
(0)
P0RP0[1]
(0)
V0RP0[1]
(0)
P0KN0[1]
(0)
P0KN2[1]
(0)
P0KN4[1]
(0)
P0FN0[1]
(0)
P0FN2[1]
(0)
P0RN0[1]
(0)
V0RN0[1]
(0)
Setting
inhibited
HSA[1]
(0)
HEA[1]
(1)
VSA[1]
(0)
VEA[1]
(1)
Setting
inhibited
SCN[1]
(0)
VLE
(0)
Setting
inhibited
VL[1]
(0)
Setting
inhibited
PTDP0[1]
(0)
PTSA0[1]
(0)
PTEA0[1]
(0)
PTDP1[1]
(0)
PTSA1[1]
(0)
PTEA1[1]
(0)
Setting
inhibited
RTNI[1]
(0)
Setting
inhibited
Setting
inhibited
UID[0]
(0)
VCM1[0]
(0)
VCM2[0]
(0)
Setting
inhibited
P0KP0[0]
(0)
P0KP2[0]
(0)
P0KP4[0]
(0)
P0FP0[0]
(0)
P0FP2[0]
(0)
P0RP0[0]
(0)
V0RP0[0]
(0)
P0KN0[0]
(0)
P0KN2[0]
(0)
P0KN4[0]
(0)
P0FN0[0]
(0)
P0FN2[0]
(0)
P0RN0[0]
(0)
V0RN0[0]
(0)
Setting
inhibited
HSA[0]
(0)
HEA[0]
(1)
VSA[0]
(0)
VEA[0]
(1)
Setting
inhibited
SCN[0]
(0)
REV
(0)
Setting
inhibited
VL[0]
(0)
Setting
inhibited
PTDP0[0]
(0)
PTSA0[0]
(0)
PTEA0[0]
(0)
PTDP1[0]
(0)
PTSA1[0]
(0)
PTEA1[0]
(0)
Setting
inhibited
RTNI[0]
(0)
Setting
inhibited
RAM Adddress Set (Horizontal)
0
0
0
0
0
0
0
0
RAM Adddress Set (Vertical)
0
0
0
0
0
0
0
AD[16]
(0)
Write Data to / Read Data from GRAM
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
28h
NVM Data Read
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Setting
inhibited
Setting
inhibited
29h
VCOM High Voltage
0
0
0
0
0
0
0
0
2Ah
VCOM High Voltage
0
0
0
0
0
0
0
0
2Bh-2Fh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
30h
Gamma Control 1
0
0
0
0
0
31h
Gamma Control 2
0
0
0
0
0
Setting
inhibited
P0KP1[2]
(0)
P0KP3[2]
(0)
P0KP5[2]
(0)
Setting
inhibited
P0KP1[1]
(0)
P0KP3[1]
(0)
P0KP5[1]
(0)
P0FP1[1]
(0)
P0FP3[1]
(0)
P0RP1[1]
(0)
V0RP1[1]
(0)
P0KN1[1]
(0)
P0KN3[1]
(0)
P0KN5[1]
(0)
P0FN1[1]
(0)
P0FN3[1]
(0)
P0RN1[1]
(0)
V0RN1[1]
(0)
Setting
inhibited
Setting
inhibited
P0KP1[0]
(0)
P0KP3[0]
(0)
P0KP5[0]
(0)
P0FP1[0]
(0)
P0FP3[0]
(0)
P0RP1[0]
(0)
V0RP1[0]
(0)
P0KN1[0]
(0)
P0KN3[0]
(0)
P0KN5[0]
(0)
P0FN1[0]
(0)
P0FN3[0]
(0)
P0RN1[0]
(0)
V0RN1[0]
(0)
Setting
inhibited
32h
Gamma Control 3
0
0
0
0
0
33h
Gamma Control 4
0
0
0
0
0
0
34h
Gamma Control 5
0
0
0
0
0
0
35h
Gamma Control 6
0
0
0
0
0
V0RP1[3]
(0)
36h
Gamma Control 7
0
0
0
V0RP1[4]
(0)
37h
Gamma Control 8
0
0
0
0
0
38h
Gamma Control 7
0
0
0
0
0
P0RP1[2]
(0)
V0RP1[2]
(0)
P0KN1[2]
(0)
P0KN3[2]
(0)
P0KN5[2]
(0)
39h
Gamma Control 7
0
0
0
0
0
3Ah
Gamma Control 11
0
0
0
0
0
0
3Bh
Gamma Control 12
0
0
0
0
0
0
3Ch
Gamma Control 13
0
0
0
0
0
V0RN1[4]
(0)
Setting
inhibited
V0RN1[3]
(0)
Setting
inhibited
3Dh
Gamma Control 14
0
0
0
3Eh-3Fh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
P0RN1[2]
(0)
V0RN1[2]
(0)
Setting
inhibited
5*
Coordinates Control
50h
Window Horizontal RAM Address (Start Address)
0
0
0
0
0
0
0
0
51h
Window Horizontal RAM Address (End Address)
0
0
0
0
0
0
0
0
52h
Window Vertical RAM Address (Start Address)
0
0
0
0
0
0
0
53h
Window Vertical RAM Address (End Address)
54h-5Fh
Setting inhibited
0
0
0
0
0
0
0
Setting
inhibited
GS
(0)
Setting
inhibited
Setting
inhibited
NL[5]
(0)
Setting
inhibited
NL[4]
(0)
Setting
inhibited
NL[3]
(0)
Setting
inhibited
NL[2]
(0)
Setting
inhibited
NL[1]
(0)
VSA[8]
(0)
VEA[8]
(1)
Setting
inhibited
NL[0]
(0)
VCMSEL
(0)
Setting
inhibited
VCM1[4]
(0)
VCM2[4]
(0)
Setting
inhibited
Setting
inhibited
UID[3]
(0)
VCM1[3]
(0)
VCM2[3]
(0)
Setting
inhibited
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V0RP0[4]
(0)
V0RP0[3]
(0)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
V0RN0[4]
(0)
Setting
inhibited
HSA[4]
(0)
HEA[4]
(0)
VSA[4]
(0)
VEA[4]
(1)
Setting
inhibited
SCN[4]
(0)
V0RN0[3]
(0)
Setting
inhibited
HSA[3]
(0)
HEA[3]
(1)
VSA[3]
(0)
VEA[3]
(1)
Setting
inhibited
SCN[3]
(0)
0
0
0
Setting
inhibited
HSA[7]
(0)
HEA[7]
(1)
VSA[7]
(0)
VEA[7]
(0)
Setting
inhibited
Setting
inhibited
HSA[6]
(0)
HEA[6]
(1)
VSA[6]
(0)
VEA[6]
(0)
Setting
inhibited
0
0
Setting
inhibited
HSA[5]
(0)
HEA[5]
(1)
VSA[5]
(0)
VEA[5]
(1)
Setting
inhibited
SCN[5]
(0)
Panel Image Control
60h
Driver Output Control
61h
Base Image Display Control
0
0
0
0
0
0
0
0
0
0
0
0
0
62h-69h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
VL[7]
(0)
Setting
inhibited
PTDP0[7]
(0)
PTSA0[7]
(0)
PTEA0[7]
(0)
PTDP1[7]
(0)
PTSA1[7]
(0)
PTEA1[7]
(0)
Setting
inhibited
Setting
inhibited
VL[6]
(0)
Setting
inhibited
PTDP0[6]
(0)
PTSA0[6]
(0)
PTEA0[6]
(0)
PTDP1[6]
(0)
PTSA1[6]
(0)
PTEA1[6]
(0)
Setting
inhibited
Setting
inhibited
VL[5]
(0)
Setting
inhibited
PTDP0[5]
(0)
PTSA0[5]
(0)
PTEA0[5]
(0)
PTDP1[5]
(0)
PTSA1[5]
(0)
PTEA1[5]
(0)
Setting
inhibited
Setting
inhibited
VL[3]
(0)
Setting
inhibited
PTDP0[3]
(0)
PTSA0[3]
(0)
PTEA0[3]
(0)
PTDP1[3]
(0)
PTSA1[3]
(0)
PTEA1[3]
(0)
Setting
inhibited
RTNI[3]
(0)
Setting
inhibited
6Ah
Vertical Scroll Control
0
0
0
0
0
0
0
6Bh-6Fh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
80h
Partial Image 1 Display Position
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
VL[8]
(0)
Setting
inhibited
PTDP0[8]
(0)
PTSA0[8]
(0)
PTEA0[8]
(0)
PTDP1[8]
(0)
PTSA1[8]
(0)
PTEA1[8]
(0)
Setting
inhibited
DIVI[0]
(0)
Setting
inhibited
NOWI[0]
(0)
82h
83h
84h
85h
A*
B*-F*
Panel Interface
Control
NVM Control
Setting inhibited
0
Partial Image 2 Display Position
Partial Image 2 RAM Address
(Start Line Address)
Partial Image 2 RAM Address
(End Line Address)
86h-8Fh
Setting inhibited
90h
Panel Interface Control 1
0
0
0
0
0
0
91h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
NOWI[2]
(0)
Setting
inhibited
DIVI[1]
(0)
Setting
inhibited
NOWI[1]
(0)
Setting
inhibited
UID[2]
(0)
VCM1[2]
(0)
VCM2[2]
(0)
Setting
inhibited
P0KP0[2]
(0)
P0KP2[2]
(0)
P0KP4[2]
(0)
0
6*
Partial Image 1 RAM Address
(Start Line Address)
Partial Image 1 RAM Address
(End Line Address)
Device Code "1505"
RAM write data (WD17-0) / RAM read data (RD17-0) bits are allocated to different data bus according to the format of selected interface.
22h
23h-27h
81h
Notes
0
Setting inhibited
21h
Index
-
VC[0]
(0)
VRH[0]
(0)
17h
20h
9*
0
DSTB
(0)
VC[2]
(0)
VRH[2]
(0)
18h-1Fh
Partial Image Control
0
BP[2]
(0)
ISC[2]
(0)
FMI[2]
(0)
Setting
inhibited
Setting
inhibited
PSE
(0)
Setting
inhibited
AD[0]
(0)
AD[8]
(0)
RAM Access
8*
IB0
ID0
0
Display Control 3
0
IB1
ID1
0
Display Control 4
VDV[4]
(0)
Setting
inhibited
IB2
ID2
0
09h
Gamma Control
IB6
ID6
0Ah
2*
3*
IB7
ID7
0
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
VL[4]
(0)
Setting
inhibited
PTDP0[4]
(0)
PTSA0[4]
(0)
PTEA0[4]
(0)
PTDP1[4]
(0)
PTSA1[4]
(0)
PTEA1[4]
(0)
Setting
inhibited
RTNI[4]
(1)
Setting
inhibited
92h
Panel Interface Control 2
0
0
0
0
0
0
0
0
0
0
93h
Panel Interface Control 3
0
0
0
0
0
0
0
0
0
0
0
0
0
94h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Panel Interface Control 4
0
0
0
0
0
0
96h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
NOWE[3]
(0)
Setting
inhibited
NOWE[2]
(0)
Setting
inhibited
DIVE[0]
(0)
Setting
inhibited
NOWE[0]
(0)
Setting
inhibited
95h
Setting
inhibited
DIVE[1]
(1)
Setting
inhibited
NOWE[1]
(0)
Setting
inhibited
RTNE[4]
(1)
Setting
inhibited
Setting
inhibited
RTNE[3]
(1)
Setting
inhibited
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
RTNE[5]
(0)
Setting
inhibited
97h
Panel Interface Control 5
0
0
0
0
0
0
0
0
0
98h
Panel Interface Control 6
0
0
0
0
0
0
0
0
0
0
0
0
0
99h-9Fh
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
NVM Access Control 1
0
0
0
0
0
0
0
0
Setting
inhibited
EOP[1]
(0)
A1h
NVM Access Control 2
0
0
0
0
0
0
0
0
A2h-A3h
Setting inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
TE
(0)
ED7
(0)
Setting
inhibited
Setting
inhibited
A0h
Setting
inhibited
EOP[0]
(0)
ED4
(0)
Setting
inhibited
A4h
Calibration Control
A5h-AFh
Setting inhibited
B*h-F*h
Setting inhibited
0
0
0
Setting
inhibited
Setting
inhibited
P0RP0[2]
(0)
V0RP0[2]
(0)
P0KN0[2]
(0)
P0KN2[2]
(0)
P0KN4[2]
(0)
0
0
P0RN0[2]
(0)
V0RN0[2]
(0)
Setting
inhibited
HSA[2]
(0)
HEA[2]
(1)
VSA[2]
(0)
VEA[2]
(1)
Setting
inhibited
SCN[2]
(0)
NDL
(0)
Setting
inhibited
VL[2]
(0)
Setting
inhibited
PTDP0[2]
(0)
PTSA0[2]
(0)
PTEA0[2]
(0)
PTDP1[2]
(0)
PTSA1[2]
(0)
PTEA1[2]
(0)
Setting
inhibited
RTNI[2]
(0)
Setting
inhibited
0
0
0
MCPI[2]
(0)
Setting
inhibited
RTNE[2]
(1)
Setting
inhibited
MCPI[1]
(0)
Setting
inhibited
RTNE[1]
(1)
Setting
inhibited
MCPI[0]
(0)
Setting
inhibited
RTNE[0]
(0)
Setting
inhibited
0
0
0
Setting
inhibited
MCPE[2]
(0)
Setting
inhibited
0
0
ED3
(0)
Setting
inhibited
ED2
(0)
Setting
inhibited
MCPE[1]
(0)
Setting
inhibited
EAD[1]
(0)
ED1
(0)
Setting
inhibited
MCPE[0]
(0)
Setting
inhibited
EAD[0]
(0)
ED0
(0)
Setting
inhibited
CALB
(0)
Setting
inhibited
Setting
inhibited
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
Setting
inhibited
R61505U
Reset Function
The R61505U is initialized by the RESET input. During reset period, the R61505U is in a busy state and
instruction from the MPU and GRAM access are not accepted. The R61505U’s internal power supply
circuit unit is initialized also by the RESET input. The RESET period must be secured for at least 1ms. In
case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period,
GRAM access and initial instruction setting are prohibited.
1.
Initial state of instruction bits (default)
See the instruction list of p.90. The default value is shown in the parenthesis of each instruction bit cell.
2.
RAM Data initialization
The RAM data is not automatically initialized by the RESET input. It must be initialized by software in
display-off period (D1-0 = “00”).
3.
Output pin initial state * see Note
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
LCD driver S1~S720
G1~G320
VCOM
VCOMH
VCOML
VREG1OUT
VCIOUT
VLOUT1 (DDVDH)
VLOUT2 (VGH)
VLOUT3 (VGL)
VCL
VCI1
FMARK
SDO
4.
Initial state of input/output pins* see Note
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
C11+
C11C12+
C12C13+
C13C21+
C21C22+
C22C23+
C23VDD
: GND
: VGL (= GND)
: Halt (GND output)
: DDVDH
: Halt (GND output)
: VGS
: Hi-z
: VCI clamp
: DDVDH clamp
: GND
: GND
: Hi-z
: Halt (GND output )
: High level (IOVCC) when IM = “010*”(serial interface)
: Hi-z when IM ≠ “010*”(other than serial interface)
Rev.1.0 September 13, 2006, page 91 of 199
: Hi-z
: Hi-z
: Hi-z
: Hi-z
: VCI1 (= Hi-z)
: GND
: DDVDH
: GND
: DDVDH
: GND
: DDVDH
: GND
: VDD
R61505U
Note: The above mentioned initial states of output and input pins are those of when the R61505U’s
power supply circuit is connected as exemplified in “Connection example”.
5.
Note on Reset function
(1) When a RESET input is entered into the R61505U while it is in deep standby mode, the
R61505U starts up the inside logic regulator and makes a transition to the initial state. During
this period, the state of the interface pins may become unstable. For this reason, do not enter a
RESET input in deep standby mode.
(2) When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure
to execute data transfer synchronization after reset operation.
Rev.1.0 September 13, 2006, page 92 of 199
R61505U
Basic mode operation of the R61505U
The basic operation modes of the R61505U are shown in the following diagram. When making a
transition from one mode to another, refer to instruction setting sequence.
Sleep
mode
Sleep
set
Exit Sleep
Initial setting
Display
OFF
Display ON sequence
(Power ON sequence)
Display OFF sequence
(Power OFF sequence)
moving picture
display
VSYNC
interface
VSYNC i/F sequence 2
(DM=10, RM=0)
VSYNC i/F sequence 1
(DM=00, RM=0)
DSTB = 1
Deep
standby set
Internal clock
display
operation
Partial
display
sequence 2
Display color control
262k-color
mode
262k
8
color display
sequence
8-color
mode
Figure 8
Rev.1.0 September 13, 2006, page 93 of 199
Deep standby
mode
RGB i/F (1) sequence 2
(DM=00, RM=0)
Partial
display
Reset
Exit deep standby
RGB i/F (1) sequence 1
(DM=01, RM=1)
Partial
display
sequence 1
8
262k
color display
sequence
Reset
state
moving picture
display
RGB
interface (1)
RAM access via
system i/F while displaying
moving picture
RGB i/F (2) sequence 1
(DM=01, RM=0)
RGB
interface (2)
RGB i/F (2) sequence 2
(DM=01, RM=1)
R61505U
Interface and data format
The R61505U supports system interface for making instruction and other settings, and external display
interface for displaying a moving picture. The R61505U can select the optimum interface for the display
(moving or still picture) in order to transfer data efficiently.
As external display interface, the R61505U supports RGB interface and VSYNC interface, which enables
data rewrite operation without flickering the moving picture on display.
In RGB interface operation, the display operation is executed in synchronization with synchronous signals
VSYNC, HSYNC, and DOTCLK. In synchronization with these signals, the R61505U writes display data
according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored
in the R61505U’s GRAM so that data is transferred only when rewriting the frames of moving picture and
the data transfer required for moving picture display can be minimized. The window address function
specifies the RAM area to write data for moving picture display, which enables displaying a moving
picture and RAM data in other than the moving picture area simultaneously. To access the R61505U’s
internal RAM in high speed with low power consumption, use high-speed write function (HWM = 1) in
RGB or VSYNC interface operation.
In VSYNC interface operation, the internal display operation is synchronized with the frame
synchronization signal (VSYNC). The VSYNC interface enables a moving picture display via system
interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization
with the falling edge of VSYNC. In this case, there are restrictions in setting the frequency and the method
to write data to the internal RAM.
The R61505U operates in either one of the following four modes according to the state of the display. The
operation mode is set in the external display interface control register (R0Ch). When switching from one
mode to another, make sure to follow the relevant sequence in setting instruction bits.
Table 65 Operation Modes
Operation Mode
RAM Access Setting (RM)
Display Operation Mode (DM)
Internal clock operation
(displaying still pictures)
System interface
(RM = 0)
Internal clock operation
(DM1-0 = 00)
RGB interface (1)
(displaying moving pictures)
RGB interface
(RM = 1)
RGB interface
(DM1-0 = 01)
RGB interface (2)
(rewriting still pictures while
displaying moving pictures)
System interface
(RM = 0)
RGB interface
(DM1-0 = 01)
VSYNC interface
(displaying moving pictures)
System interface
(RM = 0)
VSYNC interface
(DM1-0 = 10)
Notes:
1.
Instructions are set only via system interface.
2.
3.
The RGB and VSYNC interfaces cannot be used simultaneously.
Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface
is in operation.
4. See the “External Display Interface” section for the sequences when switching from one
mode to another.
5. Use high-speed write function (HWM = 1) when writing data via RGB or VSYNC interface.
Rev.1.0 September 13, 2006, page 94 of 199
R61505U
CS*
System
interface
RS
WR*
(RD*)
System interface
18/16/9/8
System
DB17-0
RGB interface
18/16/6
R61505U
ENABLE
RGB
interface
VSYNC
HSYNC
DOTCLK
Figure 9
Internal clock operation
The display operation is synchronized with signals generated from internal oscillator’s clock (OSC) in this
mode. All input via external display interface is disabled in this operation. The internal RAM can be
accessed only via system interface.
RGB interface operation (1)
The display operation is synchronized with frame synchronous signal (VSYNC), line synchronous signal
(HSYNC), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied
during the display operation via RGB interface.
The R61505U transfers display data in units of pixels via DB17-0 pins. The display data is stored in the
internal RAM. The combined use of high-speed RAM write mode and window address function can
minimize the total number of data transfer for moving picture display by transferring only the data to be
written in the moving picture RAM area when it is written and enables the R61505U to display a moving
picture and the data in other than the moving picture RAM area simultaneously.
The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the
R61505U by counting the number of clocks of line synchronous signal (HSYNC) from the falling edge of
the frame synchronous signal (VSYNC). Make sure to transfer pixel data via DB17-0 pins in accordance
with the setting of these periods.
Rev.1.0 September 13, 2006, page 95 of 199
R61505U
RGB interface operation (2)
This mode enables the R61505U to rewrite RAM data via system interface while using RGB interface for
display operation. To rewrite RAM data via system interface, make sure that display data is not transferred
via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE
setting first. Then set an address in the RAM address set register and R22h in the index register.
VSYNC interface operation
The internal display operation is synchronized with the frame synchronous signal (VSYNC) in this mode.
This mode enables the R61505U to display a moving picture via system interface by writing data in the
internal RAM at faster than the calculated minimum speed via system interface from the falling edge of
frame synchronous (VSYNC). In this case, there are restrictions in speed and method of writing RAM
data. For details, see the “VSYNC Interface” section.
As external input, only VSYNC signal input is valid in this mode. Other input via external display
interface becomes disabled.
The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the
frame synchronous signal (VSYNC) inside the R61505U according to the instruction settings for these
periods.
Rev.1.0 September 13, 2006, page 96 of 199
R61505U
System Interface
The following are the kinds of system interfaces available with the R61505U. The interface operation is
selected by setting the IM3/2/1/0 pins. The system interface is used for instruction setting and RAM
access.
Table 66 IM Bit Settings and System Interface
IM3
IM2
IM1
IM0
Interfacing Mode with MPU
DB Pins
Colors
0
0
0
0
Setting inhibited
-
-
0
0
0
1
Setting inhibited
-
-
0
0
1
0
80-system 16-bit interface
DB17-10, DB8-1
262,144
*see Note1
0
0
1
1
80-system 8-bit interface
DB17-10
262,144
*see Note2
0
1
0
*
Clock synchronous serial interface
-
65,536
0
1
1
0
Setting inhibited
-
-
0
1
1
1
Setting inhibited
-
-
1
0
0
0
Setting inhibited
-
-
1
0
0
1
Setting inhibited
-
-
1
0
1
0
80-system 18-bit interface
DB17-0
262,144
1
0
1
1
80-system 9-bit interface
DB17-9
262,144
1
1
0
0
Setting inhibited
-
-
1
1
0
1
Setting inhibited
-
-
1
1
1
0
Setting inhibited
-
-
1
1
1
1
Setting inhibited
-
-
Notes: 1. 65,536 colors in 16-bit single transfer mode.
2. 65,536 colors in 8-bit 2-transfer mode.
Rev.1.0 September 13, 2006, page 97 of 199
R61505U
80-system 18-bit Bus Interface
IM[3:0] = 1010
MPU
CSn*
CS*
A1
RS
HWR
WR*
(RD*)
(RD*)
R61505U
DB17-0
D31-0
18
Figure 10 18-bit interface
Instruction write
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
Instruction
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
Instruction code
Device code read
Device code
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
Output
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
DB
0
Instruction code
Figure 11 18-bit Interface Data Format (Instruction Write / Device Code Read)
RAM data write
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
GRAM
write data
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
1 pixel
Note: Normal display in 262,144 colors
RAM data read
GRAM
data
Read data
Output
pins
R5
R4
R3
R2
RD RD
[17] [16]
RD
[15]
RD RD RD RD
[14] [13] [12] [11]
RD
[10]
RD
[9]
RD
[8]
RD
[7]
DB
17
DB
15
DB
14
DB
10
DB
9
DB
8
DB
7
DB
16
R1
DB
13
R0
DB
12
G5
DB
11
G4
G3
G2
G1
B5
B4
B3
B2
B1
B0
RD
[6]
RD
[5]
RD
[4]
RD
[3]
RD
[2]
RD
[1]
RD
[0]
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
G0
Figure 12 18-bit Interface Data Format (RAM Data Write / RAM Data Read)
Rev.1.0 September 13, 2006, page 98 of 199
R61505U
80-system 16-bit Bus Interface
IM[3:0] = 0010
MPU
CSn*
CS*
A1
RS
HWR
WR*
(RD*)
(RD*)
R61505U
DB17-10, 8-1
D15-0
16
Figure 13 16-bit interface
Instruction
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
Instruction
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
Instruction code
Device code read
Device code
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
Output
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
Instruction code
Note: Device code cannot be read in 2 transfer mode.
Figure 14 16-bit Interface Data Format (Instruction Write / Device Code Read)
Rev.1.0 September 13, 2006, page 99 of 199
DB
0
R61505U
RAM data write (single transfer mode: TRIREG = 0)
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
R5
R4
R3
R2
R1
R0
G5
G4
G3
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
G2
G1
G0
B5
B4
B3
B2
B1
B0
Note: Normal display in 65,536 colors
RAM data write (2 transfer mode: TRIREG = 1, DFM =0)
First transfer
Second transfer
Input pins
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
17
DB
16
GRAM write
data
WD
[17]
WD
[16]
WD
[15]
WD
[14]
WD
[13]
WD
[12]
WD
[11]
WD
[10]
WD
[9]
WD
[8]
WD
[7]
WD
[6]
WD
[5]
WD
[4]
WD
[3]
WD
[2]
WD
[1]
WD
[0]
RGB
assignment
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
1 pixel
Note: Normal display in 262,144 colors
RAM data write (2 transfer mode: TRIREG = 1, DFM =1)
First transfer
Second transfer
DB
DB DB
10
8
7
Input pins
DB
2
DB
1
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
GRAM write
data
WD
[17]
WD
[16]
WD
[15]
WD
[14]
WD
[13]
WD
[12]
WD
[11]
WD
[10]
WD
[9]
WD
[8]
WD
[7]
RGB
assignment
R5
R4
R3
R2
R1
B0
G5
G4
G3
G2
G1
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
WD
[6]
WD
[5]
WD
[4]
WD
[3]
WD
[2]
WD
[1]
WD
[0]
G0
B5
B4
B3
B2
B1
B0
1 pixel
Note: Normal display in 262,144 colors
Figure 15 16-bit Interface Data Format (RAM data write)
RAM data read (one transfer: TRIREG = 0)
GRAM data
R5
R4
R3
R2
R1
R0
G5
G4
Read data
RD
[17]
RD
[16]
RD
[15]
RD
[14]
RD
[13]
RD
[12]
RD
[11]
RD
[10]
Output pins
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
G3
RD
[9]
G2
G1
G0
B5
B4
B3
B2
B1
B0
RD
[0]
RD
[8]
RD
[7]
RD
[6]
RD
[5]
RD
[4]
RD
[3]
RD
[2]
RD
[1]
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
Note: Data cannot be transferred in twice in read operation via 16-bit interface.
Figure 16 16-bit Interface Data Format (RAM data read)
Rev.1.0 September 13, 2006, page 100 of 199
R61505U
Data Transfer Synchronization in 16-bit Bus Interface operation
The R61505U supports data transfer synchronization function to reset the counters for upper 16-/2-bit and
lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data
transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper
and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer
synchronization, when executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.
RS
RD
WR
DB17 ~ DB10,
DB8 ~ DB1
Upper
Lower
"000"H
"000"H
"000"H
"000"H
Upper
Lower
Upper
(16-bit transfer synchronization)
Figure 17 16-bit Data Transfer Synchronization
Rev.1.0 September 13, 2006, page 101 of 199
R61505U
80-system 9-bit Bus Interface
When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are
transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and
the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or IOGND level.
When transferring the index register setting, make sure to write upper byte (8 bits).
IM[3:0] = 1011
H8/2245
CSn*
CS*
A1
RS
HWR
WR*
(RD*)
(RD*)
DB17-9
DB8-0
D15-0
9
R61505U
9
Figure 18 9-bit interface
Instruction write
First transfer
Second transfer
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
Instruction
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
DB
9
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
DB
17
DB
16
DB
15
DB
14
DB
11
DB
10
DB
9
Instruction code
Device code read
Instruction
IB
15
IB
14
IB
13
IB
12
Output
DB
17
DB
16
DB
15
DB
14
IB
11
IB
10
IB
9
IB
8
DB
11
DB
10
First transfer
DB
13
DB
12
Second transfer
DB
9
DB
13
DB
12
instruction code
Figure 19 9-bit Interface Data Format (Instruction Write / Device Code Read)
Rev.1.0 September 13, 2006, page 102 of 199
DB
9
R61505U
RAM data write
2nd transfer
1st transfer
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
GRAM
write data
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
1 pixel
Note:Normal display in 262,144 colors
RAM data read
GRAM
data
R5
R4
R3
R2
Read data
RD RD
[17] [16]
RD
[15]
RD RD RD RD
[14] [13] [12] [11]
RD
[10]
RD
[9]
RD
[8]
RD
[7]
Output
pins
DB
17
DB
15
DB
14
DB
10
DB
9
DB
17
DB
16
DB
16
R1
DB
13
R0
DB
12
G5
DB
11
G4
G3
G2
G1
B5
B4
B3
B2
B1
B0
RD
[6]
RD
[5]
RD
[4]
RD
[3]
RD
[2]
RD
[1]
RD
[0]
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
G0
2nd transfer
1st transfer
Figure 20 9-bit Interface Data Format (RAM Data Write/ RAM Data Read)
Data Transfer Synchronization in 9-bit Bus Interface operation
The R61505U supports data transfer synchronization function to reset the counters for upper and lower 9bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to
noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower
counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when
executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.
RS
RD
WR
DB17 ~ DB9
Upper
Lower
"00"H
"00"H
"00"H
"00"H
Upper
Lower
Upper
(9-bit transfer synchronization)
Figure 21 9-bit Data Transfer Synchronization
Rev.1.0 September 13, 2006, page 103 of 199
R61505U
80-system 8-bit Bus Interface
When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are
transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are
transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB
pins must be fixed at either IOVCC or IOGND level. When transferring the index register setting, make
sure to write upper byte (8 bits).
IM[3:0] = 0011
H8/2245
CSn*
CS*
A1
RS
HWR
WR*
(RD*)
(RD*)
R61505U
DB17-10
DB9-0
D15-0
8
10
Figure 22 8-bit interface
Instruction write
Second transfer
First transfer
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
Instruction
IB
15
IB
14
IB
13
IB
12
IB
11
IB
10
IB
9
IB
8
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
Instruction code
Device code read
Instruction
IB
15
IB
14
IB
13
Input
DB
17
DB
16
DB
15
IB
12
IB
11
IB
10
IB
9
IB
8
IB
7
IB
6
IB
5
IB
4
DB
12
DB
11
DB
10
DB
17
DB
16
DB
15
DB
14
First transfer
DB
14
DB
13
IB
3
IB
2
IB
1
IB
0
DB
11
DB
10
Second transfer
DB
13
DB
12
Figure 23 8-bit Interface Data Format (Instruction Write / Device Code Read)
Rev.1.0 September 13, 2006, page 104 of 199
R61505U
RAM data write (2-transfer mode: TRIREG = 0)
First transfer
Input
Second transfer
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
R5
R4
R3
R2
R1
R0
G5
G4
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
G2
G1
G0
B5
B4
B3
B2
B1
G3
B0
Note: 65,536-color display
RAM data write (3-transfer mode: TRIREG = 1, DFM =0)
DB
10
DB
17
DB
16
Second transfer
DB DB DB DB
15
14
13
12
R4
R3
R2
R1
First transfer
DB
11
Input
GRAM
data write
R5
R0
G5
G4
DB
11
DB
10
DB
17
DB
16
DB
15
Third transfer
DB DB DB
14
13
12
DB
11
DB
10
G3
G2
G1
G0
B5
B4
B1
B0
1 pixel
B3
B2
Note: Normal display in 262,144 colors
RAM data write (3-transfer mode: TRIREG = 1, DFM = 1)
DB
17
First transfer
DB DB DB
16
15
14
DB
13
DB
12
DB
17
Second transfer
DB DB DB DB
16
15
14
13
DB
12
DB
17
R5
R4
R1
R0
G5
G4
G0
B5
Input
GRAM
data write
R3
R2
G3
G2
G1
1 pixel
Third transfer
DB DB DB
16
15
14
B4
B3
B2
DB
13
DB
12
B1
B0
Note: Normal display in 262,144 colors
Figure 24 8-bit Interface Data Format (RAM Data Write)
RAM data read
GRAM
data
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
Read data
RD
[17]
RD
[16]
RD
[15]
RD
[14]
RD
[13]
RD
[12]
RD
[11]
RD
[10]
RD
[9]
RD
[8]
RD
[7]
RD
[6]
RD
[5]
RD
[4]
RD
[3]
RD
[2]
RD
[1]
RD
[0]
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
14
DB
13
DB
11
DB
10
Output
pins
1st transfer
DB
17
DB
16
DB
15
DB
12
2nd transfer
Note: Data cannot be transferred in 3 times in read operation via 8-bit interface.
Figure 25 8-bit Interface Data Format (RAM Data Read)
Rev.1.0 September 13, 2006, page 105 of 199
R61505U
Data Transfer Synchronization in 8-bit Bus Interface operation
The R61505U supports data transfer synchronization function to reset the counters for upper and lower 8bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to
noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower
counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when
executed periodically, can help the display system recover from runaway.
Make sure to execute data transfer synchronization after reset operation before transferring instruction.
RS
RD
WR
DB17 ~ DB10
Upper
Lower
"00"H
"00"H
"00"H
"00"H
Upper
Lower
Upper
(8-bit transfer synchronization)
Figure 26 8-bit Data Transfer Synchronization
Rev.1.0 September 13, 2006, page 106 of 199
R61505U
Serial Interface
The serial interface is selected by setting the IM3/2/1 pins to the IOGND/IOVCC/IOGND levels,
respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data
input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0/ID pin functions
as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVCC or GND level.
The R61505U recognizes the start of data transfer on the falling edge of CS input and starts transferring the
start byte. It recognizes the end of data transfer on the rising edge of CS input. The R61505U is selected
when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device
identification code assigned to the R61505U are compared and both 6-bit data match. Then, the R61505U
starts taking in subsequent data. The least significant bit of the device identification code is determined by
setting the ID pin. Send “01110” to the five upper bits of the device identification code. Two different
chip addresses must be assigned to the R61505U because the seventh bit of the start byte is register select
bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write
operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which
selects either read or write operation. The R61505U receives data when the R/W = 0, and transfers data
when the R/W = 1.
When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred
in two bytes. The R61505U writes data to the GRAM in units of 18 bits by adding the same bits as the
MSBs to the LSB of R and B dot data.
After receiving the start byte, the R61505U starts transferring or receiving data in units of bytes. The
R61505U transfers data from the MSB. The R61505U’s instruction consists of 16 bits and it is executed
inside the R61505U after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61505U
expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by
the R61505U following the start byte is recognized as the upper eight bits of instruction and the second
byte is recognized as the lower 8 bits of instruction.
When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of
data are read from the GRAM following the start byte. The R61505U sends valid data to the data bus
when it reads the sixth and subsequent byte data.
Table 67 Start Byte Format
Transferred Bits
S
1
Start byte format
Transfer start
Device ID code
0
Note:
2
1
The ID bit is determined by setting the IM0/ID pin.
Rev.1.0 September 13, 2006, page 107 of 199
3
1
4
1
5
0
6
ID
7
8
RS
R/W
R61505U
Table 68 Functions of RS, R/W bits
RS
R/W
Function
0
0
Set index register
0
1
Setting inhibited
1
0
Write instruction or RAM data
1
1
Read register settings or RAM data
Instruction
Input
D
15
D
14
D
13
Instruction
IB
15
IB
14
IB
13
First transfer (upper)
D
D
D
12
11
10
IB
12
IB
11
IB
10
Second transfer (Lower)
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
IB
9
IB
8
IB
7
IB
6
IB
5
IB
4
IB
3
IB
2
IB
1
IB
0
D
7
D
6
D
5
D
4
G2
G1
G0
B5
Instruction code
RAM data write
Input
D
15
D
14
D
13
GRAM write data
R5
R4
R3
First transfer (upper)
D
D
D
12
11
10
R2
R1
R0
Second transfer (Lower)
D
9
D
8
G5
G4
G3
1 pixel
Figure 27 Serial interface Data Format
Rev.1.0 September 13, 2006, page 108 of 199
D
3
D
2
D
1
D
0
B4
B3
B2
B1
B0
Note: 65,536-color display in SPI
R61505U
(a) Clock synchronization serial data transfer (basic mode)
End of transfer
Transfer start
CS
input
1
2
3
4
5
6
7
“0”
“1”
“1”
“1”
“0”
ID
RS
SCL
input
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
D9
D8
D7
D6
D5
D4
D3
D2
D1
MSB
SDI
input
Device ID code
LSB
RW D15 D14 D13 D12 D11 D10
D0
RS RW
Start byte
SDO
output
24
Set IR (index register), instruction, write RAM data
D15 D14 D13 D12 D11 D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Read instruction, RAM data
(b) Clock synchronization serial consecutive data transfer
CS
input
SCL
input
SDI
input
Start byte
Instruction (1)
Upper 8 bits
Instruction (1)
Lower 8 bits
Instruction (2)
Upper 8 bits
Instruction (2)
Lower 8 bits
Start Note: The eight bits read after start byte input is recognized
as the upper byte of instruction.
Instruction
execution time (1)
End
(c) RAM read data transfer
CS
input
SCL
input
SDI
input
Start byte
RS = 1
R/W = 1
SDO
output
Dummy read Dummy read Dummy read Dummy read Dummy read RAM read
Upper 8 bits
5
1
2
3
4
Start
RAM read
Lower 8 bits
Note: Valid data is not sent until the R61505U reads five bytes from the GRAM after start byte input .
The R61505 sends valid data when it reads the sixth and subsequent bytes.
Figure 28 Data Transfer in Serial interface
Rev.1.0 September 13, 2006, page 109 of 199
End
R61505U
VSYNC Interface
The R61505U supports VSYNC interface, which enables displaying a moving picture via system interface
by synchronizing the display operation with the VSYNC signal. VSYNC interface can realize moving
picture display with minimum modification to the conventional system operation.
VSYNC
CS*
LCDC/MPU
RS
R61505U
WR*
DB17-0, 8-1
16
Figure 29 VSYNC Interface
The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the
internal display operation is synchronized with the VSYNC signal. By writing data to the internal RAM at
faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible
to rewrite the moving picture data without flickering the display and display a moving picture via system
interface.
The display operation is performed in synchronization with the internal clock signal generated from the
internal oscillator and the VSYNC signal. The display data is written in the internal RAM so that the
R61505U rewrites the data only within the moving picture area and minimize the number of data transfer
required for moving picture display. By writing data using high-speed write function (HWM =1), the
R61505U can write data via VSYNC interface in high speed with low power consumption.
VSYNC
RAM data
write via
system interface
Display operation
synchronized with
internal clock
Note: Use high-speed write function (HWM=1) when writing data via VSYNC interface.
Figure 30 Moving Picture Data Transfers via VSYNC Interface
Rev.1.0 September 13, 2006, page 110 of 199
R61505U
The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which
must be more than the values calculated from the following formulas, respectively.
Internal clock frequency (fosc) [Hz]
= FrameFrequency × ( DisplayLin es ( NL ) + FrontPorch ( FP ) + BackPorch( BP )) × 16(clocks ) × var iance
240 × DisplayLines ( NL)
RAMWriteSpeed (min .)[ Hz ] >
( BackPorch( BP) + DisplayLines( NL) − m arg ins ) × 16(clocks) ×
1
fosc
Note: When RAM write operation is not started right after the falling edge of VSYNC, the time from the
falling edge of VSYNC until the start of RAM write operation must also be taken into account.
An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface
operation is as follows.
[Example]
Panel size
Total number of lines (NL)
Back/front porch
Frame frequency
240 RGB × 320 lines (NL = 6’h27: 320 lines)
320 lines
14/2 lines (BP = 4h’E, FP = 4’h2)
60 Hz
Internal clock frequency (fosc) [Hz]
= 60 Hz × (320 + 2 + 14) lines × 16 clocks × 1.1 / 0.9 = 394 kHz
Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into
consideration. In this example, the internal clock frequency allows for a margin of ±10% for
variances and guarantee that display operation is completed within one VSYNC cycle.
2. This example includes variances attributed to LSI fabrication process and room temperature.
Other possible causes of variances, such as differences in external resistors and voltage change
are not considered in this example. It is necessary to include a margin for these factors.
Minimum speed for RAM writing [Hz]
> 240 × 320 / {((14 + 320 – 2) lines × 16 clocks) × 1/394 kHz} = 5.7 MHz
Notes: 1.
2.
In this example, it is assumed that the R61505U starts writing data in the internal RAM on the
falling edge of VSYNC.
There must be at least a margin of 2 lines between the line to which the R61505U has just
written data and the line where display operation on the LCD is performed.
In this example, the RAM write operation at a speed of 5.7MHz or more, which starts on the falling edge
of VSYNC, guarantees the completion of data write operation in a certain line address before the R61505U
starts the display operation of the data written in that line and can write moving picture data without
causing flicker on the display.
Rev.1.0 September 13, 2006, page 111 of 199
R61505U
RAM
write
VSYNC
RC oscillation
±10%
[line]
Display
operation
Back porch
(14 lines)
320
Line processing
FP = 2H
Main panel
Moving picture
display
(320 lines)
RAM write
5.7 MHz
Display
operation
16.67 [ms]
0
Front porch (2 lines)
(60 Hz)
BP = 14H
VSYNC
Blank period
Figure 31 Write/Display Operation Timing via VSYNC Interface
Notes to VSYNC Interface operation
1.
The above example of calculation gives a theoretical value. Possible causes of variances of internal
oscillator should be taken into consideration. Make enough margin in setting RAM write speed for
VSYNC interface operation.
2.
The above example shows the values when writing over the full screen. Extra margin will be created
if the moving picture display area is smaller than that.
RAM
write
Back porch (14 lines)
RC oscillation
±10%
[line]
320
Display
operation
FP = 2H
(16 lines)
316
Line processing
Base image
Moving picture
display
(320 lines)
(24 lines)
RAM write
5.7MHz
Display
operation
16
0
Front porch (2 lines)
BP = 14H
VSYNC
Figure 32 RAM Write Speed Margins
Rev.1.0 September 13, 2006, page 112 of 199
[ms]
16.67
(60 Hz)
R61505U
3.
The front porch period continues from the end of one frame period to the next VSYNC input.
4.
The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation
modes and vice versa are enabled from the next frame period.
5.
The partial display and vertical scroll functions are not available in VSYNC interface operation.
6.
In VSYNC interface operation, set AM = 0 to transfer display data correctly.
7.
In VSYNC interface operation, use high-speed write function (HWM = 1) when writing display data
to the internal RAM.
Internal Clock Operation to VSYNC Interface
VSYNC Interface to Internal Clock Operation
Internal clock operation
HWM = 1 and AM = 0
Operation via
VSYNC interface
Set DM1-0=00 and RM=0
for internal clock operation
RAM address set
Set DM1-0 = 10 and RM = 0
for VSYNC interface
Display operation
in synchronizaion
with VSYNC
Display operation in
synchronization
with internal clocks
*Instruction setting to VSYNC
interface is enabled
from the next frame period.
*Instruction setting to internal clock
operation mode is enabled
from the next frame.
Wait one frame period
or more
Display operation in
synchronization
with internal clock
Set index register to R22h
Internal clock operation
Wait one frame period
or more
Note: Continue VSYNC signal for at least one frame period after setting
DM1-0 and RM bits to internal clock operation mode.
Write data to RAM
via VSYNC interface
Sequences to Switch between VSYNC
Display operation
in synchronizaion with VSYNC
Operation via
VSYNC interface
Internal Clock
Operation Mode Setting
(DM1-0=00, RM=0)
ernal Clock Operation Modes
Wait More Than One Frame
Internal Clock Operation
Note: Input the VSYNC signal before setting the DM1-0 and RM bits to VSYNC interface mode.
Figure 33 Sequences to Switch between VSYNC and Internal Clock Operation Modes
Rev.1.0 September 13, 2006, page 113 of 199
R61505U
External Display Interface
The R61505U supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM
is accessible via RGB interface.
Table 69 RGB interface
RIM1
RIM0
RGB Interface
DB Pin
0
0
18-bit RGB interface
DB17-0
0
1
16-bit RGB interface
DB17-13, DB11-1
1
0
6-bit RGB interface
DB17-12
1
1
Setting inhibited
-
Note:
Using multiple interface at a time is prohibited.
Rev.1.0 September 13, 2006, page 114 of 199
R61505U
RGB Interface
The display operation via RGB interface is synchronized with VSYNC, HSYNC, and DOTCLK. The data
can be written only within the specified area with low power consumption by using window address
function and high-speed write mode (HWM = 1). In RGB interface operation, front and back porch
periods must be made before and after the display period.
VSYNC ENABLE (V)
Back porch period (BP)
Moving picture
display area
Display period (NL)
Front porch period (FP)
HSYNC
DOTCLK
ENABLE (H)
DB17-0
VSYNC: Frame synchronization signal
HSYNC: Line synchronization signal
DOTCLK: Dot clock
ENABLE: Data enable signal
DB 17-0: RGB (6:6:6) display data
Back porch period (BPP):
Front porch period (FPP):
Display period:
The number of lines for one frame:
14H ҈ BP ҈ 2H
14H ҈ FP ҈ 2H
FPP + BPP ҇ 16H
NL ҇ 320H
FPP + NL + BPP
Notes: 1. The front porch period continues until next VSYNC input is detected.
2. Make sure to match the VSYNC, HSYNC, and DOTCLK frequencies to the resolution of liquid crystal panel.
Figure 34 Display Operation via RGB Interface
Polarities of VSYNC, HSYNC, ENABLE, and DOTCLK Signals
The polarities of VSYNC, HSYNC, ENABLE, and DOTCLK signals can be changed by setting the DPL,
EPL, HSPL, and VSPL bits, respectively for convenience of system configuration.
Rev.1.0 September 13, 2006, page 115 of 199
R61505U
RGB Interface Timing
The timing relationship of signals in RGB interface operation is as follows.
16-/18-bit RGB Interface Timing
One frame
Back porch period
Front porch period
VSYNC
HSYNC
DOTCLK
ENABLE
DB17-0
VLW = 1H or more
VSYNC
1H
HLW ҈ 1CLK
HSYNC
1 clock
DOTCLK
DTST ҈ 1CLK
ENABLE
DB17-0
Valid data
Figure 35
Notes: 1. VLW:
VSYNC Low period
HLW:
HSYNC Low period
DTST:
data transfer setup time
2. Use high-speed write function (HWM = 1) when writing data via RGB interface.
Rev.1.0 September 13, 2006, page 116 of 199
R61505U
6-bit RGB Interface Timing
One frame
Front porch period
Back porch period
VSYNC
HSYNC
DOTCLK
ENABLE
DB17-12
(DB5-0)
VLW = 1H or more
VSYNC
1H
HLW ҈ 3CLK
HSYNC
1CLK
DOTCLK
DTST ҈ 3CLK
ENABLE
RGBRGBRGBRGBRGBRGBRGB
DB17-12
(DB5-0)
Valid data
Figure 36
Notes: 1. VLW:
VSYNC Low period
HLW:
HSYNC Low period
DTST:
Data transfer setup time
2. Use high-speed write function (HWM = 1) when writing data via RGB interface.
3. In 6-bit RGB interface operation, set the VSYNC, HSYNC, ENABLE, DOTCLK cycles so that
one pixel is transferred in units of three DOTCLKs via DB17-12 (DB5-0).
Rev.1.0 September 13, 2006, page 117 of 199
R61505U
Moving Picture Display via RGB Interface
The R61505U supports RGB interface for moving picture display and incorporates RAM for storing
display data, which provides the following advantages in displaying a moving picture.
1. The window address function enables transferring data only within the moving picture area
2. The high-speed write function enables RAM access in high speed with low power consumption
3. It becomes possible to transfer only the data written over the moving picture area
4. By reducing data transfer, it can contribute to lowering the power consumption of the whole system
5. The data in still picture area (icons etc.) can be written over via system interface while displaying a
moving picture via RGB interface
RAM access via system interface in RGB interface operation
The R61505U allows RAM access via system interface in RGB interface operation. In RGB interface
operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is “Low”.
When writing data to the RAM via system interface, set ENABLE “High” to stop writing data via RGB
interface. Then set RM = “0” to enable RAM access via system interface. When reverting to the RGB
interface operation, wait for the read/write bus cycle time. Then, set RM = “1” and the index register to
R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two
interfaces, there is no guarantee that the data is written in the RAM.
The following is an example of rewriting still picture data via system interface while displaying a moving
picture via RGB interface.
Rev.1.0 September 13, 2006, page 118 of 199
R61505U
updating frame data
updating frame data
VSYNC
ENABLE
DOTCLK
DB17-0
Note 4)
Note 4)
System
interface
Index
R22
RM = 0
RAM
address
set
Index
R22
writing
moving picture area
Notes:
Update data in the
area other than
moving picture area
RAM
address
set
RM = 1
Index
R22
writing
moving picture area
writing
still picture area
1. In RGB interface operation, RAM address AD16-0 is set in the address counter on the falling edge of VSYNC.
2. Set AD16-0 bits and the index R22h before starting RAM access via RGB interface.
3. Use high-speed write function when writing via RGB interface.
4. When switching to the system interface operation after writing data via RGB interface, wait at least one write cycle (tcycw).
6/25 00:
6/2
00:00
00
Moving picture
area
6/25 00:
6/2
00:00
00
Moving picture
area
Figure 37 Updating the Still Picture Area while Displaying Moving Picture
Rev.1.0 September 13, 2006, page 119 of 199
R61505U
6-bit RGB interface
The 6-bit RGB interface is selected by setting RIM1-0 = 10. The display operation is synchronized with
VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in
synchronization with the display operation via 6-bit port while data enable signal (ENABLE) allows RAM
access via RGB interface. Unused pins DB11-0 (DB17-6) must be fixed at either IOVCC or IOGND level.
Instruction bits can be transferred only via system interface.
RIM = 10
VSYNC
HSYNC
LCDC
/MPU
DOTCLK
R61505
ENABLE
DB17-12 (DB5-0)
DB11-0 (DB17-6)
6
12
Data format for the 6-bit RGB interface (RIM = 10)
Input
GRAM write
data
Second transfer
DB
17
DB
5
DB
16
DB
4
First transfer
DB DB DB
15
14
13
DB DB DB
3
2
1
DB
12
DB
0
DB
17
DB
5
DB
16
DB
4
DB
15
DB
3
DB
14
DB
2
DB
13
DB
1
DB
12
R5
R4
R3
R0
G5
G4
G3
G2
G1
R2
R1
DB
0
DB
17
DB
5
DB
16
DB
4
G0
B5
B4
Third transfer
DB DB
DB
15
14
13
DB DB
DB
3
2
1
B3
B2
B1
1 pixel
Note: 262,144 colors
Figure 38 Example of 6-bit RGB Interface and Data Format
Rev.1.0 September 13, 2006, page 120 of 199
DB
12
DB
0
B0
R61505U
Data Transfer Synchronization in 6-bit Bus Interface operation
The R61505U has the counters, which count the first, second, third 6 bit transfers via 6-bit RBG interface.
The counters are reset on the falling edge of VSYNC so that the data transfer will start from the first 6 bits
of 18-bit RGB data from the next frame period. Accordingly, the data transfer via 6-bit interface can
restart in correct order from the next frame period even if a mismatch occurs in transferring 6-bit data.
This function can minimizes the effect from data transfer mismatch and help the display system return to
normal display operation when data is transferred consecutively in moving picture operation.
VSYNC
ENABLE
DOTCLK
DB17-12
(DB5-0)
Second
transfer
Transfer synchronization
Second Third
First
First
Second Third
transfer transfer transfer transfer transfer transfer
Figure 39 6-bit Transfer Synchronization
Rev.1.0 September 13, 2006, page 121 of 199
R61505U
16-bit RGB interface
The 16-bit RGB interface is selected by setting RIM1-0 = 01. The display operation is synchronized with
VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in
synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows
RAM access via RGB interface.
Instruction bits can be transferred only via system interface.
RIM = 001
VSYNC
HSYNC
DOTCLK
LCDC/MPU
R61505U
ENABLE
DB17-13, 11-1
16
DB12,0
2
Data format for the16-bit interface (RIM = 01)
Input
GRAM data
DB
17
R5
DB
16
R4
DB
15
DB
14
DB
13
R3
R2
R1
R0
DB
11
DB
10
DB
9
DB
8
G5
G4
G3
G2
1 pixel
DB
7
G1
DB
6
G0
DB
5
B5
DB
4
B4
DB
3
B3
B2
DB
1
B1
B0
Note: 65,536-color display
Figure 40 Example of 16-Bit RGB Interface and Data Format
Rev.1.0 September 13, 2006, page 122 of 199
DB
2
R61505U
18-bit RGB interface
The 18-bit RGB interface is selected by setting RIM1-0 = 00. The display operation is synchronized with
VSYNC, HSYNC, and DOTCLK signals. The display data is transferred to the internal RAM in
synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE)
allows RAM access via RGB interface.
Instruction bits can be transferred only via system interface.
RIM = 00
VSYNC
HSYNC
DOTCLK
LCDC/MPU
R61505U
ENABLE
DB17-0
18
Data format for the 18-bit interface (RIM = 00)
Input
DB
17
DB
16
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
GRAM write
data
R5
R4
R3
R2
R1
R0
G5
G4
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
1 pixel
Note: Normal display in 262,144 colors
Figure 41 Example of 18-bit RGB Interface and Data Format
Rev.1.0 September 13, 2006, page 123 of 199
R61505U
Notes to external display interface operation
a. The following functions are not available in external display interface operation.
Table 70 Functions Not Available in External Display Interface operation
Function
External Display Interface
Internal Display Operation
Partial display
Not available
Available
Scroll function
Not available
Available
b. The VSYNC, HSYNC, and DOTCLK signals must be supplied during display period.
c. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is
DOTCLK, not the internal clock generated from the internal oscillator.
d. In 6-bit RGB interface operation, 6-bit dot data (R, G, and B) is transferred in synchronization with
DOTCLK. In other words, it takes three DOTCLKs to transfer one pixel data.
e. In 6-bit RGB interface operation, make sure to set the cycles of VSYNC, HSYNC, DOTCLK, ENABLE
signals so that the data transfer is completed in units of pixels.
f. When switching between the internal operation mode and the external display interface operation mode,
follow the sequences below in setting instruction.
g. In RGB interface operation, front porch period continues after the end of frame period until next
VSYNC input is detected.
h. In RGB interface operation, use high-speed write function (HWM = 1) when writing data to the internal
RAM.
i. In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the
falling edge of VSYNC.
Rev.1.0 September 13, 2006, page 124 of 199
R61505U
Internal Clock Operation to RGB Interface (1)
RGB Interface (1) to Internal Clock Operation
Internal clock operation
RGB interface operation
Set internal clock
operation mode*
(DM1-0 = 00 and RM = 0)
HWM = 1 and AM = 0
RAM address set
Set DM1-0 = 01 and RM = 1
for RGB interface
Display operation in
synchronization with
internal clocks
Wait one frame period
or more
*Instruction setting for
the RGB interface operation
is enebled from the next frame period.
Internal clock operation
Set index register to R22h
*Instruction setting to the
internal clock operation
is enebled from the next
frame period.
Display operation in
synchronization with
internal clocks
Note: Continue RGB interface signals at least for
one frame period after setting DM1-0, RM bits
to internal clock operation.
Wait one frame period
or more
Write data to RAM
via RGB interface
Display operation in
synchronization with
VSYNC, HSYNC, and
DOTCLK
Display operation in
synchronization with VSYNC,
HSYNC, and DOTCLK
Operation via RGB interface
Note: Input the RGB interface signals before setting the DM1-0 and RM bits
to the RGB interface operation.
Figure 42 RGB and Internal Clock Operation Mode switching sequences
Rev.1.0 September 13, 2006, page 125 of 199
R61505U
RAM Address and Display Position on the Panel
The R61505U has memory to store display data of 240RGB x 320 lines. The R61505U incorporates a
circuit to control partial display, which allows switching driving method between full-screen display mode
and partial display mode.
The R61505U makes display arrangement setting and panel driving position control setting separately and
specifies RAM area for each image displayed on the panel. For this reason, there is no need to take the
mounting position of the panel into consideration when designing a display on the panel.
The following is the sequence of setting full-screen and partial display.
1.
2.
3.
4.
Set (PTSAx, PTEAx) to specify the RAM area for each partial image
Set the display position of each partial image on the base image by setting PTDPx.
Set NL to specify the number of lines to drive the liquid crystal panel to display the base
image
After display ON, set display enable bits (BASEE, PTDE0/1) to display respective
images
Normal display
Partial display 1/2
5.
BASEE = 1
BASEE = 0, PTDE0/1 = 1
Changes BASEE, PTDE0/1 settings when turning on and off the full and partial displays
1/2.
In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface
in accordance with the number of lines to drive the liquid crystal panel (NL setting).
When switching the display position in horizontal direction, set SS bit when writing RAM data.
Table 71
Base image
Display ENABLE
Numbers of lines
RAM area
BASEE
NL
(BSA, BEA) = (9’h000, 9’h13F)
Notes 1: The base image is displayed from the first line of the screen.
2: Make sure NL ≤ 320 (lines) = BEA – BSA when setting a base image RAM area. BSA and
BEA are fixed to 9’h000, 9’h13F, respectively.
Table 72
Display ENABLE
Display position
RAM area
Partial image 1
PTDE0
PTDP0
(PTSA0, PTEA0)
Partial image 2
PTDE1
PTDP1
(PTSA1, PTEA1)
Rev.1.0 September 13, 2006, page 126 of 199
R61505U
Display data
output position
Panel display
position
Base image
RAM Address
RAM Write
Address
Partial image
RAM Address
1
(HSA,HEA)
BSA = 9'h000
LCD
PTDP0
PTSA0
Base
image
Scan
direction
Partial image 1
PTEA0
Window
Address
PTDP1
PTSA1
(VSA,VEA)
Partial image 2
PTEA1
NL
BEA = 9'h13F
Figure 43 RAM Address, display position and drive position
Restrictions in setting display control instruction
There are restrictions in coordinates setting for display data, display position and partial display.
Screen setting
In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is
320 lines or less (NL ≤ 320 lines).
Base image display
1.
The base image is displayed from the first line of the screen: BSA = 1st line (of the display panel)
2.
The base image RAM area (specified by BSA = 000, BEA = 13F) must include the same or more
number of lines set by NL bits (liquid crystal panel drive lines): BEA – BSA = 320 lines ≥ NL
Partial image display
Set the partial image RAM area setting registers (PTSAx, PTEAx bits) and the partial position setting
registers (PTDPx bits) so that the RAM areas and the display positions of partial images do not overlap one
another.
0
≤ PTDP0 ≤ PTDP0+ (PTEA0 – PTSA0) <
PTDP1 ≤ PTDP1+ (PTEA1 – PTSA1) ≤ NL
Rev.1.0 September 13, 2006, page 127 of 199
R61505U
The following figure shows the relationship among the RAM address, display position, and the lines driven
for the display.
Display
data output
order
LCD panel
physical line address
0
RAM line address
Partial display
Display screen
0 (1st line)
1 (2nd line)
2 (3rd line)
1
2
3
4
5
BSA0 = 9'h000
PTDP0
PTSD image 1
Display area
BASE image
RAM area
PTDP1
NL
(n lines)
NL
PTSD image 2
Display area
n-1
NL
PTSA0
Partial image 1
RAM area
PTEA0
PTSA1
Partial image 2
RAM area
PTEA1
BEA = 9’h13F
Figure 44 Display RAM address and panel display position
Note: This figure shows the relationship between RAM line address and the display position on the panel.
In the R61505U’s internal operation, the data is written in the RAM area specified by the window
address setting (R50h~R53h).
Rev.1.0 September 13, 2006, page 128 of 199
R61505U
Instruction setting example
The followings are examples of settings for 240(RGB) x 320(lines) panel.
1.
Full screen display (no partial display)
The following is an example of settings for full screen display.
Table 73
Base image display instruction
BASEE
1
NL[5:0]
6’h27
PTDE0
PTDE1
0
0
Display
data output
order
LCD panel
physical line address
0 (1st line)
1 (2nd line)
2 (3rd line)
1
2
3
4
5
NL
(320 lines)
RAM line address
BSA=9'h000
9’h000
Base image
BASE image
RAM area
320
319 (320th line)
BEA = 9’h13F
Figure 45 Full screen display (no partial)
Rev.1.0 September 13, 2006, page 129 of 199
R61505U
2.
Partial Display
The following is an example of settings for displaying partial image 1 only and turning off the base image.
The partial image 1 is displayed at the position specified by PTDP0 bit.
Table 74
Base image display instruction
BASEE
0
NL[5:0]
6’h27
partial image 1 display instruction
PTDE0
1
PTSA0[8:0]
9’h000
PTEA0[8:0]
9’h00F
PTDP0[8:0]
9’h080
partial image 2 display instruction
PTDE1
0
PTSA1[8:0]
9’h000
PTEA1[8:0]
9’h000
PTDP1[8:0]
9’h000
LCD panel
physical line address
Display
data output
order
RAM line address
PTSA0 = 9'000
0 (1st line)
1 (2nd line)
2 (3rd line)
1
2
3
4
5
Partial image 1
RAM area
PTEA0 = 9'h00F
PTDP0
Partial image
display area
BASE image
RAM area
NL
(320 lines)
Base image
(non-lit display)
320
319 (320th line)
BEA = 9’h13F
Figure 46 Partial Display
Rev.1.0 September 13, 2006, page 130 of 199
R61505U
Resizing function
The R61505U supports resizing function (x 1/2, x 1/4), which is performed when writing image data. The
resizing function is enabled by setting a window address area and the RSZ bit representing the contraction
factor (x1/2 or x1/4) of the image. This function enables the R61505U to write the resized image data
directly to the internal RAM, while allowing the system to transfer the original-sized image data.
The resizing function allows the system to transfer data as usual even when resizing of the image is
required. This feature makes image resizing easily available with various applications such as camera
display, sub panel display, thumbnail display and so on.
The R61505U processes the contraction of an image simply by selecting pixels. For this reason, the
resized image may appear distorted when compared with the original image. Check the resized image
before use.
Original image data
RAM data
0
1
2
3
4
5
6
(0,0)
(0,1)
(0,2)
(0,3)
(0,4)
(0,5)
(0,6)
1
(1,0)
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,0)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,0)
(3,1)
(3,2)
(3,3)
(3,4)
4
(4,0)
(4,1)
(4,2)
(4,3)
5
(5,0)
(5,1)
(5,2)
6
(6,0)
(6,1)
(6,2)
0
0
1
2
3
0
(0,0)
(0,2)
(0,4)
(0,6)
(1,6)
1
(2,0)
(2,2)
(2,4)
(2,6)
(2,6)
2
(4,0)
(4,2)
(4,4)
(4,6)
(3,5)
(3,6)
3
(6,0)
(6,2)
(6,4)
(6,6)
(4,4)
(4,5)
(4,6)
(5,3)
(5,4)
(5,5)
(5,6)
(6,3)
(6,4)
(6,5)
(6,6)
1/2 resizing
Figure 47 Data transfer in resizing
Panel Display
R61505U RAM data
Original data
240
RSZ=2’h1
120
320
RAM Write
160
Figure 48 Data transfer, display example in resizing
Table 75
Original image size (X x Y)
640x480(VGA)
352x288 (CIF)
320x240 (QVGA)
176x144 (QCIF)
120x160
132x176
Rev.1.0 September 13, 2006, page 131 of 199
Resized image size
1/2 (RSZ = 2’h1)
320x240
176x144
160x120
88x72
60x80
66x88
1/4 (RSZ = 2’h3)
160x120
88x72
80x60
44x36
30x40
33x44
R61505U
Resizing setting
The RSZ bit sets the resizing (contraction) factor of an image. When setting a window address area in the
internal RAM, the window address area must fit the size of the resized picture. If there are surplus pixels
as a result of resizing, which are calculated from the following equations, set RCV, RCH bits to the
number of surplus pixels before writing data to the internal RAM.
R61505U
GRAM Address
X
Formulas for calculating the number of surplus pixels
Rx
(X0,Y0)
The number of surplus pixels in horizontal direction
L = X mod N
Ry
Orizinal image
data size
Y
RAM write
data
(1/N resizing)
The number of surplus pixels in vertical direction
M = Y mod N
(X0+Rx-1,Y0+Ry-1)
Resized picture size in horizontal direction
Rx = (X-L)/N
Resized picture size in vertical direction
Ry = (Y-M)/N
Figure 49 Resizing Setting, surplus pixel calculation
Table 76
Image (before resizing)
Register setting in the R61505U
Number of data in horizontal direction
X
Resizing setting
RSZ
N-1
Number of data in vertical direction
Y
Number of data in horizontal direction
RCV
L
Resizing ratio
1/N
Number of data in vertical direction
RCH
M
Rev.1.0 September 13, 2006, page 132 of 199
RAM writing start address
AD
RAM window address
HSA
X0
(X0, Y0)
HEA
X0+Rx – 1
VSA
Y0
VEA
Y0+Ry – 1
R61505U
Example of 1/2 resizing
Rx=120
(0,0)
X=240
RAM write
data
(1/2 resizing)
120 x 160
Ry=160
Y=320
Original
Image
R61505U
GRAM address
(119, 159)
240 x 320
Figure 50
Resizing setting example (x 1/2)
Table 77
Original image (before resizing)
Register setting in the R61505U
Number of data in horizontal direction
X
240
Resizing setting
RSZ
2’h1
Number of data in vertical direction
Y
320
Number of data in horizontal direction
RCV
2’h0
Resizing ratio
1/N
1/2
Number of data in vertical direction
RCH
2’h0
RAM writing start address
AD
RAM window address
HSA
8’h00
HEA
8’h77
VSA
8’h00
VEA
8’h9F
Resizing instruction
Table 78
Resizing factor
RSZ[1:0]
2h’0
2h’1
2h’2
2h’3
2h’4
No resizing (x 1)
1/2 resizing (x 1/2)
Setting disabled
1/4 resizing (x 1/4)
Setting disabled
Table 79
Surplus pixels
Contraction factor
Vertical direction
horizontal direction
RCV[1:0]
2h’0
2h’1
2h’2
2h’3
RCH[1:0]
2h’0
2h’1
2h’2
2h’3
Surplus pixels
0
1 pixel
2 pixels
3 pixels
1 pixel = 1 RGB
Rev.1.0 September 13, 2006, page 133 of 199
Surplus pixels
0
1 pixel
2 pixels
3 pixels
1 pixel = 1 RGB
17’h00000
R61505U
Notes to Resizing function
1.
2.
3.
4.
5.
Set the resizing instruction bits (RSZ, RCV, and RCH) before writing data to the internal RAM.
When writing data to the internal RAM using resizing function, make sure to start writing data from
the first address of the window address area in units of lines.
Set the window address area in the internal RAM to fit the size of the resized image.
Set AD16-0 (R20h, R21h) before start transferring and writing data to the internal RAM.
Set the RCH, RCV bits only when using resizing function and there are surplus pixels. Otherwise (if
RSZ = 2’h0), set RCH = RCV = 2’h0.
Resizing instruction
(RSZ, RCH, RCV)
Set a window address area
(HSA, HEA, VSA, VEA)
Set the size of the window address area
to fit the size of the resized image
RAM address set (AD16-0)
Write data to RAM
Figure 51 RAM write operation sequence in resizing
Rev.1.0 September 13, 2006, page 134 of 199
R61505U
FMARK function
The R61505U outputs an FMARK pulse when the R61505U is driving the line specified by FMP[8:0] bits.
The FMARK signal can be used as a trigger signal to write display data in synchronization with display
operation by detecting the address where data is read out for display operation.
The FMARK output interval is set by FMI[2:0] bits. Set FMI[2:0] bits in accordance with display data
rewrite cycle and data transfer rate. Set FMARKOE = 1 when outputting FMARK pulse from the
FMARK pin.
Table 80
Table 81
FMP[8:0]
FMARK output position
FMI[2]
FMI[1]
FMI[0]
FMARK Output interval
9’h000
0
0
0
0
One frame period
0
0
1
2 frame periods
9’h001
st
1 line
nd
9’h002
2
:
:
line
rd
9’h14D
333 line
9’h14E
th
334 line
9’h14F
335th line
9’h150 ~ 1FF
Setting disabled
Rev.1.0 September 13, 2006, page 135 of 199
0
1
1
4 frame periods
1
0
1
6 frame periods
Other setting
Setting disabled
R61505U
FMP setting example
FMARK output position
FMP = 9'h008
FMP=9’h008
NL=6’h27 320th line
FP=4’h8
BP=4’h8
VL=8'h00
Line address
0 (1st line)
1 (2nd line)
2 (3rd line)
3 (4th line)
4 (5th line)
5 (6th line)
6 (7th line)
7 (8th line)
8 (1st line)
9 (2nd line)
10 (3rd line)
Base image
Back porch
RAM physical line address
AD[16:8] = 9'h000
AD[16:8] = 9'h001
AD[16:8] = 9'h002
Display area
NL = 6'h27
327 (320th line)
328 (1st line)
329 (2nd line)
330 (3rd line)
331 (4th line)
332 (5th line)
333 (6th line)
334 (7th line)
335 (8th line)
AD[16:8] = 9'h13F
Front porch
Figure 52
Rev.1.0 September 13, 2006, page 136 of 199
R61505U
Display operation synchronous data transfer using FMARK
The R61505U uses FMARK signal as a trigger signal to start writing data to the internal GRAM in
synchronization with display scan operation.
FMARK
CS*
LCDC/MPU
RS
R61505U
WR*
DB17-10, 8-1
16
Figure 53 Display synchronous data transfer interface
In this operation, moving picture display is enabled via system interface by writing data at higher than the
internal display operation frequency to a certain degree, which guarantees rewriting the moving picture
RAM area without causing flicker on the display. The data is written in the internal RAM in order to
transfer only the data written over the moving picture display area and minimize the data transfer required
for moving picture display. High-speed write function (HWM = 1) enables writing data in high speed with
low power consumption.
FMARK
RAM data
write via
system interface
Display operation
synchronized with
internal clock
Note: Use high-speed write function (HWM=1) when writing data via FMARK interface.
Figure 54 Moving Picture Data Transfers via FMARK function
Rev.1.0 September 13, 2006, page 137 of 199
R61505U
When transferring data in synchronization with FMARK signal, minimum RAM data write speed and
internal clock frequency must be taken into consideration. They must be more than the values calculated
from the following equations.
Internal clock frequency (fosc) [Hz]
= FrameFrequency × ( DisplayLin es ( NL ) + FrontPorch ( FP ) + BackPorch ( BP )) × 16(clocks ) × var iance
240 × DisplayLines( NL)
RAMWriteSpeed (min .)[ Hz ] >
( FrontPorch( FP ) + BackPorch( BP) + DisplayLines( NL) − m arg ins ) × 16(clocks) ×
1
fosc
Note: When RAM write operation is not started immediately following the rising edge of FMARK, the
time from the rising edge of FMARK until the start of RAM write operation must also be taken
into account.
Examples of calculating minimum RAM data write speed and internal clock frequency is as follows.
[Example]
Panel size
Total number of lines (NL)
Back/front porch
Frame marker position (FMP)
Frame frequency
240 RGB × 320 lines (NL = 6’h13)
320 lines
14/2 lines (BP = 4h’E, FP = 4’h2)
Display end line: 320th (FMP = 9’h14E)
60 Hz
Internal clock frequency (fosc) [Hz]
= 60 Hz × (320 + 2 + 14) lines × 16 clocks × 1.1 / 0.9 = 394 kHz
Notes: 1.When setting the internal clock frequency, possible causes of fluctuation must also be taken into
consideration. In this example, the internal clock frequency allows for a margin of ±10% for
variances and guarantee that display operation is completed within one FMARK cycle.
2.This example includes variances attributed to LSI fabrication process and room temperature.
Other possible causes of variances, such as differences in external resistors and voltage change
are not considered in this example. It is necessary to include a margin for these factors.
Minimum speed for RAM writing [Hz]
> 240 × 320 / {((2+14 + 320 – 2) lines × 16 clocks) × 1/394 kHz} = 5.67 MHz
Notes: 1. In this example, it is assumed that the R61505U starts writing data in the internal RAM on the
rising edge of FMARK.
2.There must be at least a margin of 2 lines between the line to which the R61505U has just
written data and the line where display operation on the LCD is performed.
3.The FMARK signal output position is set to the line specified by FMP[8:0] bits.
Rev.1.0 September 13, 2006, page 138 of 199
R61505U
In this example, RAM write operation at a speed of 5.67MHz or more, when starting on the rising edge of
FMARK, guarantees the completion of data write operation in a certain line address before the R61505U
starts the display operation of the data written in that line and can write moving picture data without
causing flicker on the display.
RAM
write
FMARK
[line]
320
Front porch (2 lines)
RC oscillation
±10%
Display
operation
RAM write
5.67MHz
Line processing
Back porch (14 lines)
RAM write
(10MHz) 76,800 times
Main panel
Moving picture
display
(320 lines)
Display
operation
0
1+FP+BP=17H
7.68
13.54
13.64
[ms]
16.67
(60Hz)
FMARK
Front porch (2 lines)
Back porch (14 lines)
Figure 55 Write/Display Operation Timing
Notes to display operation synchronous data transfer using FMARK signal
1.
The above example of calculation gives a theoretical value. Possible causes of variances of internal
oscillator should be taken into consideration. Make enough margin in setting RAM write speed for
this operation.
2.
Use high-speed write function (HWM = 1).
Rev.1.0 September 13, 2006, page 139 of 199
R61505U
High-speed RAM Write Function
The R61505U supports high-speed RAM write function to write data to each line of window address area
at a time. This function makes the R61505U available with the applications, which require high-speed,
low-power-consumption data write operation such as color moving picture display.
When enabling high-speed RAM write function (HWM = “1”), the data is first stored in the internal
register of the R61505U in order to rewrite the RAM data in each horizontal line of the window address
area at a time. Also, when transferring the data from the internal register to the internal RAM, the data
written in the next line of the window address area can be transferred to the internal register of the
R61505U. The high-speed write function minimizes the number of RAM access in write operation and
enables high-speed consecutive RAM write operation required for moving picture display with low power
consumption.
Microcomputer
Latch circuit
18
Address
counter
(AC)
Register 1
Register 2
...............
Register n
18 x n
17
17'h0-0000 17'h0-0001
...........
17'h0-0003
GRAM
Figure 56 High-speed Consecutive RAM Write Operation
CS
input
1
2
...
n
1
(1)
(2)
...
(n)
(1)
2
...
n
1
2
...
n
(n)
(1)
(2)
...
(n)
WR
input
RAM data
DB17-0
input
Index
(R22)
(2)
...
RAM write
execution time
RAM write data
(18 x n bits)
RAM address
(AD16-0)
RAM write
execution time
Index
(R22)
RAM write execution time x 2*
RAM
data
RAM
data
RAM
data
(1) - (n)
(n + 1) - (2n)
(2n + 1) - (3n)
17'h00000 –
17'h0000n
17'h00100 –
17'h0010n
17'h00200 –
17'h0020n
Figure 57 Example of High-speed RAM Write Operation (HWM = 1)
Note: When switching from high-speed RAM write operation to index write operation, wait at least for
two normal RAM write bus cycle periods (2 x tcycw) before executing a next instruction.
Rev.1.0 September 13, 2006, page 140 of 199
R61505U
CS
input
1
2
WR
3
4
5
6
..........
7
8
..........
input
DB17-0
input
Index
(R202)
RAM
data
upper
(1)
RAM
data
lower
(1)
....
RAM
data
upper
(n)
RAM
data
lower
(n)
RAM
data
upper
(1)
RAM write
execution time
RAM write dat a
(18 x n bits)
RAM address
(AD16-0)
17'h00000 –
17'h0000n
RAM
data
lower
(1)
....
RAM
data
upper
(n)
RAM
data
lower
(n)
RAM write
execution time
RAM
data
RAM
data
(1) - (n)
(n + 1) - (2n)
17'h00100 –
17'h0010n
Figure 58 Example of High-speed RAM Write Operation via 9-bit Interface
Note: In high-speed RAM write operation, the R61505U writes data in units of n words. When using 9bit interface, the R61505U performs write operation 2 x n times in the internal register before
writing the data in each line of the window address area.
Notes to high-speed RAM write function
1.
In high-speed RAM write mode, the R61505U performs write operation to the internal RAM in
units of lines. If the data inputted to the internal write register is not enough to rewrite the data in
the horizontal line of the window address area, the data is not written correctly in that line address.
2.
If the IR is set to 22h when HWM = “1”, the R61505U always performs RAM write operation.
With this setting, the R61505U does not perform RAM read operation. Make sure to set HWM =
0, when performing RAM read operation.
3.
The high-speed RAM write function cannot be used when writing data in normal RAM write
function mode. When switching form one write mode to the other, change modes first and set
AD16-0 (RAM address set) before starting write operation.
Rev.1.0 September 13, 2006, page 141 of 199
R61505U
Table 82 RAM Write Operation
Normal RAM Write (HWM = 0)
High-speed RAM Write (HWM = 1)
BGR function
Available
Available
RAM address set
In units of words
In units of words
RAM read
In units of words
Not available
RAM write
In units of words
In units of words
Window address
In units of words
(minimum window address area:
1 word x 1 line)
In units of words
(minimum window address area:
8 words x 1 line)
External display interface
Available
Available
AM
AM = 1/0
AM = 0
High-speed RAM data write in a window address area
The R61505U can perform consecutive high-speed data rewrite operation within a rectangular area
(minimum: 8 words x 1 line) made in the internal RAM with the following settings.
When writing data to the internal RAM using high-speed RAM write function, make sure each line of the
window address area is overwritten at a time. If the data buffered in the internal register of the R61505U is
not enough to overwrite the horizontal line in the window address area, the data is not written correctly in
that line.
The following is an example of writing data in the window address area using high-speed write function
when a window address area is made by setting HSA = 8’h12, HEA = 8’hA7, VSA = 9’h020, and
VEA = 9’h05B.
Write in horizontal direction
AM = 0, I/D0 = 1
Window address setting area
HSA = 8'h12, HEA = 8'hA7
VSA = 9'h020, VEA = 9'h05B
Enable High speed RAM write
HW M = 1
RAM address set
AD = 17'h02012* see Note
17'h00000
GRAM addr ess map
17h'02012
Window address area
(data rewrite area)
17'h05BA7
17'h13FEF
RAM write x 150 times x 60 times
Note: Set a RAM address within the window address area.
Window address area
HSA = 8'h12, HEA = 8'hA7
VSA = 9'h020,VEA = 9'h05B
Figure 59 High-speed RAM Write Operation in the Window Address Area
Rev.1.0 September 13, 2006, page 142 of 199
R61505U
Window Address Function
The window address function enables writing display data consecutively in a rectangular area (a window
address area) made in the internal RAM. The window address area is made by setting the horizontal
address register (start: HSA7-0, end: HEA 7-0 bits) and the vertical address register (start: VSA8-0, end:
VEA8-0 bits). The AM and I/D bits set the transition direction of RAM address (either increment or
decrement, horizontal or vertical, respectively). Setting these bits enables the R61505U to write data
including image data consecutively without taking the data wrap position into account.
The window address area must be made within the GRAM address map area. Also, the AD16-0 bits
(RAM address set register) must be set to an address within the window address area.
[Window address area setting range]
(Horizontal direction)
(Vertical direction)
[RAM Address setting range]
(RAM address)
8’h00 ≤ HSA ≤ HEA ≤ 8’hEF
9’h000 ≤ VSA ≤ VEA ≤ 9’h13F
HSA ≤ AD7-0 ≤ HEA
VSA ≤ AD16-8 ≤ VEA
GRAM address map
17'h00000
17'h000EF
Window address area
17'h02010
17'h02110
17'h0202F
17'h05F10
17'h05F2F
17'h0212F
17'h13F00
17'h13FEF
Window address area
HSA = 8'h10, HEA = 8'h2F
VSA = 9'h020, VEA = 9'h05F
I/D = 2'h3 (increment)
AM = 1'h0 (horizontal writing)
ORG = 0 RAM address set = 17'02010 (arbitrary)
ORG = 1 RAM address set = 17'00000
Both are set to the same RAM address.
Figure 60 Automatic address update within a Window Address Area
Rev.1.0 September 13, 2006, page 143 of 199
R61505U
Scan Mode Setting
The R61505U can set the gate pin assignment and the scan direction in the following 4 different ways by
setting SM and GS bits to realize various connections between the R61505U and the LCD panel.
Scan direction
SM
Interchanging forward direction (GS=0)
Interchanging backward direction (GS=1)
main
Panel
(GS0)
320
319
317
320
318
2
4
1
3
320
main
Panel
(GS1)
0
317
176
319
240
318
4
320
2
176
240
3
1
R61505U
R61505U
(Non-bump view)
(Non-bump view)
Scan order (Gate line No.)
Scan order (Gate line No.)
G1ЈG2ЈG3ЈG4.... G317ЈG318ЈG319ЈG320
G320ЈG319ЈG318ЈG317 .... G4ЈG3ЈG2ЈG1
Left/right forward direction (GS=0)
Left/right backward direction (GS=1)
1
2
159
160
320
318
320
main
Panel
(GS0)
162
161
161
320
main
Panel
(GS1)
162
160
159
1
240
319
320
240
R61505U
2
1
R61505U
(Non-bump view)
(Non-bump view)
Scan order (Gate line No.)
Scan order (Gate line No.)
G1ЈG3.... G317ЈG319Ј G2ЈG4....
G318ЈG320
G320ЈG318 .... G4ЈG2ЈG319ЈG317 ....
G3ЈG1
Note: the numbers in the circles in the figure shows the order of scan.
Figure 61
Rev.1.0 September 13, 2006, page 144 of 199
R61505U
8-color Display Mode
The R61505U has a function to display in eight colors. In this display mode, only V0 and V31 are used
and power supplies to other grayscales (V1 to V30) are turned off to reduce power consumption.
In 8-color display mode, the γ-adjustment registers P0KP0-P0KP5, P0KN0-P0KN5, P0RP0, P0RP1,
P0RN0, P0RN1, P0FP0-P0FP3, and P0FN0-P0FN3, are disabled and the power supplies to V1 to V30 are
halted. The R61505U does not require GRAM data rewrite for 8-color display by writing the MSB to the
rest in each dot data to display in 8 colors.
GRAM
MSB
Grayscale amplifier
Display data R5 R4 R3 R2 R1 R0
LSB
G5 G4 G3 G2 G1 G0
B5 B4 B3 B2 B1 B0
V0
R5
Two-level grayscale
control
2
G5
Two-level grayscale
control
<R>
V31
LCD driver
<G>
LCD driver
B5
Two-level grayscale
control
<B>
LCD driver
R G B
LCD
Figure 62 8-color Display Mode
Rev.1.0 September 13, 2006, page 145 of 199
R61505U
Line Inversion AC Drive
The R61505U supports n-line inversion alternating current drive in addition to frame-inversion liquid
crystal alternating current drive. The timing to invert the electric current can be set to either every line or
every two lines. Set line number of inversion timing checking display quality on liquid crystal display.
Note that less number of line leads to higher inversion frequency of liquid crystal and more
charge/discharge battery in liquid crystal display.
One frame
One frame
Back porch
1
2
3
Front porch
4
321322
Back porch
336 1
2
3
Front porch
4
321 322
Frame-inversion
AC drive
· 320 line drive
Line inversion
AC drive
· 320 line drive
Figure 63 Example of Alternating Signals for n-line Inversion
Rev.1.0 September 13, 2006, page 146 of 199
336
R61505U
Alternating Timing
The following figure illustrates the liquid crystal polarity inversion timing in different LCD driving
methods. In case of frame-inversion AC drive, the polarity is inverted as the R61505U draws one frame,
which is followed by a blank period lasting for (BP+FP) periods. In case of line inversion AC drive,
polarity is inverted as the R61505U draws one line, and a blank period lasting for (BP+FP) periods is
inserted when the R61505U draws one frame.
Flame-inversion AC drive
Line-inversion AC drive
Alternating timing
Alternating timing
Alternating timing
Frame 1
One-frame period
Alternating timing
Alternating timing
Alternating timing
1 line
1 line
1 line
1 line
Alternating timing
1 line
Alternating timing
1 line
Alternating timing
1 line
Alternating timing
Alternating timing
Front porch
1 line
Alternating timing
Alternating timing
Alternating
timing
Back porch
One-frame period
Back porch
1 line
1 line
Front porch
Figure 64 Alternating Timing
Note: Frame inversion AC drive is available only in 8-color display mode. Check the quality of display
on the panel.
Rev.1.0 September 13, 2006, page 147 of 199
R61505U
Frame-Frequency Adjustment Function
The R61505U supports a function to adjust frame frequency. The frame frequency for driving liquid
crystal can be adjusted by setting the DIV, RTN bits without changing the oscillation frequency.
The R61505U allows changing the frame frequency depending on whether moving picture or still picture
is displayed on the screen. In this case, set a high oscillation frequency. By changing the DIV and RTN
settings, the R61505U can operate at high frame frequency when displaying a moving picture, which
requires the R61505U to rewrite data in high speed, and it can operate at low frame frequency when
displaying a still picture.
Relationship between liquid crystal drive duty and frame frequency
The following equation represent the relationship between liquid crystal drive duty and frame frequency.
The frame frequency can be changed by setting the 1H period adjustment bit (RTN) and the operation
clock frequency division ratio setting bit (DIV).
Equation for calculating frame frequency
FrameFrequency =
fosc
[ Hz ]
NumberofClocks / line × DivisionRatio × ( Line + FP + BP)
fosc: RC oscillation frequency
Number of clocks per line: RTN bit
Division ratio: DIV bit
Line: number of lines to drive the LCD panel (NL bit)
Number of lines for front porch: FP
Number of lines for back porch: BP
Example of Calculation: when maximum frame frequency = 70 Hz
Fosc: 376KHz
Number of lines: 320 lines
1H period: 16 clock cycles (RTNI/E[4:0] = “10000”)
Division ratio of operating clock: 1/1
Front porch: 2 lines
Back porch: 14 lines
FFLM=376KHz/(16 clocks x 1/1 x (320 + 2 + 14) (lines) = 70Hz
Rev.1.0 September 13, 2006, page 148 of 199
R61505U
Partial Display Function
The partial display function allows the R61505U to drive lines selectively to display partial images by
setting partial display control registers. The lines not used for displaying partial images are driven at nonlit display level to reduce power consumption.
The power efficiency can be enhanced in combination with 8-color display mode. Check the display
quality when using low power consumption functions.
Non-display area
G41
Partial image 1
19 lines
G59
Non-display area
Number of lines to drive LCD
Base picture display ENABLE
Partial image 1 display RAM area
Partial image 1 display position
Parital image 1 display ENABLE
: NL = 6’h1D (320 lines)
: BASEE = 0
: (PTSA0, PTEA0) = (9'h000, 9'h013)
: PTDP0 = 9'h028
: PTDE0 = 1
Figure 65 Partial display
Note: See the “RAM Address and Display Position on the Panel” (p.126) for details on the relationship
between the display positions of partial images and respective RAM area setting.
Rev.1.0 September 13, 2006, page 149 of 199
R61505U
Liquid crystal panel interface timing
The relationships between RGB interface signals and liquid crystal panel control signals in internal
operation and RGB interface operations are as follows
Internal clock operation
1 Frame
reference
point
reference
point
reference
point
reference
point
reference
point
reference
point
1H
FMARK
(FMP = BP - 1)
NOWI
G1
G2
G320
MCPI
S(3n+1)
S(3n+2)
S(3n+3)
R, G, B
R, G, B
R, G, B
n=0 ~ 239
1st line
2nd line
VCOM
Figure 66
Rev.1.0 September 13, 2006, page 150 of 199
320th line
reference
point
reference
point
R61505U
RGB interface operation
1 Frame
BP
FP
VSYNC
1H
HSYNC
DOTCLK
ENABLE
DB
1
2
3
4
5
6
318
319
320
1
2
3
5DOTCLK see Note
reference
point
reference
point
1H
FMARK
(FMP = BP = 1)
NOWE
G1
G2
G3
G320
MCPE
S(3n+1)
S(3n+2)
S(3n+3)
RGB
RGB
RGB
320
n= 0 ~ 239
1st line 2nd line
320th line
3rd line
VCOM
Note: Transfer RGB data in one transfer via 16-bit port
Figure 67
Rev.1.0 September 13, 2006, page 151 of 199
1
R61505U
Oscillator
The R61505U incorporates necessary RC elements for oscillator, eliminating the need to connect external
elements for RC oscillation.
The R61505U has two versions, each with different oscillation frequency: Typ. 376kHZ (R61505U0) and
Typ. 600kHz (R61505U). See “Electrical Characteristics” for details. Select either suitable for display
system.
Connecting external resistance to adjust frequency is impossible.
See “Frame-Frequency Adjustment Function” to adjust frame frequency.
External resistance is not needed.
Open
OSC1
Open
OSC2
R61505U
Figure 68
Note 1: OSC frequency is set at Typ.376kHz (R61505U0) or 600Khz (R61505U1) when using RC
element (See Electrical Characteristics).
Rev.1.0 September 13, 2006, page 152 of 199
R61505U
γ Correction function
The R61505U supports γ-correction function to display in 262,144 colors simultaneously using gradientadjustment, amplitude-adjustment, fine-adjustment, tap-adjustment, and voltage division ratio adjustment
registers. Each register consists of positive-polarity register and negative-polarity register to allow optimal
gamma correction setting for the characteristics of the panel by enabling different settings for positive and
negative polarities.
γ Correction registers
Grayscale voltage
Grayscale voltage
Grayscale voltage
The γ-correction registers of the R61505U consists of gradient-adjustment, amplitude-adjustment, fineadjustment, tap-adjustment, and voltage division ratio adjustment registers to correct grayscale voltage
levels according to the gamma characteristics of the liquid crystal panel. These register settings make
adjustments to the relationship between grayscale number and grayscale voltage and the setting can be
made differently for positive and negative polarities (the reference level and the register settings are the
same for all RGB dots). The function of each register is as follows.
Grayscale number (Vx)
Grayscale number (Vx)
Fine adjustment
Grayscale voltage
Amplitude adjustment
Grayscale voltage
Gradient adjustment
Grayscale number (Vx)
Grayscale number (Vx)
Tap adjustment
Grayscale number (Vx)
Voltage division ratio adjustment
Figure 69
Rev.1.0 September 13, 2006, page 153 of 199
R61505U
Gradient adjustment registers
The gradient adjustment registers are used to adjust the gradient, which represents the relationship between
grayscale and voltage, without changing the dynamic range. The grayscale voltages for middle grayscale
number can be adjusted by this register setting.
Amplitude adjustment registers
The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage.
Fine adjustment registers
The fine adjustment registers are used for minute adjustment of grayscale voltage levels.
Tap adjustment registers
The tap adjustment registers are for selecting two tap voltage supply points from V3 to V6 and from V25
to V28 by using selector.
Voltage division ratio adjustment registers
The voltage division ratio adjustment registers are used to change the division ratios between V0 and V1
and between V30 and V31.
Table 83 γ correction registers
Register
Gradient
Amplitude
Fine
adjustment
Positive
Negative
Function
P0RP0 [2:0]
P0RN1 [2:0]
Grayscale V4 variable resistance
P0RP1 [2:0]
P0RN0 [2:0]
Grayscale V27 variable resistance
V0RP0 [4:0]
V0RN1 [4:0]
Voltage level for grayscale V0
V0RP1 [4:0]
V0RN0 [4:0]
Voltage level for grayscale V31
P0KP0 [2:0]
P0KN5 [2:0]
Voltage level for grayscale V1
P0KP1 [2:0]
P0KN4 [2:0]
Voltage level for grayscales V3, V4, V5, V6
P0KP2 [2:0]
P0KN3 [2:0]
Voltage level for grayscale V10
P0KP3 [2:0]
P0KN2 [2:0]
Voltage level for grayscale V21
P0KP4 [2:0]
P0KN1 [2:0]
Voltage level for grayscales V28, V27, V26, V25
P0KP5 [2:0]
P0KN0 [2:0]
Voltage level for grayscales V30
P0FP0 [1:0]
P0FN3 [1:0]
Division ratio between V0 and V1
P0FP1 [1:0]
P0FN2 [1:0]
P0FP2 [1:0]
P0FN1 [1:0]
P0FP3 [1:0]
P0FN0 [1:0]
Rev.1.0 September 13, 2006, page 154 of 199
P0FP1[1:0]: specify either one of grayscales V3, V4, V5, V6
for the P0KP1[2:0] level
P0FN2[1:0]: specify either one of grayscales V3, V4, V5, V6
for the P0KN4[2:0] level
P0FP2[1:0]: specify either one of grayscales V28, V27, V26,
V25 for the P0KP4[2:0] level
P0FN1[1:0]: specify either one of grayscales V28, V27, V26,
V25 for the P0KN1[2:0] level
Division ratio between V30 and V31
R61505U
γ Correction register settings and γ curve relationship
Gamma Correction Registers㩷Function㩷 䋨REV = 0䋩
V0
5’h00
V0RN1
V0RP0
V2
5’h1F
2’h0
3’h0
P0FN3
4
5’h00
V6
2’h3
2’h3
2’h0
P0RN1
P0FN2
P0KN5
V0
3’h0
V10
3’h7
3’h7
P0KP0
3’h7
3’h7
3’h0
P0KN4
P0FP0
3’h7
V21
P0KN3
3
3’h0
2’h3
3’h0
V1
3’h0
2’h0
3’h7
P0KN2
Grayscale voltage [V]
5’h1F
P0FN1
P0KN1
2’h3
3’h7
3’h7
3’h7
P0KP2
3’h7
P0KP3
V3
2’h0
P0RP0
3’h0
2
P0KP1
P0FP1
2’h3
V10
3’h0
3’h0
2’h3
3’h7
P0FN0
P0KP4
P0KP5
3’h7
3’h7
3’h0
3’h7
3’h7
2’h3
2’h3
P0KN0
V21
P0FP2
2’h0
P0RP1
V25
V31
3’h0
Positive polarity
5’h00
Negative polarity
5’h1F
3’h0
1
2’h0
V0RN0
5’h1F
5’h00
V31
0
6’d0
6’d8
6’d16
6’d24
6’d32
6’d40
6’d48
6’d56
6’d63
RAM Data [dec]
Figure 70
Sn
Negative polarity
VCOM
Positive polarity
Figure 71 Source output waveform and VCOM polarity relationship
Rev.1.0 September 13, 2006, page 155 of 199
R61505U
Power-supply Generating Circuit
The following figures show the configurations of liquid crystal drive voltage generating circuit of the
R61505U.
Power supply circuit connection example 1 (VCI1 = VCIOUT)
In the following example, the VCIOUT level is adjusted internally in the VCIOUT output circuit.
(1)
VREG1OUT
(2)
VCILVL
VCIOUT
VcomR
VCIOUT
output
circuit
Grayscalevoltage
generation
circuit
VREG 1
regulator
Internal reference
voltage generation
circuit
Source
driver
S1-S720
(3)
VCI1
VcomH
(17)
C11(4)
C11+
C12-
(5)
Step-up
circuit 1
VcomH,
VcomL
output circuit
Vcom level
adjustment circuit
C12+
(6)
Vcom
VcomL
(18)
VLOUT1
VCI
(7)
47
DDVDH
C13(8)
G1-G320
C13+
C21-
(9)
Step-up
circuit 2
C21+
C22-
(10)
C22+
C23-
(11)
VCI
VCC
C23+
(12)
GND/RGND
VLOUT2
(13)
VGH
see Note
(14)
VCILVL
R63400A0
VCI
AGND
VLOUT3
VGL
IOVCC
(15)
see Note
IOGND
VCL
VDD
(19)
(16)
Figure 72
Note:
The wiring resistances between the schottky diode and GND/VGL must be 10Ω or less.
Rev.1.0 September 13, 2006, page 156 of 199
R61505U
Power supply circuit connection example 2 (VCI1 = VCI direct input)
In the following example, the electrical potential VCI is directly applied to VCI1. In this case, the
VCIOUT level cannot be adjusted internally but step-up operation becomes more effective.
(1)
VREG1OUT
(2)
VCILVL
VCIOUT
VcomR
VCIOUT
output
circuit
Grayscalevoltage
generation
circuit
VREG 1
regulator
Internal reference
voltage generation
circuit
Source
driver
S1-S720
see Note 2
VCI1
Vci
VcomH
(17)
C11(4)
VcomH,
VcomL
output circuit
Vcom level
adjustment circuit
C11+
C12-
(5)
C12+
(6)
Vcom
VcomL
(18)
VLOUT1
VCI
(7)
DDVDH
R61505U
C13(8)
G1-G320
C13+
C21-
(9)
Step-up
circuit 2
C21+
C22-
(10)
C22+
C23-
(11)
VCI
VCC
C23+
(12)
GND/RGND
VLOUT2
(13)
VGH
see Note
(14)
VCILVL
R63400A0
VCI
AGND
VLOUT3
VGL
IOVCC
(15)
IOGND
see Note
VCL
VDD
(19)
(16)
Figure 73
Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 10Ω or less.
2. When directly applying the VCI level to VCI1, set VC = 3’h7. Capacitor connection to VCIOUT is
not necessary.
Rev.1.0 September 13, 2006, page 157 of 199
R61505U
Specifications of Power-supply Circuit External Elements
The specifications of external elements connected to the power-supply circuit of the R61505U are as
follows.
Table 84 Capacitor
Capacitance
1µF
(B characteristics)
Notes:
Voltage proof
Pin Connection
6V
(1) VREG1OUT, (3) VCIOUT, (4) C11-/+, (5) C12-/+,
(8) C13-/+, (16) VCL, (17) VCOMH, (18) VCOML, (19) VDD
10 V
(6) VLOUT1, (9) C21-/+, (10) C22-/+, (11) C23-/+
25 V
(11) VLOUT2, (13) VLOUT3
1. Check with the LC module.
2. The numbers in the parentheses corresponds to the numbers of the elements in Figure 72,
Figure 73.
Table 85 Schottky Diode
Specification
Pin Connection
VF < 0.4 V/20 mA@25 °C, VR ≥ 25 V
(15) GND–VGL,
(13) VCI–VGH,
(7) VCI–DDVDH
(Recommended diode: HSC226)
Table 86 Variable Resistor
Specification
Pin Connection
> 200 kΩ
(2) VCOMR
Table 87 Internal logic power supply
Capacitance
Voltage proof (recommended)
Pin Connection
1µF (B characteristics)
3V
VDD
Rev.1.0 September 13, 2006, page 158 of 199
R61505U
Voltage Setting Pattern Diagram
The following are the diagrams of voltage generation in the R61505U and the TFT display application
voltage waveforms and electrical potential relationship.
VLOUT2
VGH
BT
VLOUT1
BT
VCILVL(2.5 ~ 3.3V)
VCC(2.5 ~ 3.3V)
DDVDH
VREG1OUT
VRH
VREG1OUT
VCM/VCOMR
VC
VCI1
VCOMH
VDV
IOVCC(1.65 ~ 3.3V)
GND(0V)
VCOML
VCL
BT
VLOUT3
VGL
Figure 74
Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical
levels (ideal voltages) due to current consumption at each output level. Make sure that output
voltage level in operation maintains the following relationship: (DDVDH – VREG1OUT) ≥ 0.5V,
(VCOML – VCL) > 0.5V. Also make sure VGH-VGL ≤ 28V, VCI-VCL ≤ 6V. When the
alternating cycle of VCOM is high (e.g. polarity inverts every line cycle), current consumption will
increase. In this case, check the voltage before use.
2. In operation, setting voltages within the respective voltage ranges are recommended.
Rev.1.0 September 13, 2006, page 159 of 199
R61505U
Liquid crystal application voltage waveform and electrical potential
VGH
VREG1OUT
VCOMH
VCOM
VCOML
Sn (source driver output)
Gn (panel interface output)
Figure 75
Rev.1.0 September 13, 2006, page 160 of 199
R61505U
VCOMH voltage adjustment sequence
When adjusting the VCOMH voltage by setting VCM1 [5:0] in the R29’h register (internal VCOMH level
adjustment circuit), follow the sequence below. The R61505U can retain the VCOMH level adjustment
setting values in NVM, which allows writing twice (only one setting value can be written in NVM at one
time).
In writing the setting value in NVM, write the VCOMH adjustment setting value VCM1 [4:0] in ED[4:0]
and ED[7] = 0 when writing in NVM for the first time or ED[7] = 1 when writing for the second time.
When writing the setting value in NVM, follow the NVM control sequence and NVM write sequence in
the following pages.
Rev.1.0 September 13, 2006, page 161 of 199
R61505U
Display ON sequence
VcomH adjustment
R29h: VCM1[4:0]
Write the setting value
to adjust the VcomH level
in VCM1[4:0]
Write the setting value
in VCM1[4:0]
The display on the panle
will flicker when the VcomH
level is adjusted internally
Check the display quality
Complete the VcomH level adjustment
When writing the VCOMH adjsutment setting value in NVM for the first time
VCM1[4:0] (R29h)
Index
IB15
IB14
IB13
IB12
IB11
IB10
IB9
29'h
0
0
0
0
0
0
0
IB8
IB7
IB6
IB5
0
0
0
0
IB4
IB3
IB2
IB1
IB0
VCM1 VCM1 VCM1 VCM1 VCM1
[4]
[3]
[2]
[1]
[0]
Write the setting value in VCM1[4:0] in ED[4:0]
NVM write register(A1'h)
Index
IB15
IB14
IB13
IB12
IB11
IB10
IB9
A1'h
0
0
0
0
0
0
0
IB8
IB7
IB6
ED[7]
0
=0
0
IB5
0
IB4
ED
[4]
IB3
ED
[3]
IB2
ED
[2]
IB1
ED
[1]
IB0
ED
[0]
When writing the VCOMH adjustment setting value in NVM for the second time
VCM2[4:0] (R2Ah)
Index
IB15
IB14
IB13
IB12
IB11
IB10
IB9
2A'h
0
0
0
0
0
0
0
IB8
0
IB7
VCM
SEL
IB6
IB5
0
0
IB6
IB5
0
0
IB4
IB3
IB2
IB1
IB0
VCM2 VCM2 VCM2 VCM2 VCM2
[4]
[3]
[2]
[1]
[0]
Write the setting value in VCM2[4:0] in ED[4:0] and
VCMSEL = 1 in ED[7] at the same time
NVM write register(A1'h)
Index
IB15
IB14
IB13
IB12
IB11
IB10
IB9
A1'h
0
0
0
0
0
0
0
IB8
0
IB7
ED
[7]
Figure 76
Rev.1.0 September 13, 2006, page 162 of 199
IB4
ED
[4]
IB3
ED
[3]
IB2
ED
[2]
IB1
ED
[1]
IB0
ED
[0]
R61505U
NVM control sequence
NVM load (register setting value rewrite) sequence
NVM write sequence
(VCC,VCI,IOVCC) ON
VCI
IOVCC1,2
VCC
NVM dummy read
RA0 (invalid data)
GND
VCC ψ IOVCC ψ
VCI
or VCC IOVCC
VCI simultaneously
NVM Load
RA4h: 16'h0001
(CALB = 1)
1ms
or more
VPP1 = 9.0 r 0.1V
8x 1/osc
or more
VPP2 = 7.5 r 0.1V
VPP3=GND
NVM Load end
GND
(CALB = 0 automatically)
1ms or more
1ms
or more
Power ON reset
NVM data read out
R28: instruction read
R29: instruction read
R2A: instruction read
2ms
or more
Data transfer synchronization
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
RS=0, DB=16’h0000
NVM dummy read
Instruction read (select one from
RA0, RA1, or RA2)
(Read data is invalid)
NVM write data setting
RA1: 16'h00**
ED = 8'hXX (arbitrary)
NVM data write start
RA0:16’h0010
(TE=0,EOP=2’h1,EAD=2’h0)
NVM data write start
RA0:16’h0090
(TE=1,EOP=2’h1,EAD=2’h0)
100~200ms
NVM data write end
RA0:16’h0000
(TE=0,EOP=2’h0,EAD=2’h0)
1 μs or more
NVM
Write data in another address?
YES
NO
VPP1 = 9.0 r0.1V
VPP2 = 7.5 r0.1V
VPP3 = GND
GND
1ms or more
Figure 77
Rev.1.0 September 13, 2006, page 163 of 199
R61505U
NVM Write In Sequence
NVM write-in Sequence
Power ON
reset
NVM data write start
EAD[2:0] setting
EOP[1:0]=2'h1
TE=1
NVM write data setting
ED7, ED[4:0]=0/1
NVM data write end
EOP[1:0]=2'h0
TE=0
WR
DB
INDEX
ED [7:0]
INDEX
TE, EOP, EAD [2:0]
INDEX
TE, EOP
RESET*
GND
Vcc/IOVcc
GND ψ open
GND
VPP/1 (9.0V +/- 0.1V)
GND
VPP2 (7.5V+/- 0.1V)
GND ψ open
NVM write in period
1 ms or more each
100~200 ms
2 ms or more
Figure 78
NVM Read Out Sequence
NVM read out Sequence
Power ON reset
NVM data read out
CALB=1
NVM read out
Read Instruction
WR
RD
DB
INDEX
CALB
INDEX
RESET*
Vcc/IOVcc
GND
VPP1 (OPEN)
VPP2 (OPEN)
1ms or more
2ms or more
8 x 1/ osc
Figure 79
Rev.1.0 September 13, 2006, page 164 of 199
read NVM data
1䎃μs or more 1 ms or more
R61505U
Written data on NVM can be confirmed by reading instruction registers. The write-in area is R28’h to
R2A’h. Following table shows example of the reading out.
Do not concern about ID7-5 (R29h) and ID6-5 (R2Ah) bits as individual die have different data. Check
only the bits marked “user setting”.
Table 88
Index ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
To write in user ID
28'h
0
0
0
0
User
User
User
User
setting setting setting setting
To write in VCOM setting
29'h
*
*
*
User
User
User
User
User
setting setting setting setting setting
*
User
User
User
User
User
setting setting setting setting setting
To write in VCOM setting
2A'h VCMSEL
*
Rev.1.0 September 13, 2006, page 165 of 199
R61505U
NVM instruction dummy read sequence
NVM dummy read
RA0 (Invalid data)
NVM data read out 1
R28: Read instruction
Dummy access is not required
NVM data read out 2
R29: Read instruction
Dummy access is not required
NVM data read out 3
R2A: Read instruction
Read data bits in NVM
(other than instruction data bits)
Rxx: Read instruction
Dummy access is required
NVM dummy read
RA0 (Invalid data)
NVM data read out 1
R28: Read instruction
Figure 80
Rev.1.0 September 13, 2006, page 166 of 199
R61505U
Power supply Instruction Setting
The following are the sequences for setting power supply ON/OFF instructions. Set power supply
ON/OFF instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences.
Power supply OFF sequence
Power ON sequence
Power supply (Vcc, Vci, IOVcc) ON
Normal display
Vci
IOVcc
Vcc
DTE = 1, D=2'h3, GON=1, VON = 1
GND
Display OFF sequence
Vcc㩷 㸢㩷 IOVcc㩷 㸢 Vci
or Vcc, IOVcc, Vci simultaneously
When registers are set:
Powr supply OFF setting
Power ON reset
2ms
or more
DTE = 0, D=2'h0, GON=0
PON=0, VON=0
Power supply Halt setting
1) Source output: GND
2) Gate output: VCI
3) VCOM =GND
R10h: AP = 2'h0, SAP=0
R11h: DC0=3'h6
R12h: PON = 0
1 frame
or more
Transfer synchronization
Power supply Halt setting
RS=0, DB=16'h0000
RS=0, DB=16'h0000
RS=0, DB=16'h0000
RS=0, DB=16'h0000
RA4h: CALB=1
Wait 1/fosc x 8
Power supply (Vcc, Vci, IOVcc) OFF
User setting (1)
Initial instruction setting
LCD
Power supply
ON sequence
NL, BP, FP, Gamma setting,
others
Vci
IOVcc
Vcc
GND
Vci㩷 㸢㩷 IOVcc㩷 㸢 Vcc
or Vcc, IOVcc, Vci simultaneously
R07h: D=2'h1
R17h: PSE=1'h1
Power supply user setting
R10h: APE = 1, AP, BT, SAP=1
R11h: VC, DC0, DC1
R12h: VRH, PON=1,
VCMR=1(Note 1)
R13h: VDV R29h: VCM1 (Note2)
R12h: PSON=1'h1
When registers are set:
1) Source output: GND
2) Gate output: VGH (all pins are ON)
3) VCOM =GND
Power supply
startup time
(8 frames x 1/OSC)
1) Source output: GND
2) Gate output: GND
3) VCOM =GND
R10h: APE=0
Other mode setting
instruction
Display ON sequence
Note1: Set VCMR=1 when using internal electronic volume.
Note2: When EPROM is in use, setting VCM1 and VCM2 (R29 and R2A) is not required.
Figure 81
Rev.1.0 September 13, 2006, page 167 of 199
R61505U
Notes to Power Supply ON sequence
1. When voltages do not rise in the order of VCC, IOVCC and then VCI, changing the order to IOVCC,
VCC and then VCI will not lead to trouble such as latchup or the die go broken. Please read below
carefully in operating the R61505U.
2. Notes
If there is a time lag between IOVCC and VCC inputs when inputting them in IOVCC-first order, the
R61505U’s bus is unstable until VCC is inputted. The die may become “output” status in this case. Do not
send or receive data before power supply input is completed.
3. Command input timing
Following flow chart shows power supply input to command input.
Wait 1ms or more as power on reset and display off period after inputting IOVCC, VCC and VCI. Then
wait another 10ms or more until internal operation stabilizes. And then, start inputting commands.
(Waiting time: 11ms or more altogether).
Input power supply (IOVCC, VCC, VCI)
IOVCCψVCCψVCI
or
VCC, IOVCC, VCI simultanaeously
1ms or more
Power ON reset,
Display OFF
10ms or more
(internal operation stabilizes
during this period)
Start inputting command
Figure 82 (when power supply input sequence is changed)
Rev.1.0 September 13, 2006, page 168 of 199
R61505U
Instruction setting
The following are the sequences for various instruction settings. When setting instruction in the R61505U,
follow the relevant sequence below.
Display ON/OFF sequences
Display OFF sequence
Display OFF sequence
LCD Power supply ON
sequence* see Note
R07h: 16'h0072
(BASEE = 0, VON=1, GON=1, DTE=1,
D=2'h2 )
Display OFF
When registers are set:
When registers are set:
15) Source output: non-lit display
16) Gate output:VGH/ VGL
17) VCOM =VCOMH / VCOML
2 frame periods
or more
Display ON
R07h: 16'h0021
(BASEE = 0, VON=0, GON=1,
DTE = 0, D=2'h1)
7) Source output: GND
8) Gate output: VGH (all pins are ON)
9) VCOM =GND
8H periods
or more
Display OFF
R07h: 16'h0001
(BASEE = 0, VON=0, GON=0, DTE=0,
D=2'h1)
10) Source output: GND
11) Gate output: VGH (all pins are ON)
12) VCOM =GND
8H periods
or more
Display ON
R07h: 16'h0061
(BASEE = 0, VON=1, GON=1,
DTE = 0, D=2'h1)
4) Source output: GND
5) Gate output: VGL (all pins are OFF)
6) VCOM =VCOMH / VCOML
Display OFF
R07h: 16'h0000
(BASEE = 0 , VON=0, GON=0, DTE=0,
D=2'h0)
2 frame periods
or more
Display ON
R07h: 16'h0173
(BASEE = 1, VON=1, GON=1,
DTE = 1, D=2'h3)
1) Source output: V0-V31
2) Gate output:VGH/ VGL
3) VCOM =VCOMH / VCOML
Display ON
Display OFF
Note: See power supply ON/OFF setting sequences
Figure 83
Rev.1.0 September 13, 2006, page 169 of 199
LCD Power supply ON
sequence* see Note
Internal display operation halts.
13) Source output: GND
14) Gate output: VGH (all pins are ON)
3) VCOM =GND
R61505U
Sleep mode SET/EXIT sequences
Sleep mode sequence
Display OFF
sequence* see Note
Set Sleep
mode
Sleep SET
R10h: SLP=1
Sleep EXIT
R10h: SLP=0
Exit Sleep
mode
1clock
or more
Display ON
sequence* see Note
Figure 84
Rev.1.0 September 13, 2006, page 170 of 199
R61505U
Deep standby mode IN/EXIT sequences
18-/ 16-/ 9-/ 8 bit interface
Deep standby mode
Display off sequence
Set deep standby
mode
Set deep standby mode
R10h: DSTB = 1
CS = low (1)
CS = low (2)
VDD startup
oscillator
stabilizing
period
1 ms
or more
CS = low (3)
Initialize
the R61505U
Exit deep standby mode
input CS = Low 6 times
CS = low (4)
CS = low (5)
CS = low (6)
RA4h: CALB = 1
1/fosc x 8
wait
Initial instruction setting
RAM data setting
Notes: 1. See AC characteristics in "Electrical Characteristics" for details on
low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave at least 1 ms between the 2nd and 3rd inputs of CS = Low.
3. This sequence must be completed before writing GRAM data.
Display on sequence
CS
1
WR
Wait 1ms or more
3
4
5
6
Any data
Any data
Any data
"High"
RD
RS
2
"High"
"Low" or "High"
Data
Any data
Any data
Any data
Figure 85 Cancel standby mode by inputting CS=”Low” (18-/ 16-/ 9-/ 8- bit interface)
Rev.1.0 September 13, 2006, page 171 of 199
R61505U
18bit/16bit interface
Display off sequence
Set deep standby
mode
Set deep standby mode
R10h : DSTB=1
Index Write (Data=16'h0000)
Index Write (Data=16'h0000)
VDD startup
oscillator
stabilizing
period
1ms
Exit deep standby mode
Initialize
the R61505U
Index Write (Data=16'h0000)
Index Write (Data=16'h0000)
Index Write (Data=16'h0000)
Index Write (Data=16'h0000)
R4Ah: CALB=1
1/fosc x 8
wait
Initial instruction setting
RAM data setting
Notes:
1. See AC characteristics in "Electrical Characteristics" for details on
low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave at least 1 ms between the 2nd and 3rd inputs of Index Write.
3. This sequence must be completed before writing GRAM data.
Display on sequence
1
CS
2
3
4
5
6
16'h0000
16'h0000
Wait 1ms or more
WR
RD
RS
Data
"High"
"Low"
16'h0000
16'h0000
16'h0000
16'h0000
Figure 86 Cancel deep standby mode by inputting CS=”Low” and WR=”Low” (18-/ 16 bit interface)
Rev.1.0 September 13, 2006, page 172 of 199
R61505U
9- /8- bit interface
Display off sequence
Set deep standby
mode
Set deep standby mode
R10h : DSTB=1
Index Write (Data=8'h00)
Index Write (Data=8'h00)
VDD startup
oscillator
stabilizing
period
1ms
Exit deep standby mode
Initialize
the R61505U
Index Write (Data=8'h00)
Index Write (Data=8'h00)
Index Write (Data=8'h00)
Index Write (Data=8'hF0)
Index Write (Data=8'h00)
Index Write (Data=8'h00)
Transfer synchronization command
Note 4
Index Write (Data=8'h00)
Index Write (Data=8'h00)
R4Ah: CALB=1
1/fosc x 8
wait
Initial instruction setting
RAM data setting
Notes:
1. See AC characteristics in "Electrical Characteristics" for details on
low width (PWLW), high width (PWHW), and cycle (tCYCW) periods.
2. Leave at least 1 ms between the 2nd and 3rd inputs of Index Write.
3. This sequence must be completed before writing GRAM data.
4. Transfer synchronization command is 8'h00 when 8 bit interface is used
and 9'h000 when 9 bit interface is used.
Display on sequence
1
CS
2
3
4
5
6
2
1
3
4
Wait 1ms or more
WR
RD
"High"
"Low"
RS
Data
IW upper IW lower
00h
00h
IW upper IW lower IW upper IW lower
00h
00h
00h
F0h
IW upper IW lower IW upper IW lower
00h
00h
00h
00h
transfer synchronization
Execute transfer synchronization command after canceling deep standby mode by inputting RS=Low and Index write.
Figure 87 Cancel deep standby mode by inputting CS=”Low” and WR=”Low” (9-/ 8- bit interface)
Rev.1.0 September 13, 2006, page 173 of 199
R61505U
8-color mode setting
262,144 color to 8 color mode
8 color to 262,144 color mode
262,144-color mode
display
8-color mode display
R07h: COL= 1'h1
R07h: COL= 1'h0
8-color mode display
262,144-color mode
display
Figure 88
Partial display setting
Partial display setting sequence
Full-screen display
Partial display setting
R80h: PTDP0
R81h: PTSA0
R82h: PTEA0
R83h: PTDP1
R84h: PTSA1
R85h: PTEA1
Base image display OFF
Partial display ON
R07h: BASEE=0, PTDEx=1
8-color display, low power
consumption settings
R07h: COL=1,
R09h: PTS
Partial display
Base image display ON
Partial display OFF
R07h: BASEE=1, PTDEx=0
Full-screen display
Figure 89
Rev.1.0 September 13, 2006, page 174 of 199
Set as required
R61505U
Absolute Maximum Ratings
Table 89
Item
Symbol
Unit
Value
Note
Power Supply Voltage1
VCC, IOVCC
V
-0.3 ~ +4.6
1, 2
Power Supply Voltage 2
VCI – AGND
V
-0.3 ~ +4.6
1, 3
Power Supply Voltage 3
DDVDH – AGND
V
-0.3 ~ +6.5
1, 4
Power Supply Voltage4
AGND – VCL
V
-0.3 ~ +4.6
1
Power Supply Voltage 5
DDVDH – VCL
V
-0.3 ~ +9.0
1, 5
Power Supply Voltage7
AGND – VGL
V
-0.3 ~ +13.0
1, 6
Power Supply Voltage 8
VGH– VGL
V
-0.3 ~ +30.0
1
Power Supply Voltage 9
VPP1
V
-0.3 ~ +10.0
1
Power Supply Voltage 10
VPP2
V
-0.3 ~ +10.0
1
Power Supply Voltage 11
VPP3
V
0
1
Input Voltage
Vt
V
-0.3 ~ IOVCC + 0.3
1
Operating Temperature
Topr
℃
-40 ~ +85
1, 7
NVM Write Temperature
Twep
℃
+25 ~ +35
1
Storage Temperature
Tstg
℃
-55 ~ +110
1
Notes 1.If the R61505U is used beyond the absolute maximum ratings, the LSI may be permanently
damaged. It is strongly recommended to use the LSI under the condition within the electrical
characteristics in normal operation. If exposed to the condition not within the electrical
characteristics, it may affect the reliability of the device.
2. Make sure VCC(high)≥GND(low), IOVCC(high)≥IOGND(low) .
3.
Make sure VCI(high)≥AGND(low) .
4.
Make sure DDVDH(high)≥AGND(low).
5.
Make sure DDVDH(high) ≥VCL(low).
6.
Make sure AGND(high)≥VGL(low).
7.
The DC/AC characteristics of die and wafer products are guaranteed at 85℃.
Rev.1.0 September 13, 2006, page 175 of 199
R61505U
Electrical Characteristics
DC characteristics (VCC= 2.50V~3.30V,IOVCC=1.65V~3.30V,Ta=-40C~+85C
See note 1)
Table 90
Item
Symbol
Unit
Test Condition
Min.
Typ.
Max.
Note
-
IOVCC
2,3
Input ”High” level voltage
VIH
V
IOVCC=1.65V~3.30V
0.80×
IOVCC
Input ”Low” level voltage
VIL
V
IOVCC=1.65V~3.30V
-0.3
-
0.20×
IOVCC
VOH
V
IOVCC=1.65V~3.30V,
IOH=-0.1mA
0.8×
IOVCC
-
-
2
VOL
V
IOVCC=1.65V~3.30V,
IOL=0.1mA
-
-
0.20×
IOVCC
2
ILI
µA
Vin=0~IOVCC
-1
-
1
4
-
175
(376KHz)
295
µA
fosc=376/600kHz (320
line drive),
IOVCC=VCC=3.00V,
fFLM=70Hz, Ta=25C,
RAM data: 18’h000000,
See below for other data
190
(600Khz)
310
(600KHz)
Iop2
µA
fosc=376/600kHz (64 line
partial display),
IOVCC=VCC=3.00V,
fFLM=40Hz, Ta=25C,
RAM data: 18h’000000,
See below for other data
-
140
-
5, 6
IDST
µA
IOVCC=VCC=3.00V,
Ta=25C
-
0.1
1.0
5
mA
IOVCC=2.40V,
VCC=3.00V,
tCYCW=125ns, Ta=25C,
I80-8bit-I/F,
TRIREG=1’h1,
Consecutive RAM access
during display operation,
VCM1=5’h1D, AP=2’h3,
BC0=0, FP=5, BP=8, γ
register; 0(default),
COL=0 (8-color mode)
-
2.0
-
6
Output ”High” level voltage 1
(DB0-17, FMARK)
Output ”Low” level voltage 1
(DB0-17, FMARK)
Input / Output leagage current
Current Consumption ((IOVCCIOGND) + (VCC-GND))
Normal operation mode (260kcolor, display operation)
Current Consumption ((IOVCCIOGND) + (VCC-GND))
8-color mode, 64-line partial display
operation
Current Consumption ((IOVCCIOGND) + (VCC-GND))
IOP1
Deep Standby mode
Current Consumption ((IOVCCIOGND) + (VCC-GND))
RAM access mode 1 (Normal write
operation, HWM=0)
IRAM1
Rev.1.0 September 13, 2006, page 176 of 199
(376KHz)
2,3
5, 6
R61505U
Current Consumption ((IOVCCIOGND) + (VCC-GND))
RAM access mode 2, High-speed
write function (HWM=1)
IRAM2
mA
IOVCC=2.40V,
VCC=3.00V,
tCYCW=70ns, Ta=25C,
I80-8bit-I/F,
TRIREG=1’h1,
Consecutive RAM access
during display operation,
VCM1=5’h1D, AP=2’h3,
BC0=0, FP=5, BP=8, γ
register; 0(default),
COL=0 (8-color mode)
-
1.7
-
1.4
3.0
(376KHz)
(376KHz)
1.9
(600KHz)
3.5
(600KHz)
6
IOVCC=VCC=3.00V,
VCI=3.00V,
LCD Power Supply Current (VCIGND)
Ici1
mA
260-k color display operation
fosc=376/600kHz (320
line), fFLM=70Hz,
Ta=25C, RAM data:
18’h00000, REV=”0”,
BC0=0, FP=5, BP=8,
VxRPx=”0”, VxRNx=”0”,
PxKPx=”0”, PxKNx=”0”,
PxRPx=”0”, PxRNx=”0”,
PxFPx=”0”, PxFNx=”0”,
BT=4’h6, VC=3’h7,
AP=2’h3, DC0=3’h1,
DC1=3’h2, VRH=4’hA,
VCM1=5’h1D, VDV=5’h8,
VCMR=1’h1, COL=1’h0,
GON=1, No load on the
panel.
-
Ici2
mA
IOVCC=VCC= 3.00V,
VCI=3.00V,
fosc=376/600kHz (64 line
partial), fFLM=40Hz,
Ta=25C, RAM data:
18’h00000, REV=”0”,
BC0=0, FP=5, BP=8,
VxRPx=”0”, VxRNx=”0”,
PxKPx=”0”, PxKNx=”0”,
PxRPx=”0”, PxRNx=”0”,
PxFPx=”0”, PxFNx=”0”,
BT=4’h6, VC=3’h7,
AP=2’h3, DC0=3’h1,
DC1=3’h2, VRH=4’hA,
VCM1=5’h1D, VDV=5’h8,
VCMR=1’h1, COL=1’h1,
GON=1, No load on the
panel.
Output voltage dispersion
ΔVO
mV
-
-
Average output voltage variance
ΔVΔ
mV
-
-35
LCD Power Supply Current (VCIGND)
8-color (64-line partial) display
operation
Rev.1.0 September 13, 2006, page 177 of 199
5,
6
0.5
-
-
5,
6
5
-
7
-
35
8
(376KHz)
0.8
(600KHz)
R61505U
Step-Up Circuit Characteristics
Table 91
Item
Unit
Step-up Output
Voltage
Test Condition
Min.
Typ.
Max.
Note
4.57
4.84
-
-
13.72
14.40
-
-
-6.86
-7.13
-
-
-2.25
-2.30
-
-
2.5
-
3.3
-
IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V],
fosc=376/600[kHz],Ta=25C, VC=3’h7, AP=2’h3, BT=3’h7,
DC0=3’h4(div. 1/16), DC1=3’h4 (div. 1/ 256), COL=0,
VLOUT1
V
D=2’h0, VON=0, DIVI=2’h0, RTNI=5’h10, FP=4’h8, BP=4’h8,
C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics,
VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,
No load on the panel, Iload1= -3 [mA]
IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V],
fosc=376/600[kHz],Ta=25C, VC=3’h7, AP=2’h3, BT=3’h7,
IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V], fosc=376/600[kHz],
Ta=25C, VC=3’h7, AP=2’h3, BT=3’h7, DC0=3’h4 (div. 1/16),
VLOUT2
V
DC1=3’h4 (div. 1/256), COL=0, D=2’h0, VON=0,
DIVI=2’h0, RTNI=5’h10, FP=4’h8, BP=4’h8,
C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics,
VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,
Iload2=-100[uA], No load on the panel.
IOVCC=VCC=3.00[V],VCI=VCI1=2.5[V], fosc=376/600[kHz],
Ta=25C, VC=3’h7, AP=2’h3, BT=3’h7, DC0=3’h4 (div. 1/
16), DC1=3’h4 (div. 1/ 256), COL=0, D=2’h0, VON=0,
VLOUT3
V
DIVI=2’h0, RTNI=5’h10, FP=4’h8, BP=4’h8,
C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics,
VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,
Iload3=+100[uA], No load on the panel.
IOVCC=VCC=3.00[V], VCI=VCI1=2.5[V],
fosc=376/600[kHz], Ta=25C, VC=3’h7, AP=2’h3, BT=3’h7,
DC0=3’h4 (div. 1/16), DC1=3’h4 (div. 1/ 256), COL=0,
VCL
V
D=2’h0, VON=0, DIVI=2’h0, RTNI=5’h10, FP=4’h8, BP=4’h8,
C11=C12=C13=C21=C22=C23=1[uF]/B Characteristics,
VLOUT1=VLOUT2=VLOUT3=VCL=1[uF]/B Characteristics,
Iload4=+200[uA], No load on the panel.
Input Voltage
VCI
V
Internal Reference Voltage (Condition: VCC= 2.50V~3.30V, Ta=-40℃~+85℃)
Table 92
Item
Internal Reference Voltage
Symbol
VCIR
Rev.1.0 September 13, 2006, page 178 of 199
Unit
Min.
Typ.
Max.
Note
V
2.45
2.50
2.55
12
R61505U
AC Characteristics
(VCC= 2.50V~3.30V,IOVCC=1.65V~3.30V,Ta=-40C~+85C See Note 1)
1. Clock Characteristics
Table 93
Item
Symb
ol
Unit
Test Condition
Min.
Typ.
Max.
Note
RC oscillation clock
(R61505U0)
fosc
kHz
IOVCC=VCC=3.0V 25℃
349
376
402
9
RC oscillation clock
(R61505U1)
fosc
kHz
IOVCC=VCC=3.0V 25℃
558
600
642
9
2. 80-System Bus Interface Timing Characteristics (18-/ 16- bit interface)
Table 94 Normal write operation (HWM=0), IOVCC=1.65V~3.30V
Symbol
Unit
Timing
Diagram
Min.
Typ.
Max.
Write
tCYCW
ns
Figure 98
125
-
-
Read
tCYCR
ns
Figure 98
450
-
-
Write low-level pulse width
PWLW
ns
Figure 98
45
-
-
Read low-level pulse width
PWLR
ns
Figure 98
170
-
-
Write high-level pulse width
PWHW
ns
Figure 98
70
-
-
Read high-level pulse width
PWHR
ns
Figure 98
250
-
-
ns
Figure 98
-
-
25
ns
Figure 98
0
-
-
ns
Figure 98
10
-
-
ns
Figure 98
2
-
-
Item
Bus cycle time
Write / Read rise/ fall time
tWRr,
WRf
Setup time
Write
(RS to CS*,
WR*)
tAS
Read
(RS to CS*,RD*)
Address hold time
tAH
Write data setup time
tDSW
ns
Figure 98
25
-
-
Write data hold time
tH
ns
Figure 98
10
-
-
Read data delay time
tDDR
ns
Figure 98
-
-
150
Read data hold time
tDHR
ns
Figure 98
5
-
-
Rev.1.0 September 13, 2006, page 179 of 199
R61505U
Table 95 High-speed write Function (HWM=1), IOVCC=1.65~3.30V
Symbol
Unit
Timing
Diagram
Min.
Typ.
Max.
Write
tCYCW
ns
Figure 98
75
-
-
Read
Item
Bus cycle time
tCYCR
ns
Figure 98
450
-
-
Write low-level pulse width
PWLW
ns
Figure 98
40
-
-
Read low-level pulse width
PWLR
ns
Figure 98
170
-
-
Write high-level pulse width
PWHW
ns
Figure 98
25
-
-
Read high-level pulse width
PWHR
ns
Figure 98
250
-
-
ns
Figure 98
-
-
25
ns
Figure 98
0
-
-
ns
Figure 98
10
-
-
Write / Read rise/ fall time
Setup time
Write
(RS to CS*,
WR*)
tWRr,
WRf
tAS
Read
(RS to CS*,RD*)
Address hold time
tAH
ns
Figure 98
2
-
-
Write data setup time
tDSW
ns
Figure 98
25
-
-
Write data hold time
tH
ns
Figure 98
10
-
-
Read data delay time
tDDR
ns
Figure 98
-
-
150
Read data hold time
tDHR
ns
Figure 98
5
-
-
Rev.1.0 September 13, 2006, page 180 of 199
R61505U
3. 80-System Bus Interface Timing Characteristics (9-/ 8- bit interface)
Table 96 Normal Write Function (HWM=0)/ High-speed Write Function (HWM=1),
IOVCC=1.65~3.30V)
Symbol
Unit
Timing
Diagram
Min.
Typ.
Max.
Write
tCYCW
ns
Figure 98
70
-
-
Read
Item
Bus cycle time
tCYCR
ns
Figure 98
450
-
-
Write low-level pulse width
PWLW
ns
Figure 98
30
-
-
Read low-level pulse width
PWLR
ns
Figure 98
170
-
-
Write high-level pulse width
PWHW
ns
Figure 98
25
-
-
Read high-level pulse width
PWHR
ns
Figure 98
250
-
-
ns
Figure 98
-
-
25
ns
Figure 98
0
-
-
ns
Figure 98
10
-
-
Write / Read rise/ fall time
Setup time
Write
(RS to CS*,
WR*)
tWRr,
WRf
tAS
Read
(RS to CS*,RD*)
Address hold time
tAH
ns
Figure 98
2
-
-
Write data setup time
tDSW
ns
Figure 98
25
-
-
Write data hold time
tH
ns
Figure 98
10
-
-
Read data delay time
tDDR
ns
Figure 98
-
-
150
Read data hold time
tDHR
ns
Figure 98
5
-
-
Rev.1.0 September 13, 2006, page 181 of 199
R61505U
4. Clock-synchronized Serial Interface Timing Characteristics
Table 97 Normal Write Function (HWM=0), High-speed Write Function (HWM=1),
IOVCC=1.65~3.30V)
Symbol
Unit
Timign
Diagram
Min.
Typ.
Max.
Write (receive)
tSCYC
ns
Figure 99
100
-
20,000
Read
(transmitted)
tSCYC
ns
Figure 99
350
-
20,000
Write (receive)
tSCH
ns
Figure 99
40
-
-
Read
(transmitted)
tSCH
ns
Figure 99
150
-
-
Write (receive)
tSCL
ns
Figure 99
40
-
-
Read
(transmitted)
tSCL
ns
Figure 99
150
-
-
tSCr,tSCf
ns
Figure 99
-
-
20
Chip select setup time
tCSU
ns
Figure 99
20
-
-
Chip select hold time
tCH
ns
Figure 99
60
-
-
Serial input data setup time
tSISU
ns
Figure 99
30
-
-
Serial input data hold time
tSIH
ns
Figure 99
30
-
-
Serial output data delay time
tSOD
ns
Figure 99
-
-
130
Serial output data hold time
tSOH
ns
Figure 99
5
-
-
Item
Serial clock cycle
time
Serial clock highlevel width
Serial clock lowlevel width
Serial clock rise/fall time
5. Reset Timing Characteristics (IOVCC=1.65~3.30V)
Table 98
Item
Symbol
Unit
Timign
Diagram
Min.
Typ.
Max.
Reset low-level width
tRES
ms
Figure 100
1
-
-
Reset rise time
trRES
µs
Figure 100
-
-
10
Rev.1.0 September 13, 2006, page 182 of 199
R61505U
6. RGB Interface Timing Characteristics
Table 99 18-/ 16- bit RGB interface (HWM=1), IOVCC=1.65~3.30V
Item
Symbol
Unit
Timign
Diagram
Min.
Typ.
Max.
VSYNC/HSYNC setup time
tSYNCS
clock
Figure 101
0
-
1
ENABLE setup time
tENS
ns
Figure 101
10
-
-
ENABLE hold time
tENH
ns
Figure 101
20
-
-
DOTCLK low-level pulse width
PWDL
ns
Figure 101
40
-
-
DOTCLK high-level pulse width
PWDH
ns
Figure 101
40
-
-
DOTCLK cycle time
tCYCD
ns
Figure 101
100
-
-
Data setup time
tPDS
ns
Figure 101
10
-
-
Data hold time
tPDH
ns
Figure 101
40
-
-
DOTCLK, VSYNC and HSYNC
rise/fall time
trgbr,
trgbf
ns
Figure 101
-
-
25
Table 100 6-bit RGB interface (HWM=1), IOVCC=1.65~3.30V
Item
Symbol
Unit
Timign
Diagram
Min.
Typ.
Max.
VSYNC/HSYNC setup time
tSYNCS
clock
Figure 101
0
-
1
ENABLE setup time
tENS
ns
Figure 101
10
-
-
ENABLE hold time
tENH
ns
Figure 101
25
-
-
DOTCLK low-level pulse width
PWDL
ns
Figure 101
25
-
-
DOTCLK high-level pulse width
PWDH
ns
Figure 101
25
-
-
DOTCLK cycle time
tCYCD
ns
Figure 101
60
-
-
Data setup time
tPDS
ns
Figure 101
10
-
-
Data hold time
tPDH
ns
Figure 101
25
-
-
DOTCLK, VSYNC and HSYNC
rise/fall time
trgbr,
trgbf
ns
Figure 101
-
-
25
Rev.1.0 September 13, 2006, page 183 of 199
R61505U
7. LCD driver Output Characteristics
Table 101
Item
Symbol
Unit
Timing Diagram
Min.
Typ.
Max.
Note
-
-
17
10
-
-
17
11
VCC=IOVCC=3.00V, DDVDH=5.50V,
VREG1OUT=5.00V, fosc=376/600kHz
(320-line drive), Ta=25C, REV=0,
AP=2’h3, VRH=4’h0,
PxKPx=3’h0, PxKNx=3’h0,
Source driver
output delay time
PxRNx=3’h0, PxRPx=3’h0,
tdds
µs
VxRNx=5’h0, VxRPx=5’h0,
PxFPx=2’h0, PxFNx=2’h0
Same change from same grayscale at
all time-division source output pins.
Time to reach +/- 35mV from VCOM
polarity inversion timing..
R=10kohm, C=20pF
VCC=IOVCC=3.00V, DDVDH=5.50V,
VREG1OUT=5.00V, fosc=376/600kHz
(320 line drive), Ta=25C, REV=0,
AP=2’h3, VRH=4’h0,
VCOM output
delay time
PxKPx=3’h0, PxKNx=3’h0,
tddv
µs
PxRNx=3’h0, PxRPx=3’h0,
VxRNx=5’h0, VxRPx=5’h0,
PxFPx=2’h0, PxFNx=2’h0
Time to reach +/- 35mV when voltage
on V0-V31 pins changes.
R=100ohm, C=10nF
Rev.1.0 September 13, 2006, page 184 of 199
R61505U
Notes on Electrical Characteristics
1.
DC/AC electrical characteristics of bare die and wafer products are guaranteed at +85℃.
2.
The followings illustrate the configurations of input, I/O, and output pins.
Pins: FMARK, SDO
Pins: RESET* IM3-1 IM0/ID
VSYNC HSYNC DOTCLK ENABLE CS,
RS, SDI
IOVCC
IOVCC
PMOS
PMOS
Input circuit
Input data
NMOS
NMOS
IOGND
IOGND
Pins: WR/SCL RD
IOVCC
PMOS
PMOS
Input enable (CS)
Input circuit
NMOS
NMOS
IOGND
Pins: DB17 – DB0
IOVCC
PMOS
PMOS
Input enable(CS)
Input circuit
NMOS
NMOS
IOGND
Output circle; Three states
IOVCC
Output enable
PMOS
Output data
NMOS
IOGND
Figure 90
Rev.1.0 September 13, 2006, page 185 of 199
R61505U
3.
Fix pins as follows; TEST1/2/5 pins to IOGND, TEST3/4 pins to IOVCC, VDDTEST and VREFC to
ground (AGND), and IM0/ID pins to IOVCC or IOGND.
4.
This excludes the current in the output-drive MOS.
5.
This excludes the current in the input/output units. Make sure that the input level is fixed because
through current will increase in the input circuit when the CMOS input level takes a middle range
level. The current consumption is unaffected by whether the CS* pin is “high” or “low” while not
accessing via interface pins.
6.
The relation between voltage and current consumption is as follows.
Rev.1.0 September 13, 2006, page 186 of 199
R61505U
Current consumption in normal display operation
(262k-color display mode)
262k color-mode
320 line
Ta=25͠, fosc=376/600 kHz, fHLM=70Hz, RAM data=18'h00000
COL=0
fosc=600KHz
200
Typ.
Iop1 uA
fosc=376KHz
150
100
2.5
3.0
3.5
IOVCC/VCC V
Current Consumption in normal display operation
(8-color-mode, 64 line partial display)
320 line
Ta=25͠, fosc=376/600kHz, RAM data =18'h00000
COL=1, 8-color-mode, 64 line partial display
200
Iop2 uA
8color-mode
64line partial display
150
Typ.
100
2.5
3.0
3.5
IOVCC/VCC V
Dynamic current consumption
(RAM write during display RAM access)
8.0
IRAM1, IRAM2 mA
IOVCC=2.4V, VCC=3.0V
Ta=25͠, fosc=376/600kHz
IRAM1
18/16bitI/F HWM=0
5.0
8bitI/F HWM=0
Typ.
Typ.
18/16bitI/F HWM=1
Typ.
8bitI/F HWM=1
IRAM2
Typ.
0.0
5.0
10.0
15.0
Write cycle fequency[MHz]
Figure 91
Rev.1.0 September 13, 2006, page 187 of 199
R61505U
Liquid crystal power supply current consumption
in 262k-color-mode
(Ici1)
262k color mode
2.0
Ici1 mA
IOVCC=VCC=3V, 320line,
Ta=25C, fosc=376/600kHz, fFLM=70Hz,
RAM data=18'00000,
BC0=1'h0, REV=1'h0, COL=2'h0,
AP=3'h3, BT=4'h5, DC0=3'h1, DC1=3'h2,
VCMR=1'h1,
VC=3'h7, VRH=4'hA, VCM=5'h1D, VDV=5'h8,
GON=1
fosc=600KHz
1.5
PxKPx=3'h0, PxKNx=3'h0,
PxRNx=3'h0, PxRPx=3'h0,
VxRNx=3'h0, VxRPx=3'h0,
PxFNx=2'h0, PxFPx=2'h0,
No load on the panel.
fosc=376KHz
Typ.
1.0
2.5
3.0
3.5
VCI V
Liiquid crystal power supply current consumption
(Ici2)
in 8-color, 64-line partial, display
IOVCC=VCC=3V, 320line,
Ta=25C, fosc=376/600kHz, fFLM=40Hz,
RAM data=18'00000,
BC0=1'h0, REV=1'h0, COL=2'h1,
AP=3'h3, BT=4'h5, DC0=3'h1, DC1=3'h2,
VCMR=1'h1,
VC=3'h7, VRH=4'hA, VCM=5'h1D, VDV=5'h8,
GON=1
fosc=600KHz
Ici2 mA
0.7
0.5
Typ.
fosc=376KHz
8 color mode
64line partial
display
0.3
2.5
3.0
PxKPx=3'h0, PxKNx=3'h0,
PxRNx=3'h0, PxRPx=3'h0,
VxRNx=3'h0, VxRPx=3'h0,
PxFNx=2'h0, PxFPx=2'h0,
No load on the panel.
3.5
VCI V
Figure 92
Rev.1.0 September 13, 2006, page 188 of 199
R61505U
7.
The output voltage deviation is the difference in the voltages between output pins that are placed side
by side in same display mode. The output voltage deviation is reference value.
8
The average output voltage dispersion is the variance of average source-output voltage of different
chips of the same product. The average source output voltage is measured for one chip with same
display data.
9
This applies to internal oscillators when using an internal RC oscillator.
10 The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the
frame frequency and the cycle per line by checking the quality on the actual panel in use.
LCD driver output delay time tDD (μs)
Reference data
VCC=IOVCC=3.00V, DDVDH=5.50V,
VREG1OUT=5.00V, fosc=376/600kHz (320 line drive)
Ta=25͠,
REV=0, AP=2'h3, VRH=4'h0,
PxKPx=3'h0, PxKNx=3'h0,
PxRNx=3'h0, PxRPx=3'h0,
VxRNx=3'h0, VxRPx=3'h0,
PxFNx=3'h0, PxFPx=3'h0,
28
24
20
16
Same change from the same grayscale at all time-division
source output pins.
12
Typ.
8
Time to reach the target voltage r5mV from Vcom polarity
inversion timing.
4
R=10kΩ, C=20pF
15
25
35
Load capacitance C (pF)
Figure 93
Rev.1.0 September 13, 2006, page 189 of 199
R61505U
11 VCOM output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency
and the cycle per line checking the quality on the actual panel in use.
Vcom output delay time: tDDv (μs)
Reference data
VCC=IOVCC=3.00V, DDVH=5.50V,
VREG1OUT=5.00V, fosc=376/600kHz(320 line drive)
Ta=25͠,
REV=0, AP=2'h3, VRH=4'h0,
PxKPx=3'h0, PxKNx=3'h0,
PxRNx=3'h0, PxRPx=3'h0,
VxRNx=5'h0, VxRPx=5'h0,
PxFPx=2'h0, PxFNx=2'h0,
Time to reach r35mV when
voltage on Vo=V31 pin changes.
R=100Ω, C=10nF
40
35
30
25
Typ.
20
15
10
10
30
50
Load capacitance C(nF)
Figure 94
12 Internal reference voltage VCIR depends on temperature as shown in following graph.
Internal reference voltage VCIR (V)
Reference Voltage
2.60
VCC=IOVCC=VCI=3.00V
AP=2'h3
2.55
Typ.
2.50
2.45
2.40
-50
-30
-10
10
30
50
70
Temperature (C)
Figure 95
Rev.1.0 September 13, 2006, page 190 of 199
90
R61505U
Test Circuits
٨
٨
Test circuit for AC characteristics
Test circuit for LCD output characteristics
[LCD output: S1-S720]
Load resistance R: 10kΩ
Test Point
[Data bus: DB17-DB0]
Test Point
Load capacitance C:20pF
50pF
Figure 96
Test circuit for Vcom output characteristics
[Vcom output]
Load Resictance R: 100Ω
Test Point
Load Capacitance C 10nF
Figure 97
Rev.1.0 September 13, 2006, page 191 of 199
R61505U
Test Characteristics
80-System Bus Interface
RS
VIH
VIH
VIL
VIL
tAS
tAH
VIH
VIL
CS*
VIH
VIL
See Note 1)
PWLW,PWLR
RD*
RD
VIH
VIH
WR*
PWHW,PWHR
VIH
VIL
VIL
tWRf
tWRr
tCYCW, tCYCR
tDSW
See Note 2)
DB17-0
VIH
VIL
Write data
tH
VIH
VIL
tDDR
tDHR
See Note 2)
VOH
DB17-0
VOL
Read data
VOH
VOL
Note 1) PWLW and PWLR are defined by the overlap period when CS* is "Low" and WR* or RD* is "Low".
Note 2) Unused DB pins must be fixed at "IOVcc 1" or "IOGND 1".
Figure 98 80-System Bus Interface
Rev.1.0 September 13, 2006, page 192 of 199
R61505U
Clock Synchronous Serial Interface
End: P
Start: S
VIH
CS*
VIL
tSCYC
tscr
tCSU
tSCH
VIH
SCL
tscf
VIH
VIL
VIH
VIL
VIL
tSISH
VIH
SDI
tCH
VIH
VIL
tSISU
tSCL
VIH
Input data
VIL
Input data
VIL
tSOD
tSOH
VOH
VOH
Output data
SDO
Output data
VOL
VOL
Figure 99 Clock Synchronous Serial Interface
Reset Operation
trRES
tRES
RESET*
VIH
VIL
VIL
Figure 100 Reset Operation
Rev.1.0 September 13, 2006, page 193 of 199
R61505U
RGB Interface
trgbf
trgbr
tSYNCS
VSYNC
VIH
VIH
HSYNC
VIL
VIL
tENS
ENABLE
tENH
VIH
VIH
VIL
VIL
trgbr
trgbf
PWDL
DOTCLK
PWDH
VIH
VIH
VIL
VIH
VIL
VIL
tCYCD
tPDS
tPDH
VIH
DB17-0
VIL
VIH
Write data
Figure 101 RGB Interface
LCD Driver Output
tDDv
Target Voltage r35mV
VCOM
Target Voltage r35mV
tDDs
Target Voltage r35mV
S1-720
Target Voltage r35mV
Figure 102 LCD Driver Outputs
Rev.1.0 September 13, 2006, page 194 of 199
VIL
R61505U
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they
do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed
herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information
as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage,
liability or other loss resulting from the information contained herein.
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially
at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained
herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be
imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
http://www.renesas.com
Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan.
Colophon 0.0
Rev.1.0 September 13, 2006, page 195 of 199
R61505U
Revision Record
Rev.
Date
Contents of Modification
0.04
2005.01.26
First issue
0.1.0
2006.02.20
Change PAD Arrangement, add Instruction List.
0.10
2006.04. 03
p.44 NW bit added (R02h)
p. 53 PTG[1:0] 2’h1 changed to setting inhibited.
p.59 VCL added to note 2 and 3.
p.61 Setting of VREG1OUT added to Table 40.
p.62 Description of VREG1 bit added.
p.63 “5.5V or less” changed to “6.0V or less”. (Note1 to
Table 42)
p.76 Table 51 6’h15 of NL[5:0] bits changed to 176
lines.
p.81 VEQWI[1:0] bit added.
p.85 EAD[1:0] bits added.
p.86 Description of RA4h added.
p.143 Description of line inversion AC drive added.
p.149 (TBD)kHz changed to 376kHz.
p.155 Table to Internal Oscillator deleted.
p.161 Figure 78 added.
p.163 “RF9h” deleted from Figure 80.
p.166 “RF9h” deleted from Figure 83.
pp.168-187 added.
0.11
2006. 05. 12
p.169, pp.172-177 Target speculation value filled in
(except Step-up circuit output characteristics)
0.12
2006.05.31
p.7 Change VCOM adjustment bits (11 bits → 5 bits x 2
sets).
p.8 Add VPP and delete note.
p.15 Change the description of OSC1 and OSC2.
p.17 Change the description of capacitor connection
pins (C23±).
p.18 3.0V →4.0V (VREG1OUT)
p.50 Change the table about VON.
p.59 Add C13± (4’h1, 4’h4, 4’h6, 4’h9, 4’hC, and
4’hE) ,and delete C23± (4’h0 and 4’h8).
p.62 VCM bits → VCM1 and VCM2 bits
p.88 Delete Status Read.
p.89 Change the initial state of VLOUT1 and VLOUT2,
add VCI1, and delete the initial state of C21+, C22+,
and C23
p.157 2.5V → 4.0V (VREG1OUT), (DDVDH –
Rev.1.0 September 13, 2006, page 196 of 199
Drawn
by
Approved
by
R61505U
Rev.
Date
Contents of Modification
VREG1OUT) > 0.5V → (DDVDH – VREG1OUT) ≥ 0.5V
p.161 Change VPP1 and VPP2, and the description of
dummy data read and write data setting.
p.164 Add notes.
p.169 Delete Power Supply Voltage 6, and add Power
Supply Voltage 8 to 11, and NVM write temperature.
p.173 Change timing diagram of clock characteristics.
p.175 80ns → 70ns (tCYCW), 50ns → 38ns (PWLW)
p.178 Delete Typ., and add Max (tdds and tddv).
0.13
2006.06.01
p.9 Delete C23± from R61505U’s capacitor connection
pins.
p.16 Change note 2, VPP2 value, “When not in use” of
VPP1, VPP2, and VPP3.
0.14
2006.06.02
p.9 Add VCL in R61505’s capacitor connection pins,
and change the description of R61505U’s capacitor
connection pins.
p.18 Add “(VCILVL or VCIR)” in VREG1OUT.
p.60 Change capacitor connection pins and VGL
(max.), and add note 4.
0.15
2006.07.18
p.7 Gate drive power supply: VGH-GND=10.0V~15.0V
→ VGH-GND=10.0V~20.0V, VGL-GND= -4.5V ~
-12.5V → VGL-GND= -4.5V ~ -13.5V
p.8 Add “Internal reference voltage: to generate
VREG1OUT (VCIR)”.
p.9 Table 1: NVM_FUSE → NVM,
VGH 10.0V~15.0V → 10.0V ~ 20.0V
VGL –4.5V~ -12.5V → -4.5V ~ -13.5V
p.14 Change description to oscillator (8).
VDH → DDVDH (liquid crystal drive circuit power
supply circuit, 9)
p.17 Open → Open or GND (VPP3: “When not in use”
and NVM read)
p.18 Add “Make sure to connect to stabilizing capacitor”
to VCIOUT, VLOUT1, VLOUT2, VLOUT3 and VCL.
p.19 Delete VDH from description of VREG1OUT. Add
“Make sure to connect to stabilizing capacitor.” to
VCOMH and VCOML.
p.21 TEST5 Delete “ To stop the NVM operation, set
the TEST5 pin to IOVCC level.
p.61 VGH =15.0V (max.) → 20.0V (max)
VGL = -12.5V (max) → -13.5V(max)
p. 65 Error correction. (Description to VDV and Table
43)
p.115 FPP + BPP = 16 → FPP + BPP ≤ 16
p.159 Figure 74: VGH 10.0V~15.0V → 10.0V ~ 20.0V,
Rev.1.0 September 13, 2006, page 197 of 199
Drawn
by
Approved
by
R61505U
Rev.
Date
Contents of Modification
VGL –4.5V~ -12.5V → -4.5V ~ -13.5V
p.162 29’h → 2A’h
p.165 Figure 79: Error correction (Dummy access
required → Dummy access is not required.)
p.166 Figure 80: Add CALB=1.
p.167 Figure 81: Error correction.
p.171 Table 88: -0.3 ~ +13.0 → -0.3 → 14.0 (Power
supply voltage 7)
p.172 Table 89: Delete “”(Other than OSC1 pin)” (Input
High level voltage, Input Low level voltage). VOH1 → VOH,
VOL1 → VOL.
p. 175 Change AC characteristics (Table 93: tcycw
150ns → 125ns, PWLW 50ns → 45ns.
p.176 Change AC characteristics (Table 94: tcycw 80ns
→ 75ns, PWLW 50ns → 40ns).
p.177 Change AC characteristics (Table 95: PWLW
38ns → 30ns).
p.181 Figure 86: Delete “DB17-0 (RGB interface
(RM=1)) and “(80-system interface (RM=0))”
p.187 Figure 91: “Data bus DB15-DB0” → “Data bus
DB17-DB0”
p.188 Figure 93: tWRr → tWRf, VIH → VOH, VIL →
VOL.
p.189 Figure 94: VOH1, VOL1 → VOH, VOL
p.190 Figure 97: S1-240 → S1-720
0.1.6
2006.07.26
p.11 Figure 1: Change direction of arrow (VREG1OUT).
p. 21 AGND → IOGND (TSC)
p.44 Delete row of “W” (R00h)
p.50 Table 20: Source Output (S1-240) → Source
Output (S1-720).
p.51 Table 23: VCOML → GND
p.57 9’h175 → 9’h15A, 9’h176 → 9’h15B, 9’h177 →
9’h1FF, 373rd line → 346 line, 374th line → 347th line,
375th line → Setting disabled.
p.91 Delete “Oscillator: Oscillate”.
p.142 Table 82: Delete row of “Write mask function”.
p.149 Figure 65: 8’h000, 8’h013 → 9’h000, 9’h013
(Partial image 1 display RAM area), PTDP0=8’h028 →
PTDP0=9’h028.
p.152 Description changed.
p.159 Figure 74: Delete voltage ranges.
p. 170 Figure 84: R07h: COL=2’h1 → COL=1’h1,
COL=2’h0 → COL=1’h0
Rev.1.0 September 13, 2006, page 198 of 199
Drawn
by
Approved
by
R61505U
Rev.
Date
Contents of Modification
p. 172 Table 89: AP=3’h3 → AP=2’h3 (Current
consumption, RAM access mode 1)
p.173 AP=3’h3 → AP=2’h3 (Current consumption, RAM
access mode 2). AP=3’h3 → AP=2’h3, COL=2’h0 →
COL=1’h0 (LCD Power Supply Current, 262-k color
display operation). AP=3’h3 → AP=2’h3, COL=2’h1 →
COL=1’h1 (LCD Power Supply Current, 8 color display
operation).
p.181 Figure 86: Change wiring.
p.185 Figure 89: AP=3’h1 → AP=2’h3
p.186 Figure 90: AP=3’h1 → AP=2’h3
p.187 Figure 90: Load capacitance C25pF → 20pF
1.0
2006.09.13.
p.8 Add product numbers.
p.17 Delete Note 1 to VPP.
p. 18 Error correction (VLOUT2= max, 15.0 → 20.0V,
VLOUT3=min. -12.5 → -13.5V)
p.50 Revise description of COL.
p. 53 Table 26 Error correction.
p. 57 Table 33 Error correction (FMP).
p. 83 Delete VEQWI (R93h).
p. 84 Error correction (Instruction List, R95h).
p. 88 Change description of CALB.
p. 90 Change Instruction List (Delete VEQWI, R93h).
p. 108 Table 68 “11” Read instruction or RAM data →
Read register settings or RAM data.
p. 109 Figure 28 Delete “(d) Instruction Read”.
p. 120 Figure 38 Error correction.
p. 152 Revise description of “Oscillator”.
p. 163 Revise Figure 77.
p. 165 Inserted.
p. 166 Figure 80: Error correction (NVM dummy read).
p. 167 Revise Figure 81.
p. 168 Insert “Notes on Power Supply ON sequence”.
p. 169 Revise Figure 83 (Display ON/OFF sequence).
p. 171 Revise Figure 85 (Deep standby mode).
p.172 Insert Figure 86 (Deep standby mode).
p. 173 Insert Figure 87 (Deep standby mode).
pp. 176-184 Revise Electrical characteristics.
pp. 187-190 Graphs inserted.
p. 190 Add Note 12
Rev.1.0 September 13, 2006, page 199 of 199
Drawn
by
Approved
by