ST Sitronix ST7712 262K Color Single-Chip TFT Controller/Driver 1. Introduction The ST7712 is a single-chip which generates 396 Source lines and 132 gate lines controller/driver for 262K color TFT dot graphic display. ST7712 support 18-bit high-speed bus interface and Serial Peripheral Interface (SPI), thus it can perform bi-operation functions, data transfer, and high-speed RAM write function. Display data can be stored in an on-chip display data RAM of 132x396x6 bits. It can perform display data RAM read/write operation without external operating clock to minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is possible to make a display system with the fewest components. 2. Features On-chip Low Power Analog Circuit Driver Output Circuits −On-chip oscillator circuit −396 source output −Voltage converter generating liquid crystal driver up to −132 gate output 6-time scale On-chip Display Data RAM −Simultaneous availability of 262K color with γ-correction −Capacity: 396 × 132 × 6 =313,632bits function −65K colors (RGB)= (565) mode Operating Voltage Range −262K colors (RGB)= (666) mode −Vcc: 2.4~3.3V (logic power supply) Applicable Duty Ratios −Vci: 2.5~3.3V (analog power supply) - Various partial display −IOVcc: 1.8~3.3V (interface power supply) - Partial window moving & data scrolling −Source line voltage: DDVDH=4.5~6.0V Microprocessor Interface Package Type −8/9/16/18-bit parallel bi-directional interface with −Application for COG −6800-series or 8080-series −4-line serial interface −3-line serial interface ST7712 Ver 2.2 6800 , 8080 ,4-Line , 3-Line interface 1/113 2006/07/07 ST7712 3. Pad Arrangement Chip size (um): 15,800x1,380 PAD coordinate: PAD center Coordinate origin: Chip center Chip thickness (um): 400± ±25 Bump height (um):15± ±2 Pad Arrangement (Unit: um): Pad No. 1~ Pad No. 534: 26 x 86 26 30 26 86 116 30 86 28 28 Pad No. 535~ Pad No. 692: 66 x 76 66 25 (min.) 66 76 95 (min.) Alignment Mark (Unit: um): Ver 2.3 2/113 2007/07/19 ST7712 4. Pad Center Coordinates PAD No. PIN Name X Y PAD No. PIN Name X Y 1 DUMMYA 7710 570.715 36 G69 6668.5 454.715 2 G1 7620.5 454.715 37 G71 6640.5 570.715 3 G3 7592.5 570.715 38 G73 6612.5 454.715 4 G5 7564.5 454.715 39 G75 6584.5 570.715 5 G7 7536.5 570.715 40 G77 6556.5 454.715 6 G9 7508.5 454.715 41 G79 6528.5 570.715 7 G11 7480.5 570.715 42 G81 6500.5 454.715 8 G13 7452.5 454.715 43 G83 6472.5 570.715 9 G15 7424.5 570.715 44 G85 6444.5 454.715 10 G17 7396.5 454.715 45 G87 6416.5 570.715 11 G19 7368.5 570.715 46 G89 6388.5 454.715 12 G21 7340.5 454.715 47 G91 6360.5 570.715 13 G23 7312.5 570.715 48 G93 6332.5 454.715 14 G25 7284.5 454.715 49 G95 6304.5 570.715 15 G27 7256.5 570.715 50 G97 6276.5 454.715 16 G29 7228.5 454.715 51 G99 6248.5 570.715 17 G31 7200.5 570.715 52 G101 6220.5 454.715 18 G33 7172.5 454.715 53 G103 6192.5 570.715 19 G35 7144.5 570.715 54 G105 6164.5 454.715 20 G37 7116.5 454.715 55 G107 6136.5 570.715 21 G39 7088.5 570.715 56 G109 6108.5 454.715 22 G41 7060.5 454.715 57 G111 6080.5 570.715 23 G43 7032.5 570.715 58 G113 6052.5 454.715 24 G45 7004.5 454.715 59 G115 6024.5 570.715 25 G47 6976.5 570.715 60 G117 5996.5 454.715 26 G49 6948.5 454.715 61 G119 5968.5 570.715 27 G51 6920.5 570.715 62 G121 5940.5 454.715 28 G53 6892.5 454.715 63 G123 5912.5 570.715 29 G55 6864.5 570.715 64 G125 5884.5 454.715 30 G57 6836.5 454.715 65 G127 5856.5 570.715 31 G59 6808.5 570.715 66 G129 5828.5 454.715 32 G61 6780.5 454.715 67 G131 5800.5 570.715 33 G63 6752.5 570.715 68 VCMDUMMY1 5726.5 570.715 34 G65 6724.5 454.715 69 DUMMYB 5631.5 570.715 35 G67 6696.5 570.715 70 S395 5557.5 454.715 Ver 2.3 3/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 71 S394 5529.5 570.715 107 S358 4521.5 570.715 72 S393 5501.5 454.715 108 S357 4493.5 454.715 73 S392 5473.5 570.715 109 S356 4465.5 570.715 74 S391 5445.5 454.715 110 S355 4437.5 454.715 75 S390 5417.5 570.715 111 S354 4409.5 570.715 76 S389 5389.5 454.715 112 S353 4381.5 454.715 77 S388 5361.5 570.715 113 S352 4353.5 570.715 78 S387 5333.5 454.715 114 S351 4325.5 454.715 79 S386 5305.5 570.715 115 S350 4297.5 570.715 80 S385 5277.5 454.715 116 S349 4269.5 454.715 81 S384 5249.5 570.715 117 S348 4241.5 570.715 82 S383 5221.5 454.715 118 S347 4213.5 454.715 83 S382 5193.5 570.715 119 S346 4185.5 570.715 84 S381 5165.5 454.715 120 S345 4157.5 454.715 85 S380 5137.5 570.715 121 S344 4129.5 570.715 86 S379 5109.5 454.715 122 S343 4101.5 454.715 87 S378 5081.5 570.715 123 S342 4073.5 570.715 88 S377 5053.5 454.715 124 S341 4045.5 454.715 89 S376 5025.5 570.715 125 S340 4017.5 570.715 90 S375 4997.5 454.715 126 S339 3989.5 454.715 91 S374 4969.5 570.715 127 S338 3961.5 570.715 92 S373 4941.5 454.715 128 S337 3933.5 454.715 93 S372 4913.5 570.715 129 S336 3905.5 570.715 94 S371 4885.5 454.715 130 S335 3877.5 454.715 95 S370 4857.5 570.715 131 S334 3849.5 570.715 96 S369 4829.5 454.715 132 S333 3821.5 454.715 97 S368 4801.5 570.715 133 S332 3793.5 570.715 98 S367 4773.5 454.715 134 S331 3765.5 454.715 99 S366 4745.5 570.715 135 S330 3737.5 570.715 100 S365 4717.5 454.715 136 S329 3709.5 454.715 101 S364 4689.5 570.715 137 S328 3681.5 570.715 102 S363 4661.5 454.715 138 S327 3653.5 454.715 103 S362 4633.5 570.715 139 S326 3625.5 570.715 104 S361 4605.5 454.715 140 S325 3597.5 454.715 105 S360 4577.5 570.715 141 S324 3569.5 570.715 106 S359 4549.5 454.715 142 S323 3541.5 454.715 Ver 2.3 4/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 143 S322 3513.5 570.715 179 S286 2505.5 570.715 144 S321 3485.5 454.715 180 S285 2477.5 454.715 145 S320 3457.5 570.715 181 S284 2449.5 570.715 146 S319 3429.5 454.715 182 S283 2421.5 454.715 147 S318 3401.5 570.715 183 S282 2393.5 570.715 148 S317 3373.5 454.715 184 S281 2365.5 454.715 149 S316 3345.5 570.715 185 S280 2337.5 570.715 150 S315 3317.5 454.715 186 S279 2309.5 454.715 151 S314 3289.5 570.715 187 S278 2281.5 570.715 152 S313 3261.5 454.715 188 S277 2253.5 454.715 153 S312 3233.5 570.715 189 S276 2225.5 570.715 154 S311 3205.5 454.715 190 S275 2197.5 454.715 155 S310 3177.5 570.715 191 S274 2169.5 570.715 156 S309 3149.5 454.715 192 S273 2141.5 454.715 157 S308 3121.5 570.715 193 S272 2113.5 570.715 158 S307 3093.5 454.715 194 S271 2085.5 454.715 159 S306 3065.5 570.715 195 S270 2057.5 570.715 160 S305 3037.5 454.715 196 S269 2029.5 454.715 161 S304 3009.5 570.715 197 S268 2001.5 570.715 162 S303 2981.5 454.715 198 S267 1973.5 454.715 163 S302 2953.5 570.715 199 S266 1945.5 570.715 164 S301 2925.5 454.715 200 S265 1917.5 454.715 165 S300 2897.5 570.715 201 S264 1889.5 570.715 166 S299 2869.5 454.715 202 S263 1861.5 454.715 167 S298 2841.5 570.715 203 S262 1833.5 570.715 168 S297 2813.5 454.715 204 S261 1805.5 454.715 169 S296 2785.5 570.715 205 S260 1777.5 570.715 170 S295 2757.5 454.715 206 S259 1749.5 454.715 171 S294 2729.5 570.715 207 S258 1721.5 570.715 172 S293 2701.5 454.715 208 S257 1693.5 454.715 173 S292 2673.5 570.715 209 S256 1665.5 570.715 174 S291 2645.5 454.715 210 S255 1637.5 454.715 175 S290 2617.5 570.715 211 S254 1609.5 570.715 176 S289 2589.5 454.715 212 S253 1581.5 454.715 177 S288 2561.5 570.715 213 S252 1553.5 570.715 178 S287 2533.5 454.715 214 S251 1525.5 454.715 Ver 2.3 5/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 215 S250 1497.5 570.715 251 S214 489.5 570.715 216 S249 1469.5 454.715 252 S213 461.5 454.715 217 S248 1441.5 570.715 253 S212 433.5 570.715 218 S247 1413.5 454.715 254 S211 405.5 454.715 219 S246 1385.5 570.715 255 S210 377.5 570.715 220 S245 1357.5 454.715 256 S209 349.5 454.715 221 S244 1329.5 570.715 257 S208 321.5 570.715 222 S243 1301.5 454.715 258 S207 293.5 454.715 223 S242 1273.5 570.715 259 S206 265.5 570.715 224 S241 1245.5 454.715 260 S205 237.5 454.715 225 S240 1217.5 570.715 261 S204 209.5 570.715 226 S239 1189.5 454.715 262 S203 181.5 454.715 227 S238 1161.5 570.715 263 S202 153.5 570.715 228 S237 1133.5 454.715 264 S201 125.5 454.715 229 S236 1105.5 570.715 265 S200 97.5 570.715 230 S235 1077.5 454.715 266 S199 69.5 454.715 231 S234 1049.5 570.715 267 S198 41.5 570.715 232 S233 1021.5 454.715 268 S197 -41.5 454.715 233 S232 993.5 570.715 269 S196 -69.5 570.715 234 S231 965.5 454.715 270 S195 -97.5 454.715 235 S230 937.5 570.715 271 S194 -125.5 570.715 236 S229 909.5 454.715 272 S193 -153.5 454.715 237 S228 881.5 570.715 273 S192 -181.5 570.715 238 S227 853.5 454.715 274 S191 -209.5 454.715 239 S226 825.5 570.715 275 S190 -237.5 570.715 240 S225 797.5 454.715 276 S189 -265.5 454.715 241 S224 769.5 570.715 277 S188 -293.5 570.715 242 S223 741.5 454.715 278 S187 -321.5 454.715 243 S222 713.5 570.715 279 S186 -349.5 570.715 244 S221 685.5 454.715 280 S185 -377.5 454.715 245 S220 657.5 570.715 281 S184 -405.5 570.715 246 S219 629.5 454.715 282 S183 -433.5 454.715 247 S218 601.5 570.715 283 S182 -461.5 570.715 248 S217 573.5 454.715 284 S181 -489.5 454.715 249 S216 545.5 570.715 285 S180 -517.5 570.715 250 S215 517.5 454.715 286 S179 -545.5 454.715 Ver 2.3 6/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 287 S178 -573.5 570.715 323 S142 -1581.5 570.715 288 S177 -601.5 454.715 324 S141 -1609.5 454.715 289 S176 -629.5 570.715 325 S140 -1637.5 570.715 290 S175 -657.5 454.715 326 S139 -1665.5 454.715 291 S174 -685.5 570.715 327 S138 -1693.5 570.715 292 S173 -713.5 454.715 328 S137 -1721.5 454.715 293 S172 -741.5 570.715 329 S136 -1749.5 570.715 294 S171 -769.5 454.715 330 S135 -1777.5 454.715 295 S170 -797.5 570.715 331 S134 -1805.5 570.715 296 S169 -825.5 454.715 332 S133 -1833.5 454.715 297 S168 -853.5 570.715 333 S132 -1861.5 570.715 298 S167 -881.5 454.715 334 S131 -1889.5 454.715 299 S166 -909.5 570.715 335 S130 -1917.5 570.715 300 S165 -937.5 454.715 336 S129 -1945.5 454.715 301 S164 -965.5 570.715 337 S128 -1973.5 570.715 302 S163 -993.5 454.715 338 S127 -2001.5 454.715 303 S162 -1021.5 570.715 339 S126 -2029.5 570.715 304 S161 -1049.5 454.715 340 S125 -2057.5 454.715 305 S160 -1077.5 570.715 341 S124 -2085.5 570.715 306 S159 -1105.5 454.715 342 S123 -2113.5 454.715 307 S158 -1133.5 570.715 343 S122 -2141.5 570.715 308 S157 -1161.5 454.715 344 S121 -2169.5 454.715 309 S156 -1189.5 570.715 345 S120 -2197.5 570.715 310 S155 -1217.5 454.715 346 S119 -2225.5 454.715 311 S154 -1245.5 570.715 347 S118 -2253.5 570.715 312 S153 -1273.5 454.715 348 S117 -2281.5 454.715 313 S152 -1301.5 570.715 349 S116 -2309.5 570.715 314 S151 -1329.5 454.715 350 S115 -2337.5 454.715 315 S150 -1357.5 570.715 351 S114 -2365.5 570.715 316 S149 -1385.5 454.715 352 S113 -2393.5 454.715 317 S148 -1413.5 570.715 353 S112 -2421.5 570.715 318 S147 -1441.5 454.715 354 S111 -2449.5 454.715 319 S146 -1469.5 570.715 355 S110 -2477.5 570.715 320 S145 -1497.5 454.715 356 S109 -2505.5 454.715 321 S144 -1525.5 570.715 357 S108 -2533.5 570.715 322 S143 -1553.5 454.715 358 S107 -2561.5 454.715 Ver 2.3 7/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 359 S106 -2589.5 570.715 395 S70 -3597.5 570.715 360 S105 -2617.5 454.715 396 S69 -3625.5 454.715 361 S104 -2645.5 570.715 397 S68 -3653.5 570.715 362 S103 -2673.5 454.715 398 S67 -3681.5 454.715 363 S102 -2701.5 570.715 399 S66 -3709.5 570.715 364 S101 -2729.5 454.715 400 S65 -3737.5 454.715 365 S100 -2757.5 570.715 401 S64 -3765.5 570.715 366 S99 -2785.5 454.715 402 S63 -3793.5 454.715 367 S98 -2813.5 570.715 403 S62 -3821.5 570.715 368 S97 -2841.5 454.715 404 S61 -3849.5 454.715 369 S96 -2869.5 570.715 405 S60 -3877.5 570.715 370 S95 -2897.5 454.715 406 S59 -3905.5 454.715 371 S94 -2925.5 570.715 407 S58 -3933.5 570.715 372 S93 -2953.5 454.715 408 S57 -3961.5 454.715 373 S92 -2981.5 570.715 409 S56 -3989.5 570.715 374 S91 -3009.5 454.715 410 S55 -4017.5 454.715 375 S90 -3037.5 570.715 411 S54 -4045.5 570.715 376 S89 -3065.5 454.715 412 S53 -4073.5 454.715 377 S88 -3093.5 570.715 413 S52 -4101.5 570.715 378 S87 -3121.5 454.715 414 S51 -4129.5 454.715 379 S86 -3149.5 570.715 415 S50 -4157.5 570.715 380 S85 -3177.5 454.715 416 S49 -4185.5 454.715 381 S84 -3205.5 570.715 417 S48 -4213.5 570.715 382 S83 -3233.5 454.715 418 S47 -4241.5 454.715 383 S82 -3261.5 570.715 419 S46 -4269.5 570.715 384 S81 -3289.5 454.715 420 S45 -4297.5 454.715 385 S80 -3317.5 570.715 421 S44 -4325.5 570.715 386 S79 -3345.5 454.715 422 S43 -4353.5 454.715 387 S78 -3373.5 570.715 423 S42 -4381.5 570.715 388 S77 -3401.5 454.715 424 S41 -4409.5 454.715 389 S76 -3429.5 570.715 425 S40 -4437.5 570.715 390 S75 -3457.5 454.715 426 S39 -4465.5 454.715 391 S74 -3485.5 570.715 427 S38 -4493.5 570.715 392 S73 -3513.5 454.715 428 S37 -4521.5 454.715 393 S72 -3541.5 570.715 429 S36 -4549.5 570.715 394 S71 -3569.5 454.715 430 S35 -4577.5 454.715 Ver 2.3 8/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name 431 S34 -4605.5 570.715 467 VCMDUMMY2 -5726.5 570.715 432 S33 -4633.5 454.715 468 G130 -5800.5 454.715 433 S32 -4661.5 570.715 469 G128 -5828.5 570.715 434 S31 -4689.5 454.715 470 G126 -5856.5 454.715 435 S30 -4717.5 570.715 471 G124 -5884.5 570.715 436 S29 -4745.5 454.715 472 G122 -5912.5 454.715 437 S28 -4773.5 570.715 473 G120 -5940.5 570.715 438 S27 -4801.5 454.715 474 G118 -5968.5 454.715 439 S26 -4829.5 570.715 475 G116 -5996.5 570.715 440 S25 -4857.5 454.715 476 G114 -6024.5 454.715 441 S24 -4885.5 570.715 477 G112 -6052.5 570.715 442 S23 -4913.5 454.715 478 G110 -6080.5 454.715 443 S22 -4941.5 570.715 479 G108 -6108.5 570.715 444 S21 -4969.5 454.715 480 G106 -6136.5 454.715 445 S20 -4997.5 570.715 481 G104 -6164.5 570.715 446 S19 -5025.5 454.715 482 G102 -6192.5 454.715 447 S18 -5053.5 570.715 483 G100 -6220.5 570.715 448 S17 -5081.5 454.715 484 G98 -6248.5 454.715 449 S16 -5109.5 570.715 485 G96 -6276.5 570.715 450 S15 -5137.5 454.715 486 G94 -6304.5 454.715 451 S14 -5165.5 570.715 487 G92 -6332.5 570.715 452 S13 -5193.5 454.715 488 G90 -6360.5 454.715 453 S12 -5221.5 570.715 489 G88 -6388.5 570.715 454 S11 -5249.5 454.715 490 G86 -6416.5 454.715 455 S10 -5277.5 570.715 491 G84 -6444.5 570.715 456 S9 -5305.5 454.715 492 G82 -6472.5 454.715 457 S8 -5333.5 570.715 493 G80 -6500.5 570.715 458 S7 -5361.5 454.715 494 G78 -6528.5 454.715 459 S6 -5389.5 570.715 495 G76 -6556.5 570.715 460 S5 -5417.5 454.715 496 G74 -6584.5 454.715 461 S4 -5445.5 570.715 497 G72 -6612.5 570.715 462 S3 -5473.5 454.715 498 G70 -6640.5 454.715 463 S2 -5501.5 570.715 499 G68 -6668.5 570.715 464 S1 -5529.5 454.715 500 G66 -6696.5 454.715 465 S0 -5557.5 570.715 501 G64 -6724.5 570.715 466 DUMMYC -5631.5 570.715 502 G62 -6752.5 454.715 Ver 2.3 9/113 X Y 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X 503 G60 -6780.5 570.715 539 VCOM1 -7313.33 -583.465 504 G58 -6808.5 454.715 540 DUMMY4 -7140 -583.465 505 G56 -6836.5 570.715 541 VGH -7045 -583.465 506 G54 -6864.5 454.715 542 VGH -6950 -583.465 507 G52 -6892.5 570.715 543 VLOUT2 -6855 -583.465 508 G50 -6920.5 454.715 544 C22+ -6760 -583.465 509 G48 -6948.5 570.715 545 C22+ -6665 -583.465 510 G46 -6976.5 454.715 546 C22- -6570 -583.465 511 G44 -7004.5 570.715 547 C22- -6475 -583.465 512 G42 -7032.5 454.715 548 C21+ -6380 -583.465 513 G40 -7060.5 570.715 549 C21+ -6285 -583.465 514 G38 -7088.5 454.715 550 C21- -6190 -583.465 515 G36 -7116.5 570.715 551 C21- -6095 -583.465 516 G34 -7144.5 454.715 552 C12+ -6000 -583.465 517 G32 -7172.5 570.715 553 C12+ -5905 -583.465 518 G30 -7200.5 454.715 554 C12+ -5810 -583.465 519 G28 -7228.5 570.715 555 C12+ -5715 -583.465 520 G26 -7256.5 454.715 556 C12- -5620 -583.465 521 G24 -7284.5 570.715 557 C12- -5525 -583.465 522 G22 -7312.5 454.715 558 C12- -5430 -583.465 523 G20 -7340.5 570.715 559 C12- -5335 -583.465 524 G18 -7368.5 454.715 560 VLOUT3 -5240 -583.465 525 G16 -7396.5 570.715 561 VGL -5145 -583.465 526 G14 -7424.5 454.715 562 VGL -5050 -583.465 527 G12 -7452.5 570.715 563 VGL -4955 -583.465 528 G10 -7480.5 454.715 564 VGL -4860 -583.465 529 G8 -7508.5 570.715 565 IOVCCDUM1 -4715 -583.465 530 G6 -7536.5 454.715 566 IOVCCDUM1 -4620 -583.465 531 G4 -7564.5 570.715 567 IM0 -4525 -583.465 532 G2 -7592.5 454.715 568 IM1 -4430 -583.465 533 G0 -7620.5 570.715 569 IM2 -4335 -583.465 534 DUMMYD -7710 570.715 570 IM3 -4240 -583.465 535 DUMMY1 -7710 -583.465 571 IOGNDDUM1 -4145 -583.465 536 DUMMY2 -7609.15 -583.465 572 IOGNDDUM1 -4050 -583.465 537 DUMMY3 -7508.3 -583.465 573 FLM -3955 -583.465 538 VCOM1 -7408.33 -583.465 574 XCS -3860 -583.465 Ver 2.3 10/113 Y 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 575 SCL -3765 -583.465 611 VCI -295 -583.465 576 SDI -3670 -583.465 612 VCI -200 -583.465 577 SDO -3575 -583.465 613 VCI -105 -583.465 578 RS -3480 -583.465 614 VCI -10 -583.465 579 RW_WR -3385 -583.465 615 VCI 85 -583.465 580 E_RD -3290 -583.465 616 VDDO 180 -583.465 581 DB0 -3195 -583.465 617 VDDO 275 -583.465 582 DB1 -3100 -583.465 618 VCILVL 370 -583.465 583 DB2 -3005 -583.465 619 OSC1 495 -583.465 584 DB3 -2910 -583.465 620 OSC2 590 -583.465 585 DB4 -2815 -583.465 621 GND 715 -583.465 586 DB5 -2720 -583.465 622 GND 810 -583.465 587 DB6 -2625 -583.465 623 GND 905 -583.465 588 DB7 -2530 -583.465 624 GND 1000 -583.465 589 DB8 -2435 -583.465 625 GND 1095 -583.465 590 IOGNDDUM2 -2340 -583.465 626 GND 1190 -583.465 591 IOGNDDUM2 -2245 -583.465 627 AGND 1298.775 -583.465 592 DB9 -2150 -583.465 628 AGND 1393.775 -583.465 593 DB10 -2055 -583.465 629 AGND 1502.415 -583.465 594 DB11 -1960 -583.465 630 AGND 1597.415 -583.465 595 DB12 -1865 -583.465 631 AGND 1692.415 -583.465 596 DB13 -1770 -583.465 632 AGND 1787.415 -583.465 597 DB14 -1675 -583.465 633 FUSA0 1896.055 -583.465 598 DB15 -1580 -583.465 634 FUSA1 1996.055 -583.465 599 DB16 -1485 -583.465 635 FUSA2 2096.055 -583.465 600 DB17 -1390 -583.465 636 FUSA3 2196.055 -583.465 601 XRESET -1295 -583.465 637 FUSA4 2296.055 -583.465 602 IOVCC -1200 -583.465 638 VSSF 2396.055 -583.465 603 IOVCC -1105 -583.465 639 FUS0 2496.055 -583.465 604 VCC -960 -583.465 640 FUS1 2596.055 -583.465 605 VCC -865 -583.465 641 FUS2 2696.055 -583.465 606 VCC -770 -583.465 642 FUS3 2796.055 -583.465 607 VCC -675 -583.465 643 FUS4 2896.055 -583.465 608 VCC -580 -583.465 644 REGP 3025 -583.465 609 VCC -485 -583.465 645 VGS 3120 -583.465 610 VCI -390 -583.465 646 VGS 3215 -583.465 Ver 2.3 11/113 2007/07/19 ST7712 PAD No. PIN Name X Y PAD No. PIN Name X Y 647 VMON 3310 -583.465 671 C11+ 5590 -583.465 648 VCI1 3405 -583.465 672 C11+ 5685 -583.465 649 VCI1 3500 -583.465 673 C11+ 5780 -583.465 650 VCI1 3595 -583.465 674 VLPWR 5875 -583.465 651 VCI1 3690 -583.465 675 VCOMR 5970 -583.465 652 VCI1 3785 -583.465 676 VREG1OUT 6065 -583.465 653 VCI1 3880 -583.465 677 DUMMY5 6160 -583.465 654 VCIOUT 3975 -583.465 678 VCOMH 6255 -583.465 655 VCIOUT 4070 -583.465 679 VCOMH 6350 -583.465 656 VCIOUT 4165 -583.465 680 VCOMH 6445 -583.465 657 VCIOUT 4260 -583.465 681 VCOML 6570 -583.465 658 DDVDH 4355 -583.465 682 VCOML 6665 -583.465 659 DDVDH 4450 -583.465 683 VCOML 6760 -583.465 660 DDVDH 4545 -583.465 684 VLOUT4 6855 -583.465 661 DDVDH 4640 -583.465 685 VCL 6950 -583.465 662 DDVDH 4735 -583.465 686 VCL 7045 -583.465 663 DDVDH 4830 -583.465 687 DUMMY6 7140 -583.465 664 VLOUT1 4925 -583.465 688 VCOM2 7313.33 -583.465 665 VLOUT1 5020 -583.465 689 VCOM2 7408.33 -583.465 666 C11- 5115 -583.465 690 DUMMY7 7508.3 -583.465 667 C11- 5210 -583.465 691 DUMMY8 7609.15 -583.465 668 C11- 5305 -583.465 692 DUMMY9 7710 -583.465 669 C11- 5400 -583.465 670 C11+ 5495 -583.465 Ver 2.3 12/113 2007/07/19 ST7712 5. Block Diagram S0 TO S395 VciLVL Vci VciOUT Voltage Adjustment Circuit VGH,VGL Source Drivers G0 TO G131 Gate Drivers Vci1 VLOUT1 DDVDH VLOUT2 VGH VLOUT3 VGL VLOUT4 VCL V0~V63 Step-up Ciruit Gate Driver Outputs Controller Circuit Data Latches RESET Oscillator VREG1OUT VcomH VcomL Vcom VGS Display Data RAM (DDRAM) [396X132X6] Vcom Circuit Gamma adjustment and Gray scale generator OSC1 OSC2 Timing Generator Display Address Counter Address Counter Data Register Instruction Register Bus Holder Instruction Decoder MPU INTERFACE(PARALLEL & SERIAL) D0 to D17 13/113 SDO SDI E_RD SCL RW_WR RS XCS XRESET IM3 IM2 IM1 IM0 Ver 2.3 2007/07/19 ST7712 6. Pin Function 6.1 Microprocessor Interface Name I/O Description No. IM0~IM3 I Pins to select interface mode with MPU. 4 IM3 IM2 IM1 IM0 Interface type Acceptable color mode 0 0 0 0 68-system 16 bits parallel 65K 0 0 0 1 68-system 8 bits parallel 65K 0 0 1 0 80-system 16 bits parallel 65K 0 0 1 1 80-system 8 bits parallel 65K 0 1 0 0 4-line SPI 65K 0 1 0 1 3-line SPI 65K 1 0 0 0 68-system 18 bits parallel 65K, 262K 1 0 0 1 68-system 9 bits parallel 65K, 262K 1 0 1 0 80-system 18 bits parallel 65K, 262K 1 0 1 1 80-system 9 bits parallel 65K, 262K Select the ST7712. XCS I 1 Connect Pin GND/ IOVcc MCU When XCS pin is set to “Low”, ST7712 is selected and accessible. When XCS pin is set to “High”, ST7712 is not selected and not accessible. MCU Select register. RS I When RS pins is set to “Low”: Register Index When RS pin is set to “High”: Register value/Pixel Data Read/Write execution control pin. MPU Type E_RD 1 MCU 1 MCU Description Read / Write control input pin -RW = “H”: When E is “H”, D0 to D17 are in an output E_RD I 6800-series E state. -RW = “L”: The data on D0 to D17 are latched at the falling edge of the E signal. Read enable clock input pin 8080-series /RD When /RD is “L”, D0 to D17 are in an output state. In 3 lines and 4 lines-system bus interface is fixed to “L” Read/Write execution control pin MPU type RW_WR RW_WR I Description Read / Write control input pin 6800-series RW RW = “H” : read RW = “L” : write Ver 2.3 14/113 2007/07/19 ST7712 Write enable clock input pin 8080-series /WR The data on D0 to D17 are latched at the rising edge of the /WR signal. In 3 lines and 4 lines-system bus interface write data at the “L” level. In 3 lines and 4 lines-system bus interface read data at the “H” level. Connect to an external resistor for R-C oscillation. 2 MCU or external RC circuit - 18-bit parallel bi-directional data bus in 68-systemt/80-system bus interface mode. 18 MCU 1 MCU Reset pin. XRESET 1 I When XRESET is "L", initialization is executed. OSC1, I OSC2 DB0~DB17 I/O 8-bit bus: DB17-DB10 are used ,and DB9~DB0 are fixed to “H” or “L” 9-bit bus: DB17-DB9 are used ,and DB8~DB0 are fixed to “H” or “L” 16-bit bus: DB17-DB10 and DB8-DB1 are used; DB9 and DB0 are fixed to “H” or “L” 18-bit bus: DB17-DB0 are all used. Synchronizing clock signal with amplitude IOVcc-GND in Serial Peripheral Interface SCL I (SPI). SDI I Pins for serial data input (SDI). Input at the rising edge of SCL. 1 MCU SDO O Pins for serial data output (SDO). Output at the falling edge of SCL. 1 MCU Source line output signal. 396 - S0~S395 O 132 - 1 MCU Logic-side Vcc: 2.4~3.3V. Logic-side GND: 0V 12 Supply to interface pins, XREST, XCS, RW_WR, E_RD, RS, DB17-0. 2 Power supply Power supply Analog output signals to source of TFT. If not used, leave open-circuit. Gate line output signal. G0~G131 O High voltage output signals to gates of TFT. If not used, leave open-circuit. Frame head pulse with amplitude IOVcc-GND. Use when writing data to RAM in FLM O synchronization with FLM. Vcc, GND - IOVcc=1.8V~3.3V. IOVcc must be supplied with the voltage in the same condition with IOVcc the internal logic voltage Vcc. When IOVcc=Vcc and assembled on COG, connect to Vcc on the FPC to avoid noise. Ver 2.3 15/113 2007/07/19 ST7712 6.2 Power Supply Pins Name I/O Description No. AGND I Ground pin for analog. 6 Vci I Power pins for analog circuit. Connect an external power supply of 6 Connect Pin Power supply Power supply 2.5~3.3V. VciLVL I 1 Power supply Internal reference voltage with amplitude Vci-GND. 4 Stabilizing capacitor, Vci1 Reference voltage for the step-up circuit 2. 6 VciOUT 2 Stabilizing capacitor, Generate a reference voltage (VciOUT, REGP) in accordance to the ratio set with VC2~0 registers from VciLVL level. Connect to the same power supply as the Vci, which has separate wiring from the VciLVL on the FPC. VciOUT O Vci1 I/O Set Vci1 so that VLOUT2 and VLOUT3 do not exceed the pre-determined ranges. VLOUT1 O Output voltage from step-up circuit 1 . VLOUT1 = 4.0~5.5V DDVDH DDVDH I/O Power supply for TFT source driver. DDVDH=4.5V~6.0V 6 VLOUT1 VLOUT2 O Output voltage from step-up circuit 2. 1 Stabilizing capacitor, VGH VLOUT2 VLOUT2 = max 16.5V VGH I Power supply for TFT gate drive. VGH max. = 16.5V. 2 VLOUT3 O Output voltage from step-up circuit 2. 1 Stabilizing capacitor, VGL Power supply for TFT gate drive. VGL = min. – 15V. 4 VLOUT3 Output voltage from step-up circuit 4. 1 Stabilizing capacitor, VLOUT3 = min -15V VGL I VLOUT4 O VCL I C11+,C11- I/O C12+,C12C21+,C21- VLOUT4 = 0 ~ -3.3V VCL Power supply for VcomL drive. Connect to VLOUT4. VCL=0V~3.3V 2 VLOUT4 Step-up capacitor connection pins for step-up circuit 1. 8 Step-up capacitor Step-up capacitor connection pins for step-up circuit 2 and circuit 4. 16 Step-up capacitor I/O C22+,C22Output voltage generated from stepped-up of REGP voltage. 1 Capacitor VREG1OUT becomes (1) a source driver grayscale reference voltage VREG1OUT O Step-up VDH, (2) a VcomH level reference voltage, or (3) a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VREG1OUT = 3.0 ~ (DDVDH – 0.5)V. Vcom1 Ver 2.3 O A power supply for the TFT common electrode. Output an alternating 16/113 4 TFT 2007/07/19 ST7712 Vcom2 command electrode current with amplitude VcomH-VcomL. The alternating cycle is changeable with register setting. The COM register controls the operation start/halt. This pin indicates a high level of Vcom generated in driving the Vcom VcomH 3 O alternation. When the Vcom alternation is driven, this pin indicates a low level of VcomL O Stabilizing Capacitor 3 Stabilizing Capacitor Vcom. An internal register can be used to adjust the voltage. Use to adjust VcomH with an external variable resistor. VcomR I 1 Variable resistor or open To adjust VcomH, place a variable resistor between VREG1OUT and GND. VGS I A reference level for the grayscale voltage generating circuit. 2 GND VMON -- Test pin. Leave open. 1 Open Test pin. Connect to capacitors externally or leave open. 1 Capacitor VLPWR -or open REGP -- Test pin. Leave open. 1 Open VSSF -- For Vcom voltage fine tune by trim fuse 1 Open FUS0~4 -- Test pin. Leave open. 5 Open FUSA0~A4 -- For Vcom voltage fine tune by trim fuse 4 Open VDDO -- Test pin. Connect to capacitors externally 2 Capacitor or open Internal IOVcc level. Use to fix the electric potential for unused 2 Open IOVccDUM1 O 4 Open 2 Open interface or fixed pins . When not used, leave open. Internal GND level. Use to fix the electric potential for unused IOGNDDUM1,2 O interface or fixed pins. When not used, leave open. A power supply for the TFT common electrode. Output an alternating current with amplitude VcomH-VcomL. The alternating cycle is VCMDUMMY1,2 -changeable with register setting. The COM register controls the operation start/halt. DUMMYA,B,C,D -- DUMMY pad, When no used, leave open 4 open DUMMY1,2,3,4,5,6,7,8,9 -- DUMMY pad, When no used, leave open 9 open Ver 2.3 17/113 2007/07/19 ST7712 7. Functional Description 7.1 Microprocessor Interface Chip Select Input There is XCS pin for chip selection. The ST7712 can connect with MPU when XCS is "L". If XCS is “H”, these pins are set to any other combination, RS, E_RD, and RW_WR inputs are disabled and DB0 to DB17 are to be high impedance. And, in case of 4-line/3-line serial interface, the internal shift register and the counter are reset. 7.1.1 Selecting Parallel / Serial Interface ST7712 has 10 types of interface with MPU, including two serial and eight parallel interfaces. This parallel or serial interface is determined by IM3~IM0 pins as shown in table 7.1.1. Table 7.1.1 Parallel / Serial Interface Mode Acceptable IM3 IM2 IM1 IM0 Interface type Data Bus Color mode 0 0 0 0 68-series 16 bits parallel DB17~DB10, DB8~DB1 65K 0 0 0 1 68-series 8 bits parallel DB17~DB10 65K 0 0 1 0 80-series 16 bits parallel DB17~DB10, DB8~DB1 65K 0 0 1 1 80-series 8 bits parallel DB17~DB10 65K 0 1 0 0 4-line SPI SDI, SDO 65K 0 1 0 1 3-line SPI SDI, SDO 65K 1 0 0 0 68-series 18 bits parallel DB17~DB0 65K, 262K 1 0 0 1 68-series 9 bits parallel DB17~DB9 65K, 262K 1 0 1 0 80-series 18 bits parallel DB17~DB0 65K, 262K 1 0 1 1 80-series 9 bits parallel DB17~DB9 65K, 262K 7.1.2 8-bit/9-bit/16-bit/18-bit Parallel Interface The ST7712 identifies various types of the data bus signals according to combinations of RS, E_RD and WR_RW. The signal types are shown as table 7.1.2. Table 7.1.2 Parallel Data Transfer Common 68-system 80-system Description Ver 2.3 RS E RW RD WR H H H L H Display data read out H H L H L Display data write L H H L H Register status read L H L H L Writes to internal register (instruction) 18/113 2007/07/19 ST7712 7.1.2.1 Relation between Data Bus and Gradation Data ST7712 offers the 65K color display, 262K color display. When using either 65K or 262K, you can specify color for each of R, G, B by using the palette function. Use the command (“Entry Mode (03H)” ID[1:0]) for switching between these modes. (1) 65K color display 1. 8-bit mode D17 D16 D15 D14 D13 D12 D11 D10 D9 R4 R3 R2 R1 R0 G5 G4 G3 -- G2 G1 G0 B4 B3 B2 B1 B0 -- st 1 write nd 2 write D8 D7 D6 D5 D4 D3 D2 D1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- D0 -- -- -- A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. “--”: Don’t care 2 16-bit mode D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R4 R3 R2 R1 R0 G5 G4 G3 -- G2 G1 G0 B4 B3 B2 B1 B0 -- write Data is acquired through signal write operation and then written to the display RAM. “--”: Don’t care (2) 262K color display 1. 9-bit mode D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 st R5 R4 R3 R2 R1 R0 G5 G4 G3 -- -- -- -- -- -- -- -- nd G2 G1 G0 B5 B4 B3 B2 B1 B0 1 write 2 write -- -- -- -- -- -- -- -- D0 --- A single pixel of data is read after the second write operation as shown, and it is written in the display RAM. “--”: Don’t care 2. 18 bit mode Write D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 R5 R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B5 B4 B3 B2 B1 B0 Data is acquired through signal write operation and then written to the display RAM. 7.1.3 Serial Interface The 4-line serial interface uses four pins XCS, SDI/SDO, SCL, and RS to enter commands and data. Meanwhile, the 3-line serial interface uses three pins XCS, SDI/SDO and SCL for the same purpose. Data read is not available in the serial interface. Data entered must be 8 bits in 4-line serial interface and 9 bits in 3-line serial interface. Refer to the following chart for entering commands, parameters or gray-scale data. The relation between gray-scale data and data bus in the serial input is the same as that in the parallel interface mode at every gradation. Ver 2.3 19/113 2007/07/19 ST7712 4-line SPI th When entering data (parameters): RS= HIGH at the rising edge of the 8 SCL. th When entering instruction register: RS= LOW at the rising edge of the 8 SCL 3-line SPI st When entering data (parameters): SDI= HIGH at the rising edge of the 1 SCL. st When entering instruction register: SDI= LOW at the rising edge of the 1 SCL. If XCS is caused to HIGH before 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before entering succeeding sets of data, you must correctly input the data concerned again. Ver 2.3 20/113 2007/07/19 ST7712 In order to avoid data transfer error due to incoming noise, it is recommended to set XCS at HIGH on byte basis to initialize the serial-to-parallel conversion counter and the register. th When executing the command RAMWR, set XCS to HIGH after writing the last address (after starting the 9 pulse th in case of 9-bit serial input or after starting the 8 pulse in case of 8-bit serial input). Ver 2.3 21/113 2007/07/19 ST7712 7-2 Access to DDRAM and Internal Registers ST7712 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the bus holder attached to the internal, requiring the cycle time alone without needing the wait time. For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system bus in the succeeding read cycle. Fig. 7.2.1 and Fig 7.2.2 illustrates these relations. Fig 7.2.1 Ver 2.3 22/113 2007/07/19 ST7712 8080 series 16 bits/18 bits interface mode MPU signal Write Operation RS /WR DATA N D(N) D(N+1) D(N+2) D(N+3) N D(N) D(N+1) D(N+2) D(N+3) N N+1 N+2 Internal signals /WR BUS HOLDER SOURCE ADDRESS N+3 Fig 7.2.2 Ver 2.3 23/113 2007/07/19 ST7712 SPI 4-Line interface mode SPI 3–Line interface mode Ver 2.3 24/113 2007/07/19 ST7712 7.3 Display Data RAM (DDRAM) 7.3.1 DDRAM It is 396 X 132 X 6 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the gate address and source address. Since display data from MCU D8 to D0 and D17 to D9 correspond to one or two pixels of RGB, data transfer related restrictions are reduced, realizing the display flexing. MCU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM configuration. Memory Map (When using the 65Kcolor. 8-bit mode) RGB alignment Column Pixels SS=0 Color 0 Data Pixels SS=1 Color Data GS=0 GS=1 0 1 2 3 4 5 6 7 131 130 129 128 127 126 125 124 124 125 126 127 128 129 130 131 7 6 5 4 3 2 1 0 Ver 2.3 S0 S1 R D17 D16 D15 D14 D13 1 131 S2 S3 S4 S5 G D12 D11 D10 D17 D16 D15 131 B D14 D13 D12 D11 D10 R D17 D16 D15 D14 D13 G D12 D11 D10 D17 D16 D15 130 B D14 D13 D12 D11 D10 S395 S394 S393 S392 S391 S390 R D17 D16 D15 D14 D13 G D12 D11 D10 D17 D16 D15 B D14 D13 D12 D11 D10 R D17 D16 D15 D14 D13 G D12 D11 D10 D17 D16 D15 B D14 D13 D12 D11 D10 25/113 S393 S394 S395 R D17 D16 D15 D14 D13 G D12 D11 D10 D17 D16 D15 0 B D14 D13 D12 D11 D10 S2 S1 S0 R D17 D16 D15 D14 D13 G D12 D11 D10 D17 D16 D15 B D14 D13 D12 D11 D10 2007/07/19 ST7712 Memory Map (When using the 65Kcolor. 16-bit mode) Pixels SS=0 Color 0 Data Pixels SS=1 Color Data GS=0 GS=1 0 1 2 3 4 5 6 7 131 130 129 128 127 126 125 124 124 125 126 127 128 129 130 131 7 6 5 4 3 2 1 0 Ver 2.3 RGB alignment Column 1 S0 S1 S2 S3 S4 S5 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 131 B D5 D4 D3 D2 D1 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 130 B D5 D4 D3 D2 D1 S395 S394 S393 S392 S391 S390 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 B D5 D4 D3 D2 D1 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 B D5 D4 D3 D2 D1 26/113 131 S393 S394 S395 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 0 B D5 D4 D3 D2 D1 S2 S1 S0 R D17 D16 D15 D14 D13 G D12 D11 D10 D8 D7 D6 B D5 D4 D3 D2 D1 2007/07/19 ST7712 Memory Map (When using the 262K color. 9-bit mode) Pixels SS=0 Color 0 Data S0 S1 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 131 S395 S394 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 Pixels SS=1 Color Data GS=0 GS=1 0 1 2 3 4 5 6 7 131 130 129 128 127 126 125 124 124 125 126 127 128 129 130 131 7 6 5 4 3 2 1 0 Ver 2.3 RGB alignment Column 1 131 S2 S3 S4 S5 S393 S394 S395 B D14 D13 D12 D11 D10 D9 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 130 B D14 D13 D12 D11 D10 D9 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 0 B D14 D13 D12 D11 D10 D9 S392 S391 S390 S2 S1 S0 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 B D14 D13 D12 D11 D10 D9 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D17 D16 D15 B D14 D13 D12 D11 D10 D9 S393 B D14 D13 D12 D11 D10 D9 27/113 2007/07/19 ST7712 Memory Map (When using the 262K color. 18-bit mode) Pixels SS=0 Color 0 Data Pixels SS=1 Color Data GS=0 GS=1 0 1 2 3 4 5 6 7 131 130 129 128 127 126 125 124 124 125 126 127 128 129 130 131 7 6 5 4 3 2 1 0 Ver 2.3 RGB alignment Column 1 S0 S1 S2 S3 S4 R D17 D16 D15 D14 D13 D12 S5 G D11 D10 D9 D8 D7 D6 131 B D5 D4 D3 D2 D1 D0 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D8 D7 D6 130 B D5 D4 D3 D2 D1 D0 S395 S394 S393 S392 S391 S390 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D8 D7 D6 B D5 D4 D3 D2 D1 D0 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D8 D7 D6 B D5 D4 D3 D2 D1 D0 28/113 131 S393 S394 S395 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D8 D7 D6 0 B D5 D4 D3 D2 D1 D0 S2 S1 S0 R D17 D16 D15 D14 D13 D12 G D11 D10 D9 D8 D7 D6 B D5 D4 D3 D2 D1 D0 2007/07/19 ST7712 7.3.2 Gate Address Control Circuit This circuit is used to control the address in the gate direction when MPU accesses the DDRAM or when reading the DDRAM to display image on the LCD. When the gate -direction scan is specified with RAM address command (21H) and the address are incremented from the start up to the end gate, the source address is incremented by 1 and the gate address returns to start page. The DDRAM supports up to 132 lines, and thus the total gate becomes 132. In the read operation, as the end gate is reached, the source address is automatically incremented by 1 and the gate address is returned to start gate. Using the address normal/inverse parameter of Driver output set(01H) command allows you to inverse the correspondence between the DDRAM address and command output. 7.3.3 Source Address Control Circuit This circuit is used to control the address in the source direction when MPU accesses the DDRAM. You can specify a scope of the source address using source address set command. When the source -direction scan is specified with RAM address command (21H) and the address are incremented from the start up to the end gate, the gate address is incremented by 1 and the column address returns to start source. In the read operation, too, the gate address is automatically incremented by 1 and returned to start gate as the end source is reached. Just like the gate address control circuit, using the source address normal/inverse parameter of Driver output set(01H) command enables to inverse the correspondence between the DDRAM source address and segment output. This arrangement relaxes restrictions in the chip layout on the LCD module. 7.3.4 I/O Buffer Circuit It is the bi-directional buffer used when MCU reads or writes the DDRAM. Since MCU’s read or write of DDRAM is performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM white the LCD is turned on does not cause troubles such as flicking of the display images. 7.3.5 Display data Latch Circuit This circuit is used to temporarily hold display data to be output from the DDRAM to the source line decoder circuit. Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not modify data in the DDRAM. Ver 2.3 29/113 2007/07/19 ST7712 7.4 Partial Display Using partial in command allows you turn on two separated partial display (division by line) of the screen. This mode requires less current consumption than the whole screen display, making it suitable for the equipment in the standby state. Screen 1 : Display area (partial display area) Screen 2 : Non-display area If the partial display region is out of the Max. Display range, it would be no operation. 7.5 Area Scroll Display Using the scroll volume set commands (VLE) allows you to scroll the display screen. You can select screen1 or screen2 to be scrolled with screen scroll enable set commands (VLE). Notice that you can not scroll two screens (screen1 and screen 2) at the same time. Please referred to command “Display control 1 (07H)” and Vertical Scroll Set (41H) for further description. VLE=00 Stationary Ver 2.3 VLE=01 VLE=10 Scrolled 30/113 2007/07/19 ST7712 7-6 γ-Correction Function The ST7712 incorporates γ-correction function to display 262K colors simultaneously by 8-level grayscale. The 8-level grayscale is determined by the by the gradient adjustment register and the micro-adjustment register. Select either positive or negative polarity of the registers according to the characteristics of a liquid crystal panel. DDRAM Display Data R5 R4 R3 R2 R1 R0 6 G5 G4 G3 G2 G1 G0 6 B5 B4 B3 B2 B1 B0 6 Positive Polarity Resigter VRP14 VRP03 VRP13 PKP02 PKP12 PKP22 PKP32 PKP42 PKP52 PRP02 PRP12 VRP02 VRP12 PKP01 PKP11 PKP21 PKP31 PKP41 PKP51 PRP01 PRP11 VRP01 VRP11 PKP00 PKP10 PKP20 PKP30 PKP40 PKP50 PRP00 PRP10 VRP00 VRP10 V0 8 64 grayscale Control <R> Grayscale 64 levels Amplifier Negative Polarity Resigter VRN14 Ver 2.3 VRN03 VRN13 PKN02 PKN12 PKN22 PKN32 PKN42 PKN52 PRN02 PRN12 VRN02 VRN12 PKN01 PKN11 PKN21 PKN31 PKN41 PKN51 PRN01 PRN11 VRN01 VRN11 PKN00 PKN10 PKN20 PKN30 PKN40 PKN50 PRN00 PRN10 VRN00 vRN10 64 grayscale Control <G> 64 grayscale Control <B> LCD Driver IC V63 Display 31/113 2007/07/19 ST7712 7.6.1 Grayscale Amplifier The eight levels (VIN0 t0 VIN7) of grayscale are determined by gradient adjustment register and the micro-adjustment register. The 8 levels are then divided into 64 levels (V0-63) by the ladder resistors placed between each level. (The structure of the grayscale amplifier is shown as below). 8 to 1 Selector 8 to 1 Selector Grayscale Amplifier 8 to 1 Selector 8 to 1 Selector 8 to 1 Selector 8 to 1 Selector Ver 2.3 32/113 2007/07/19 ST7712 Structure of Ladder / 8 to 1 selector Ver 2.3 33/113 2007/07/19 ST7712 7.6.2 γ-Adjustment Register The γ-adjustment registers set an appropriate grayscale voltage for the γ-characteristics of a liquid crystal display. The register group is categorized into the 4-types of register groups to adjust gradient and amplitude on the number of grayscale, the characteristics of the grayscale voltage. Each register can make an independent setting for the positive/negative polarity (the reference value and RGB are common for all registers). The figure below shows the operation of each adjusting register. Grayscale Voltage Grayscale Voltage Grayscale Number Grayscale Number a. Gradient adjustment b. Amplitude adjustment Grayscale Voltage Grayscale Voltage Grayscale Number Grayscale Number c. Reference adjustment d. Micro adjustment The Operation of adjusting register a) Gradient adjustment resistor The gradient adjustment resistors are used to adjust the gradient in the middle of the grayscale characteristics for the voltage without changing the dynamic range. It controls the variable resistor (VRHP (N) / VRLP (N)) of the ladder resistor for the grayscale voltage generator to achieve the adjustment. Also, there is a separate resistor on the positive and negative polarities in order for corresponding to asymmetry drive. b) Amplitude adjustment resistor The Amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistor (VRP(N)1) of the ladder resistor for the grayscale voltage generator located at lower side of the ladder resistor. Ver 2.3 34/113 2007/07/19 ST7712 c) Reference adjustment resistor The Reference-adjusting resistor is to adjust reference of the grayscale voltage. To accomplish the adjustment, it controls the variable resistor (VRP(N)0) of the ladder resistor for the grayscale voltage generator located at upper side of the ladder resistor. d) Micro adjustment resistor The micro adjustment resistor is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors. γ-correction registers Register Gradient Adjustment Amplitude Adjustment Micro Adjustment Ver 2.3 Positive Polarity PRP0[2:0] PRP1[2:0] VRP0[3:0] VRP1[4:0] PKP0[2:0] Negative Polarity PRN0[2:0] PRN1[2:0] VRN0[3:0] VRN1[4:0] PKN0[2:0] PKP1[2:0] PKN1[2:0] PKP3[2:0] PKN3[2:0] PKP4[2:0] PKN4[2:0] PKP5[2:0] PKN5[2:0] PKP6[2:0] PKN6[2:0] 35/113 Set-up contents Variable resistor VRHP(N) Variable resistor VRLP(N) Variable resistor VRP(N)0 Variable resistor VRP(N)1 The voltage of grayscale number 1 is selected by the 8 to 1 selector The voltage of grayscale number 8 is selected by the 8 to 1 selector The voltage of grayscale number 20 is selected by the 8 to 1 selector The voltage of grayscale number 43 is selected by the 8 to 1 selector The voltage of grayscale number 55 is selected by the 8 to 1 selector The voltage of grayscale number 62 is selected by the 8 to 1 selector 2007/07/19 ST7712 7.6.3 Ladder resistors and 8 to 1 Selector This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistance voltage. The variable and 8 to 1 resistors are controlled by the gamma resistor. Also, there are pins that connect to the external volume resistor and can compensate the variation among the panels. Variable Resistors There are 2 types of the variable resistors that is for the gradient adjustment (VRHP (N) / VRLP (N)) and for the oscillation adjustment (VRP (N)0/VRP (N)1). The resistance value is set by the gradient adjusting resistor and the oscillation adjustment resistor as below. Gradient Adjustment (1) Register Value PRP(N)0 [2:0] 000 001 010 011 100 101 110 111 Resistance Value VRHP(N) 0R 4R 8R 12R 16R 20R 24R 28R Gradient Adjustment (2) Register value PRP(N)1[2:0] Resistance value VRLP(N) 000 001 010 011 100 101 110 111 0R 4R 8R 12R 16R 20R 24R 28R Amplitude Adjustment (1) Ver 2.3 Register value VRP(N)[3:0] Resistance value VRP(N)0 0000 0001 0010 : : 1101 1110 1111 0R 2R 4R : : 26R 28R 30R 36/113 2007/07/19 ST7712 Oscillation Adjustment (2) Register value VRP(N)1[4:0] Resistance value VRP(N)1 00000 00001 00010 : : 11101 11110 11111 0R 1R 2R : : 29R 30R 31R 8-to-1 Selector In the 8-to-1 selector, the voltage level must be selected given by the ladder resistance and the micro-adjusting register and output the voltage the six types of the reference voltage, the VIN1 to VIN6. Following figure explains the relationship between the micro-adjusting register and the selecting voltage. Relationship between Micro-adjustment Register and Selected Voltage Register value PKP(N) [2:0] 000 001 010 011 100 101 110 111 Ver 2.3 VINP(N)1 KVP(N)1 KVP(N)2 KVP(N)3 KVP(N)4 KVP(N)5 KVP(N)6 KVP(N)7 KVP(N)8 VINP(N)2 KVP(N)9 KVP(N)10 KVP(N)11 KVP(N)12 KVP(N)13 KVP(N)14 KVP(N)15 KVP(N)16 Selected voltage VINP(N)3 VINP(N)4 KVP(N)17 KVP(N)18 KVP(N)19 KVP(N)20 KVP(N)21 KVP(N)22 KVP(N)23 KVP(N)24 37/113 KVP(N)25 KVP(N)26 KVP(N)27 KVP(N)28 KVP(N)29 KVP(N)30 KVP(N)31 KVP(N)32 VINP(N)5 KVP(N)33 KVP(N)34 KVP(N)35 KVP(N)36 KVP(N)37 KVP(N)38 KVP(N)39 KVP(N)40 VINP(N)6 KVP(N)41 KVP(N)42 KVP(N)43 KVP(N)44 KVP(N)45 KVP(N)46 KVP(N)47 KVP(N)48 2007/07/19 ST7712 γ-Correction Voltage Formula (Positive polarity) --1 Pins KVP0 KVP1 KVP2 KVP3 KVP4 KVP5 KVP6 KVP7 KVP8 KVP9 KVP10 KVP11 KVP12 KVP13 KVP14 KVP15 KVP16 KVP17 KVP18 KVP19 KVP20 KVP21 KVP22 KVP23 KVP24 KVP25 KVP26 KVP27 KVP28 KVP29 KVP30 KVP31 KVP32 KVP33 KVP34 KVP35 KVP36 KVP37 KVP38 KVP39 KVP40 KVP41 KVP42 KVP43 KVP44 KVP45 KVP46 KVP47 KVP48 KVP49 Formula VREG1OUT-∆V*VRP0/SUMRP VREG1OUT-∆V*(VRP0+5R)/SUMRP VREG1OUT-∆V*(VRP0+9R)/SUMRP VREG1OUT-∆V*(VRP0+13R)/SUMRP VREG1OUT-∆V*(VRP0+17R)/SUMRP VREG1OUT-∆V*(VRP0+21R)/SUMRP VREG1OUT-∆V*(VRP0+25R)/SUMRP VREG1OUT-∆V*(VRP0+29R)/SUMRP VREG1OUT-∆V*(VRP0+33R)/SUMRP VREG1OUT-∆V*(VRP0+33R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+34R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+35R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+36R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+37R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+38R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+39R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+40R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+45R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+46R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+47R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+48R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+49R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+50R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+51R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+52R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+68R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+69R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+70R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+71R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+72R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+73R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+74R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+75R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+80R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+81R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+82R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+83R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+84R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+85R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+86R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+87R+VRHP)/SUMRP VREG1OUT-∆V*(VRP0+87R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+91R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+95R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+99R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+103R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+107R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+111R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+115R+VRHP+VRLP)/SUMRP VREG1OUT-∆V*(VRP0+120R+VRHP+VRLP)/SUMRP Micro-adjusting register value -PKP02-00 =“000” PKP02-00=“001” PKP02-00=“010” PKP02-00=“011” PKP02-00=“100” PKP02-00=“101” PKP02-00=“110” PKP02-00=“111” PKP12-10 =“000” PKP12-10 =“001” PKP12-10 =“010” PKP12-10 =“011” PKP12-10 =“100” PKP12-10 =“101” PKP12-10 =“110” PKP12-10 =“111” PKP22-10 =“000” PKP22-10 =“001” PKP22-20 =“010” PKP22-20 =“011” PKP22-20 =“100” PKP22-20 =“101” PKP22-20 =“110” PKP22-20 =“111” PKP32-30 =“000” PKP32-30 =“001” PKP32-30 =“010” PKP32-30 =“011” PKP32-30 =“100” PKP32-30 =“101” PKP32-30 =“110” PKP32-30 =“111” PKP42-40 =“000” PKP42-40 =“001” PKP42-40 =“010” PKP42-40 =“011” PKP42-40 =“100” PKP42-40 =“101” PKP42-40 =“110” PKP42-40 =“111” PKP52-50 =“000” PKP52-50 =“001” PKP52-50 =“010” PKP52-50 =“011” PKP52-50 =“100” PKP52-50 =“101” PKP52-50 =“110” PKP52-50 =“111” -- Reference voltage VINP0 VINP1 VINP2 VINP3 VINP4 VINP5 VINP6 VINP7 SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN ∆V: Potential difference between KV0 and KV49 = VREG1OUT*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)] Ver 2.3 38/113 2007/07/19 ST7712 γ-Correction Voltage Formula (Positive polarity) --2 Ver 2.3 Voltage of grayscale Formula Voltage of grayscale Formula V0 VINP0 V32 V43+(V20-V43)*(11/23) V1 VINP1 V33 V43+(V20-V43)*(10/23) V2 V3+(V1-V3)*(8/24) V34 V43+(V20-V43)*(9/23) V3 V8+(V1-V8)*(450/800) V35 V43+(V20-V43)*(8/23) V4 V8+(V3-V8)*(16/24) V36 V43+(V20-V43)*(7/23) V5 V8+(V3-V8)*(12/24) V37 V43+(V20-V43)*(6/23) V6 V8+(V3-V8)*(8/24) V38 V43+(V20-V43)*(5/23) V7 V8+(V3-V8)*(4/24) V39 V43+(V20-V43)*(4/23) V8 VINP2 V40 V43+(V20-V43)*(3/23) V9 V20+(V8-V20)*(22/24) V41 V43+(V20-V43)*(2/23) V10 V20+(V8-V20)*(20/24) V42 V43+(V20-V43)*(1/23) V11 V20+(V8-V20)*(18/24) V43 VINP4 V12 V20+(V8-V20)*(16/24) V44 V55+(V43-V55)*(22/24) V13 V20+(V8-V20)*(14/24) V45 V55+(V43-V55)*(20/24) V14 V20+(V8-V20)*(12/24) V46 V55+(V43-V55)*(18/24) V15 V20+(V8-V20)*(10/24) V47 V55+(V43-V55)*(16/24) V16 V20+(V8-V20)*(8/24) V48 V55+(V43-V55)*(14/24) V17 V20+(V8-V20)*(6/24) V49 V55+(V43-V55)*(12/24) V18 V20+(V8-V20)*(4/24) V50 V55+(V43-V55)*(10/24) V19 V20+(V8-V20)*(2/24) V51 V55+(V43-V55)*(8/24) V20 VINP3 V52 V55+(V43-V55)*(6/24) V21 V43+(V20-V43)*(22/23) V53 V55+(V43-V55)*(4/24) V22 V43+(V20-V43)*(21/23) V54 V55+(V43-V55)*(2/24) V23 V43+(V20-V43)*(20/23) V55 VINP5 V24 V43+(V20-V43)*(19/23) V56 V60+(V55-V60)*(20/24) V25 V43+(V20-V43)*(18/23) V57 V60+(V55-V60)*(16/24) V26 V43+(V20-V43)*(17/23) V58 V60+(V55-V60)*(12/24) V27 V43+(V20-V43)*(16/23) V59 V60+(V55-V60)*(8/24) V28 V43+(V20-V43)*(15/23) V60 V62+(V55-V62)*(350/800) V29 V43+(V20-V43)*(14/23) V61 V62+(V60-V62)*(16/24) V30 V43+(V20-V43)*(13/23) V62 VINP6 V31 V43+(V20-V43)*(12/23) V63 VINP7 39/113 2007/07/19 ST7712 γ-Correction Voltage Formula (Negative Polarity)--1 Pins KVP0 KVP1 KVP2 KVP3 KVP4 KVP5 KVP6 KVP7 KVP8 KVP9 KVP10 KVP11 KVP12 KVP13 KVP14 KVP15 KVP16 KVP17 KVP18 KVP19 KVP20 KVP21 KVP22 KVP23 KVP24 KVP25 KVP26 KVP27 KVP28 KVP29 KVP30 KVP31 KVP32 KVP33 KVP34 KVP35 KVP36 KVP37 KVP38 KVP39 KVP40 KVP41 KVP42 KVP43 KVP44 KVP45 KVP46 KVP47 KVP48 KVP49 Formula VREG1OUT-∆V*VRN0/SUMRN VREG1OUT-∆V*(VRN0+5R)/SUMRN VREG1OUT-∆V*(VRN0+9R)/SUMRN VREG1OUT-∆V*(VRN0+13R)/SUMRN VREG1OUT-∆V*(VRN0+17R)/SUMRN VREG1OUT-∆V*(VRN0+21R)/SUMRN VREG1OUT-∆V*(VRN0+25R)/SUMRN VREG1OUT-∆V*(VRN0+29R)/SUMRN VREG1OUT-∆V*(VRN0+33R)/SUMRN VREG1OUT-∆V*(VRN0+33R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+34R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+35R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+36R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+37R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+38R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+39R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+40R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+45R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+46R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+47R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+48R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+49R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+50R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+51R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+52R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+68R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+69R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+70R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+71R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+72R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+73R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+74R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+75R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+80R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+81R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+82R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+83R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+84R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+85R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+86R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+87R+VRHP)/SUMRN VREG1OUT-∆V*(VRN0+87R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+91R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+95R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+99R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+103R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+107R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+111R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+115R+VRHP+VRLP)/SUMRN VREG1OUT-∆V*(VRN0+120R+VRHP+VRLP)/SUMRN Micro-adjusting register value -PKN02-00 =“000” PKN02-00=“001” PKN02-00=“010” PKN02-00=“011” PKN02-00=“100” PKN02-00=“101” PKN02-00=“110” PKN02-00=“111” PKN12-10 =“000” PKN12-10 =“001” PKN12-10 =“010” PKN12-10 =“011” PKN12-10 =“100” PKN12-10 =“101” PKN12-10 =“110” PKN12-10 =“111” PKN22-10 =“000” PKN22-10 =“001” PKN22-20 =“010” PKN22-20 =“011” PKN22-20 =“100” PKN22-20 =“101” PKN22-20 =“110” PKN22-20 =“111” PKN32-30 =“000” PKN32-30 =“001” PKN32-30 =“010” PKN32-30 =“011” PKN32-30 =“100” PKN32-30 =“101” PKN32-30 =“110” PKN32-30 =“111” PKN42-40 =“000” PKN42-40 =“001” PKN42-40 =“010” PKN42-40 =“011” PKN42-40 =“100” PKN42-40 =“101” PKN42-40 =“110” PKN42-40 =“111” PKN52-50 =“000” PKN52-50 =“001” PKN52-50 =“010” PKN52-50 =“011” PKN52-50 =“100” PKN52-50 =“101” PKN52-50 =“110” PKN52-50 =“111” -- Reference voltage VINN0 VINN1 VINN2 VINN3 VINN4 VINN5 VINN6 VINN7 SUMRN: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRN SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN ∆V: Potential difference between KV0 and KV49 = VREG1OUT*SUMRP*SUMRN / SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)] Ver 2.3 40/113 2007/07/19 ST7712 Gamma Voltage Formula (Negative Polarity) --2 Voltage of grayscale Formula Voltage of grayscale Formula V0 VINN0 V32 V43+(V20-V43)*(11/23) V1 VINN1 V33 V43+(V20-V43)*(10/23) V2 V3+(V1-V3)*(8/24) V34 V43+(V20-V43)*(9/23) V3 V8+(V1-V8)*(450/800) V35 V43+(V20-V43)*(8/23) V4 V8+(V3-V8)*(16/24) V36 V43+(V20-V43)*(7/23) V5 V8+(V3-V8)*(12/24) V37 V43+(V20-V43)*(6/23) V6 V8+(V3-V8)*(8/24) V38 V43+(V20-V43)*(5/23) V7 V8+(V3-V8)*(4/24) V39 V43+(V20-V43)*(4/23) V8 VINN2 V40 V43+(V20-V43)*(3/23) V9 V20+(V8-V20)*(22/24) V41 V43+(V20-V43)*(2/23) V10 V20+(V8-V20)*(20/24) V42 V43+(V20-V43)*(1/23) V11 V20+(V8-V20)*(18/24) V43 VINN4 V12 V20+(V8-V20)*(16/24) V44 V55+(V43-V55)*(22/24) V13 V20+(V8-V20)*(14/24) V45 V55+(V43-V55)*(20/24) V14 V20+(V8-V20)*(12/24) V46 V55+(V43-V55)*(18/24) V15 V20+(V8-V20)*(10/24) V47 V55+(V43-V55)*(16/24) V16 V20+(V8-V20)*(8/24) V48 V55+(V43-V55)*(14/24) V17 V20+(V8-V20)*(6/24) V49 V55+(V43-V55)*(12/24) V18 V20+(V8-V20)*(4/24) V50 V55+(V43-V55)*(10/24) V19 V20+(V8-V20)*(2/24) V51 V55+(V43-V55)*(8/24) V20 VINN3 V52 V55+(V43-V55)*(6/24) V21 V43+(V20-V43)*(22/23) V53 V55+(V43-V55)*(4/24) V22 V43+(V20-V43)*(21/23) V54 V55+(V43-V55)*(2/24) V23 V43+(V20-V43)*(20/23) V55 VINN5 V24 V43+(V20-V43)*(19/23) V56 V60+(V55-V60)*(20/24) V25 V43+(V20-V43)*(18/23) V57 V60+(V55-V60)*(16/24) V26 V43+(V20-V43)*(17/23) V58 V60+(V55-V60)*(12/24) V27 V43+(V20-V43)*(16/23) V59 V60+(V55-V60)*(8/24) V28 V43+(V20-V43)*(15/23) V60 V62+(V55-V62)*(350/800) V29 V43+(V20-V43)*(14/23) V61 V62+(V60-V62)*(16/24) V30 V43+(V20-V43)*(13/23) V62 VINN6 V31 V43+(V20-V43)*(12/23) V63 VINN7 V0 Negative Polarity Output Level Positive Polarity V63 RAM data 111111 Relationship between RAM data and output voltage Ver 2.3 41/113 2007/07/19 ST7712 7.7 Oscillation circuit The ST7712 can either use the internal resistor or external resistors to generate the oscillation. 7.7.1 Internal Resistor The ST7712 can use the on-chip Oscillator without external resistor. When the internal oscillator is used, OSC1 and OSC2 must left open. This oscillator signal is used in the voltage converter and display timing generation circuit. 7.7.2 External Resistor The ST7712 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section. Notes: The Rf resistor value should be based on the RC loading of panel and FPC to fine tune Rf value to apparoach the osc frequency that customer need. Ver 2.3 42/113 2007/07/19 ST7712 7.8 Frame-Frequency Adjustment Function The ST7712 includes frame frequency adjustment function. While the oscillation frequency is fixed, the frame frequency during the LC drive can be adjusted by the Frame cycle set instruction (0BH) setting (DIV, RTN). Setting the oscillation frequency high in advance allows switching the frame frequency in accordance to the kind of picture to display (i.e. moving/still picture). When displaying a still picture, set the frame frequency low to save power consumption, while setting the frame frequency high for displaying a moving picture which requires high-speed switching of screens. 7.8.1 Relationship between Liquid Crystal Drive Duty and Frame Frequency The relationship between the liquid crystal drive duty and the frame frequency is calculated by the following formula. The frame frequency is adjusted through the Frame cycle set instruction (0BH) setting with the 1-H period adjustment bit (RTN bit) and the operation clock division bit (DIV bit). fOSC Frame frequency = [Hz] Clock cycles per raster-row x division ratio x (Line+BP+FP) fOSC: R-C oscillation frequency Line: Number of raster-rows (NL bit) Clock cycles per raster-row: RTN bit Division ratio: DIV bit The No. of raster-rows for the front porch: FP The No. of raster-row for hte back porch: BP Example calculation Number of drive raster-rows: 132 1-H period: 16 clock cycles (RTN3-0 = 0000) Operation clock division ratio: 1/1 fosc = 60 Hz × (0 + 16) clock × 1/1 × (132 + 16) lines = 142 (kHz) In this case, the R-C oscillation frequency becomes 142 kHz. Adjust the external resistor to the R-C oscillator to 142 kHz. Ver 2.3 43/113 2007/07/19 ST7712 7.9 Voltage Setting VLOUT2 VGH(+9~16.5V) BT VLOUT1 DVDDH (4.5V~6.0V) VREG1OUT VREG1OUT(3.0V~DVDDH-0.5V) VCI(2.5~3.3V) VCI1 VCM/VCOMR VRH VcomH(3.0V~DVDDH-0.5V) VCC(2.4~3.3V) VDV IOVCC(1.8~3.3V) BT GND(0V) VCOMG VcomL(VCL+0.5)~1V) VLOUT4 VCL (0~-3.3V) VLOUT3 VGL (-4V~-15V) Note 1) the voltage will drop from the set voltage (an ideal voltage) with regard to each DDVDH, VGH, VGL, VCL output due to current consumption. (DDVDH - VREG1OUT) > 0.5V and (VcomL – VCL) > 0.5V show the relationship in relation to the actual voltage. When Vcom alternating frequency is high (e.g. alternation occurs by line), current consumption is also large. In this case, check voltage before use. VGH VDH VcomH Vcom VcomL Source Driver Output Gate Driver Output VGL Voltage output to TFT LCD Ver 2.3 44/113 2007/07/19 ST7712 7.10 8-Color Display Mode The ST7712 incorporates 8-color display mode. Using grayscale levels are V0 and V63 and all other level power supplies are halt. So that it’s power consumption will be fewer. Also, during the 8-color mode, the Gamma micro adjustment register, PKP00-PKP52 and PKN00-PKN52 are invalid. Rewrite the data of DDRAM R/G/B to 000000 or 111111 before set the mode. The level power supply (V1-V62) is in OFF condition during the 8-color mode in order to select V0/V63. DDRAM Display Data R5 R4 R3 R2 R1 R0 6 G5 G4 G3 G2 G1 G0 6 B5 B4 B3 B2 B1 B0 6 Positive Polarity Resigter VRP14 VRP03 VRP13 PKP02 PKP12 PKP22 PKP32 PKP42 PKP52 PRP02 PRP12 VRP02 VRP12 PKP01 PKP11 PKP21 PKP31 PKP41 PKP51 PRP01 PRP11 VRP01 VRP11 PKP00 PKP10 PKP20 PKP30 PKP40 PKP50 PRP00 PRP10 VRP00 VRP10 V0 8 Grayscale Amplifier ON/OFF Control<R> 2 levels Negative Polarity Resigter VRN14 Ver 2.3 VRN03 VRN13 PKN02 PKN12 PKN22 PKN32 PKN42 PKN52 PRN02 PRN12 VRN02 VRN12 PKN01 PKN11 PKN21 PKN31 PKN41 PKN51 PRN01 PRN11 VRN01 VRN11 PKN00 PKN10 PKN20 PKN30 PKN40 PKN50 PRN00 PRN10 VRN00 vRN10 ON/OFF Control <G> ON/OFF Control <B> LCD Driver IC V63 Display 45/113 2007/07/19 ST7712 7.11 Power Supply Circuit 7.11.1 External Configuration of Power Supply Circuit Capacitor Capacity Recommended voltage Capacitor No. 1uF 6V C1, C2, C3, C4, C7, CA, CB, CC, CD, CE 0.1µF~1.0uF 25V C5, C6, C8, C9 Shot-Key Diode Feature Connect Pin. VF<0.4V/20mA at 25 ℃, VR>=30V GND-VGL VCI-VGH VCI-DVDDH Variable resistor Feature Connect Pin. >200KΩ VcomR Ver 2.3 46/113 2007/07/19 ST7712 8. Internal Instruction (Command) Data Bus and Register MSB D14 D13 D12 LSB R/W R/S D15 D11 D10 D9 D8 D7 D6 D5 D4 D3 Command W 0 - - - - - - - - - read/write R 0 * * * * * * * * 0 * * * * Internal OSC W 1 - - - - - - - - - - - RAJ[2:0] Resistor R 1 0 1 1 1 0 0 0 1 0 0 1 0 Driver Output Set W 1 - - - - - SM LCD Driving W 1 - - - - FLD[1:0] GS SS - - - B/C EOR - - D2 D1 D0 Code I[6:0] * 0 0 * * OSCPWR OSCON * * 00h selection NL[4:0] 01h NW[5:0] 02h Wave Form Set Entry Mode W 1 - DFM[1:0] Display Control 1 W 1 - - - PT[1:0] Display Control 2 W 1 - - - - Display Control 3 W 1 - - - - Frame Cycle Set W 1 Power Control 1 W 1 Power Control 2 W 1 - Power Control 3 W 1 - - - Power Control 4 W 1 - - VCOMG Fuse Set W 1 - - R 1 0 0 W 1 NO[1:0] - BGR - - - VLE[1:0] - - - ID[1] ID[0] AM ACGO - - 03h SPT - - GON DTE CL REV D[1] D[0] 07h - - - - BP[3:0] - - PTG[1:0] ISC[3:0] 09h - DIV[2:0] RTN[3:0] 0Bh - AP[2:0] FP[3:0] - - SDT[1:0] - EQ[1:0] SAP[2:0] - - DC2[2:0] - - - - 0 0 0 - BT[2:0] - - DC1[2:0] - - - - - - - - - - - FSAEN 0 0 0 0 0 * VDV[4:0] - DC0[2:0] - - 08h DK SLP - STB VC[2:0] PON 11h VRH[3:0] VCM[4:0] 10h 12h VCMF[1:0] 13h FSA[4:0] 15h RAM Address * * * * * AD[15:0] 21h Set Write Data to W 1 Write Data to DDRAM WD[17:0], depend on the selected interface DDRAM R 1 Read Data from DDRAM RD[17:0], depend on the selected interface Gamma Control W 1 - - - - - PKP1[2:0] - - - - - PKP0[2:0] 30h Set W 1 - - - - - PKP3[2:0] - - - - - PKP2[2:0] 31h W 1 - - - - - PKP5[2:0] - - - - - PKP4[2:0] 32h W 1 - - - - - PRP1[2:0] - - - - - PRP0[2:0] 33h W 1 - - - - - PKN1[2:0] - - - - - PKN0[2:0] 34h W 1 - - - - - PKN3[2:0] - - - - - PKN2[2:0] 35h W 1 - - - - - PKN5[2:0] - - - - - PKN4[2:0] 36h W 1 - - - - - PRN1[2:0] - - - - - PRN0[2:0] 37h W 1 - - - - - - - - - - - - - - 22h VRP1[4:0] W 1 0 0 0 Gate Scan Set W 1 - - - - - VRN1[4:0] - - - Vertical Scroll Set W 1 - - - - - - - - 1st Screen Drive W 1 SE1[7:0] VRP0[3:0] 38h VRN0[3:0] 39h SCN[4:0] 40h VL[7:0] 41h SS1[7:0] 42h Set 2nd Screen Drive W 1 SE2[7:0] SS2[7:0] 43h Set Horizontal RAM W 1 0 HEA[7:0] HSA[7:0] 44h Address Position Vertical RAM W 1 0 VEA[7:0] VSA[7:0] 45h Address Position Ver 2.3 47/113 2007/07/19 ST7712 Note Instruction Data Bus and External Data Bus mapping EXT: External Data Bus CMD: Internal Instruction Data Bus 18,16 Bits Interface EXT D17 16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CMD D15 D14 D13 D12 D11 D10 D9 D8 -- D7 D6 D5 D4 D3 D2 D1 D0 -- “--”: don’t care 9,8 Bits Interface First Transfer EXT D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CMD D15 D14 D13 D12 D11 D10 D9 D8 -- -- -- -- -- -- -- -- -- -- “--”: don’t care Second Transfer EXT D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CMD D7 D6 D5 D4 D3 D2 D1 D0 -- -- -- -- -- -- -- -- -- -- “--”: don’t care Ver 2.3 48/113 2007/07/19 ST7712 Command read/write (IR) R/W RS D15 D14 D13 D12 D11 D10 D9 D8 D7 W 0 - - - - - - - - - - - - - - - - - - INI D6 D5 D4 D3 D2 D1 D0 0 0 0 I[6:0] 0 0 0 0 Write: The index instruction specifies the RAM control indexes (R00h to R45h). It sets the register number from 0000000 to 1111111 in binary form. Don’t use the register or instruction bits to which the index is not assigned. Read: Read instruction reads the internal status of the ST7712. (LADDER[7:0]: Indicate the position of raster-row driving liquid crystal; I[6:0]: Read value of the Instruction Register.) INI: The internal state after resetting of ST7712 Internal Register selection (00h) W/R RS D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 W 1 - - - - - - - - - - - R 1 0 1 1 1 0 0 0 1 0 0 1 0 0 - - - - - - - - - - - 1 0 INI D4 D3 D2 D1 D0 OSCPWR OSCON 0 * * 0 0 0 RAJ[2:0] Write RAJ[2:0]: When OSCON=1 and OSCPWR=0, the internal resistor for OSC can be adjusted by setting RAJ[2:0]. RAJ1 0 0 0 0 1 1 1 1 RAJ2 0 0 1 1 0 0 1 1 RAJ3 0 1 0 1 0 1 0 1 internal resistor for OSC 350K 280K 250K 220K 190K (Default value) 170K 160K 120K Unit(KHz) OSCPWR: Select Internal or external OSC power and OSC. When OSCPWR=0, use the internal OSC power and resistor When OSCPWR=1, use the external OSC power and resistor OSCON: Turn on or turn off the OSC. When OSCON=0, OSC OFF When OSCON=1, OSC ON Read D15-D4: Identify the ST7712. The data read from D15-D4 can tell ST7712 from the other ICs. D15-D12 fixed to “0111” (07h) D11-D8 fixed to “0001” (01h) D7-D4 fixed to “0010” (02h) D1 and D0 are read as the status of OSCPWR and OSCON. Ver 2.3 49/113 2007/07/19 ST7712 Command Read flow chart 18bits and 16 bits interface mode read flow chart Ver 2.3 9bit, 8bit and SPI interface mode read flow chart 50/113 2007/07/19 ST7712 Driver Output Set (01h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 - - - - - SM GS SS - - - - - - - - 0 0 0 - - - D4 D3 D2 D1 D0 0 1 NL[4:0] 1 1 1 SM: Set the scan order by the gate driver. SM 0 1 Scan order interlaced gate order cascaded gate order SM 0 GS 0 0 1 Scan direction G0,G1,G2,G3….. G129,G130,G131 G0 G2 G131,G130,G129…. G4,G3,G2,G1 G1 G3 TFT Panel G129 G131 G128 G130 G0 G130 G131 G1 ST7712 Ver 2.3 51/113 2007/07/19 ST7712 1 0 G0,G2,G4,G6…. G128,G130 G1,G3,G5,G7…. G129,G131 1 1 G0,G2,G4,G6…. G128,G130 G1,G3,G5,G7…. G129,G131 Note: When the cascade function is used (SM=1) with 128X128 resolution, the even side layout of gate line must be starting from G0,G2,…,G130 and the odd side layout of gate line must be starting from G1,G3,..G123. Example: TFT-Panel layout with 128X128 resolution. GS: Set the shift direction of outputs from the gate driver. When GS=0, G0 shift to G131; when GS=1, G131 shift to G0. GS Shift direction 0 Low to High Gate order (G0 to G131) 1 High to Low Gate order (G131 to G0) Ver 2.3 52/113 2007/07/19 ST7712 SS: Set the shift direction of outputs from the source driver. When SS=0, S0 shift t0 S395; when SS=1, S395 shift to S0. SS Shift direction Note 0 Source shift from S0 to S395 SS=0, BGR=0 R G B 1 Source shift from S395 to S0 SS=0, BGR=1 B G R SS=1. BGR=1 R G B SS=1, BGR=0 B G R Note1: When source output channels and Gate output channels of IC are not total occupied, some lines will no display when GS or SS register is changed. NL[4:0]: Set the number of LCD raster-rows. The DDRAM address mapping is not affected by this setting. Raster-rows number= NL*4+16. Note: The setting value should be larger than the panel size. NL4 NL3 NL2 NL1 NL0 LCD Display size Gate line in raster-rows use 0 0 0 0 0 16 396x16 dots G0~G15 0 0 0 0 1 20 396x20 dots G0~G19 0 0 0 1 0 24 396x24 dots G0~G23 0 0 0 1 1 28 396x28 dots G0~G27 0 0 1 0 0 32 396x32 dots G0~G31 0 0 1 0 1 36 396x36 dots G0~G35 : : : : : : : : 1 1 0 1 1 124 396x124 dots G0~G123 1 1 1 0 0 128 396x128 dots G0~G127 1 1 1 0 1 132 396x132 dots G0~G131 1 1 1 1 0 Setting Disable 1 1 1 1 1 Note: A front porch (FP) and a back porch period (BP) will be inserted as a blank period area before/after driving all gate lines. LCD Driving Wave Form Set (02h) W/R RS W 1 INI D15 D14 D13 D12 - - - - - - - - D11 D10 D9 D8 FLD[1:0] B/C EOR - - 0 0 0 - - 1 D7 D6 D5 D4 D3 D2 D1 D0 0 0 NW[5:0] 0 0 0 0 FLD [1:0]: Set the number of fields during n-field interlaced drive. FLD[1:0] Number of Fields 0 0 0 1 1 1 0 1 1 field VS when B/C=0 VCOMAC fix at VCOMH B/C=1 VCOMAC fix at VCOML 1 field 2 field 3 field B/C: When B/C =0, enter the VCOMAC frame inversion mode, means where alternations occur every frame while driving liquid crystal. When B/C=1, enter the VCOMAC n-raster-rows inversion mode. EOR: When BC=1 and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EOR (Exclusive-OR) for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive raster-row and the n raster-row. When BP and FP setting value is even, set EOR=1 to gain better display quality. Ver 2.3 53/113 2007/07/19 ST7712 NW[5:0]: Set the number “n” of n-raster-rows VCOMAC inversion (when B/C=”1”) The number of “n”= NW[5:0]+1 (NW[5:0] sets from 0 to 63) Entry Mode (03h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 - DFM[1:0] BGR - - - - - - ID[1] ID[0] AM ACGO - - - 1 0 - - - - - - 1 1 0 0 - - 0 DFM[1:0]: Decide the data format for the RAM write data transmission. DFM1 DFM0 Number of Colors 0 0 Setting disable 0 1 Setting disable 1 0 262K color 1 1 65K color BGR: When BGR=0, the data order write to DDRAM is R, G, B. When BGR=1, the data write to DDRAM order reverse from R, G, B to B, G, R. RGB SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG395 0 R G B R G B R G … B 1 B G R B G R B G … R Note: When BGR is used (BGR=1), the read out data of red-pixel and blue-pixel should be exchanged to gain the correct data or the data of red-pixel and blue-pixel are not correct. ID[1]: When ID[1]=1, the Address Counter incremented by 1 horizontally. When ID[1]=0, Address Counter horizontal decremented by 1 horizontally. ID[0]: When ID[0]=1, the Address Counter incremented by 1 vertically. When ID[0]=0, Address Counter horizontal decremented by 1 vertically. Note: The increment/decrement setting of the address counter by ID[1] and ID[0] is performed independently for the upper (AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of moving through the addresses when the DDRAM is written. AM: When AM = “0”, the address counter is updated in the horizontal direction after data are written to DDRAM. When AM = “1”, the address counter is updated in the vertical direction after data are written to DDRAM. When the window address is specified, data are written to the DDRAM area specified by the window address in the manner specified with ID[1] ,ID[0] ,and AM settings. Ver 2.3 54/113 2007/07/19 ST7712 ID[1]=0; ID[0]=0 H: decrement V: decrement ID[1]=0; ID[0]=1 H: increment V: increment ID[1]=1; ID[0]=0 H: decrement V: increment ID[1]=1; ID[0]=1 H: increment V: increment (00h,00h) (00h,00h) (00h,00h) AM=0 (00h,00h) Horizontal (83h,83h) AM=1 (00h,00h) (83h,83h) (83h,83h) (00h,00h) (83h,83h) (00h,00h) (00h,00h) Vertical (83h,83h) (83h,83h) (83h,83h) (83h,83h) Note: When changing the setting of ID[1-0] value, please set the RAM address set command(21h) again. Example: Panel resolution is 132X132 AM=0, ID[1-0]=00, RAM address set command (21h) is 83h,83h ACGO: Decide the Address Counter will update after data are written to the DDRAM automatically or not. When ACGO=0, AC updates after data are written to the DDRAM area. When ACGO=1, AC doesn’t change (keep on the AD value which be set) after data are written to or read from DDRAM area. ACGO 0 1 AC status AC update AC keep AD value Power up (04h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 - - - - - - - - 0 0 0 0 0 0 UP 0 - - - - - - - - 0 0 0 0 0 0 0 0 UP: Help analog circuit stability of IC when IC turn on moment to avoid abnormal display. After analog voltage stable, must turn off this function. UP 0 1 Ver 2.3 UP status Turn OFF Turn ON 55/113 2007/07/19 ST7712 Display Control 1 (07h) W/R RS D15 D14 D13 D12 W 1 - - - PT[1:0] - - - 0 INI D11 0 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 VLE[1:0] SPT - - GON DTE CL REV D[1] D[0] 0 0 - - 0 0 0 1 0 0 0 PT[1:0]: Decide the source output voltage in the non-display area when entry the partial display mode. PT[1:0] Positive Polarity Negative Polarity 0 0 V63 V0 0 1 V63 V0 1 0 GND GND 1 1 Hi-Z Hi-Z VLE[1:0]: When VLE[0] = 1, the first screen is scrolled in the vertical direction; when VLE[1] = 1, the second screen is scrolled in the vertical direction. Note: The first and second screens can’t be scrolled at the same time. VLE[1] VLE[0] Scree2 Screen1 0 0 Stationary Stationary 0 1 Stationary Scrolled 1 0 Scrolled Stationary 1 1 Setting disabled SPT: When SPT=0, liquid crystal is one screen. When SPT = 1, liquid crystal is driven with 2 split screens. GON: When GON = 0, the gate-on level is VGH, and the gate-off level is GND. When GOC=1, the gate-on level is VGH, and the gate-off level is VGL. DTE: When DTE=0, the DISPTMG is fixed to GND, and when DTE=1, the DISPTMG is output operation. CL: When CL = 1, entry the 8-color display mode. RAM data format have to redefine before writing into IC RAM to avoid abnormal display. CL=0: 262K color; CL=1: 8 color 8 color mode data format: Pattern REV=1 REV=0 Black 000000,000000,000000 111111,111111,111111 White 111111,111111,111111 000000,000000,000000 Red 111111,000000,000000 000000,111111,111111 Green 000000,111111,000000 111111,000000,111111 Blue 000000,000000,111111 111111,111111,000000 Yellow 111111,111111,000000 000000,000000,111111 Magenta 111111,000000,111111 000000,1111111,000000 Cyan 000000,111111,111111 111111,000000,000000 REV: When REV=0, the display is normal in display area; when REV = 1, the display entries reverse mode in display area. Normally white or normally black panels can be controlled by the grayscale level inversion without changing the data. REV DDRAM Positive Polarity Negative Polarity Data 0 1 Ver 2.3 000000 : 111111 000000 : 111111 V63 : V0 V0 : V63 56/113 V0 : V63 V63 : V0 2007/07/19 ST7712 D[1]/ D[0]: Display is on when D[1] = 1 and off when D[1] = 0. When off, the display data remains in the DDRAM, and can be displayed instantly by setting D[1] = 1. When D[1]= 0, the display is off with the entire source outputs set to the GND level. By this function, ST7712 can control the charging current for the LCD with AC driving. Control the display on/off while control GON and DTE. When D[1]=0 and D[0]=1, the internal display of ST7712 performed although the display is off. When D[1]=0 and D[0]=0, the internal display operation halts and the display is off. D[1] D[0] Source Output Internal operation Gate-Driver Control Signals 0 0 GND Halt Halt 0 1 GND Operate Operate 1 0 Non-lit display Operate Operate 1 1 Display Operate Operate Note: 1. Write from the microcomputer to the DDRAM is independent from D[1] and D[0]. 2. In sleep and standby mode, D[1]=0 D[0]=0. However, the register contents of D[1] and D[0] are not modified. Display Control 2 (08h) W/R RS D15 D14 D13 D12 D11 W 1 - - - - FP[3:0] - - - - 1 INI D10 0 D9 1 D8 0 D7 D6 D5 D4 D3 D2 - - - - BP[3:0] - - - - 0 0 D1 D0 1 0 FP[3:0]/ BP[3:0]: Setting the blank display area (the front porch and the back porch). The front porch is placed at the beginning of the display and the back porch is placed at the end of the display. FP[3:0] and BP[3:0] bits specify the number of raster-rows for the front and back porches respectively. When making this setting, make sure that BP + FP ≤ 16 raster-rows, FP ≥ 1 raster-rows, and BP ≥ 0 raster-rows. FP3 FP2 FP1 FP0 Number of lines for the Front Porch 0 0 0 0 Setting disable 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 10 1 0 1 1 11 1 1 0 0 12 1 1 0 1 13 1 1 1 0 14 1 1 1 1 Setting disable BP3 BP2 BP1 BP0 Number of lines for the Back Porch 0 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 0 1 1 0 6 0 1 1 1 7 1 0 0 0 8 1 0 0 1 9 1 0 1 0 10 Ver 2.3 57/113 2007/07/19 ST7712 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 11 12 13 14 Setting disable Display Control 3 (09h) W/R RS D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 W 1 - - - - - - - - - - PTG[1:0] - - - - - - - - - - 0 INI D4 0 D3 D2 D1 D0 ISC[3:0] 0 0 0 0 PTG[1:0]: Set the mode of scanning gate lines when non-display area is driven. PTG[1] PTG[0] Gate output in non display area 0 0 Normal scan 0 1 Fixed VGL 1 0 Interval scan 1 1 Setting disable ISC[3:0]: Set the cycle to scan gate lines. When PTG bits set the scan mode in the non-display area to the interval scan mode, the scan cycle is always odd number of frames, and polarity inversion is applied each timing when gate lines are scanned. Note: 1. When PTG is set to "Normal Scan", the source output in non-display area should be set to "V63-V0" (PT=0 or 1) to avoid flicker effect. 2. When PTG is set to "Fixed VGL" and "Interval Scan", the source output in non-display area should be set to "GND" (PT=2) to avoid data leakage. Ver 2.3 58/113 2007/07/19 ST7712 ISC3 ISC2 ISC1 ISC0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Scan cycle (Scan cycle=ISC*2+1) 0 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Example: Interval scan: Scan cycle=3. Ver 2.3 59/113 2007/07/19 ST7712 Frame Cycle Set (0Bh) W/R RS D15 W 1 NO[1:0] SDT[1:0] EQ[1:0] 0 0 0 INI D14 0 D13 D12 0 D11 D10 0 D9 D8 D7 D6 EQPW[1:0] - DIV[2:0] 0 - 0 0 D5 0 D4 D3 D2 D1 D0 0 0 RTN[3:0] 0 0 0 NO[1:0]: Set the non-overlap width of gate output NO1 0 0 1 1 NO0 0 1 0 1 Non-overlap width 0 clocks 4 clocks 6 clocks 8 clocks Note: The amount of non-overlap width is defined from the falling edge of the CL1. 1 H period CL1 1 H period Gn Non-overlap period Gn+1 SDT[1:0]: Specify the delay time for the source output from the falling edge of the gate output. SDT1 0 0 1 1 SDT0 0 1 0 1 Delay time for source output disable 2 clocks 3 clocks 4 clocks Note: The delay time for the source output is measured from the falling edge of the CL1. 1 H period 1 H period CL1 M Gn Sn Source output delay EQ[1:0]: EQ period is sustained for the number of clock cycle which is set on EQ[1:0]. EQ1 EQ0 0 0 No EQ 0 1 1 clocks 1 0 2 clocks 1 1 3 clocks Ver 2.3 60/113 2007/07/19 ST7712 EQPW[1:0]: Decide the source output voltage in the equalized area. EQPW[1:0] Positive Polarity Negative Polarity 0 0 V0 V63 0 1 V63 V0 1 0 GND GND 1 1 Hi-Z Hi-Z DIV[2:0]: Set the division ratio of clocks for internal operations. Internal operations are in synchronization with the clock, the frequency of which is divided according to the DIV[2:0] setting. Frame frequency can be adjusted in combination with the adjustment of 1H period (RTN [3:0]). When changing the number of drive raster-rows, adjust the frame frequency too. For details, see “Frame Frequency Adjustment Function”. DIV2 DIV1 DIV0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Division Ratio 1 2 4 8 3 5 6 7 Internal Operating Clock Frequency fosc/1 fosc/2 fosc/4 fosc/8 fosc/3 fosc/5 fosc/6 fosc/7 RTN[3:0]: Set the clock cycles per raster-row RTN3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Ver 2.3 RTN2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 RTN1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 RTN0 0 1 0 1 0 1 0 1 0 1 0 1 0: 1 0 1 clock cycles per raster-row 16 clocks 17 clocks 18 clocks 19 clocks 20 clocks 21 clocks 22 clocks 23 clocks 24 clocks 25 clocks 26 clocks 27 clocks 28 clocks 29 clocks 30 clocks 31 clocks 61/113 2007/07/19 ST7712 Power Control 1 (10h) W/R RS D15 D14 W 1 - SAP[2:0] - 1 INI D13 0 D12 0 D11 D10 D9 - BT[2:0] - 0 0 D8 0 D7 D6 D5 - AP[2:0] - 1 0 D4 0 D3 D2 D1 D0 - DK SLP STB - 1 0 0 SAP[2:0]: The amount of fixed current from the fixed current source in the operational amplifier for the source driver is adjusted. When the amount of fixed current is large, LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During non-display operation, set SAP[2:0]=“000” to halt the operational amplifier to reduce the current consumption. SAP2 0 0 0 0 1 1 1 1 SAP1 0 0 1 1 0 0 1 1 SAP0 0 1 0 1 0 1 0 1 OP current Halt Setting Disabled 0.63 0.73 1 1.25 1.42 Setting Disabled BT[2:0]: Change the step-up scale of the step-up circuit by VCI1. Adjust the scale according to the voltage in use. Smaller scale consumes lesser current. Adjust the frequency considering the display quality and the current consumption. BT2 BT1 BT0 VLOUT1 output (DDVDH) VLOUT4 output (VCL) VLOUT2 output (VGH) VLOUT3 output (VGL) Capacitor connection pins 0 0 0 Vci x 2 Vci x -1 Vci1 x 6 Vci1x-5 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 0 0 1 ↑ ↑ Vci1 x 6 Vci1x –4 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 0 1 0 ↑ ↑ Vci1 x 6 Vci1x-3 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 0 1 1 ↑ ↑ Vci1x5 Vci1x–5 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 1 0 0 ↑ ↑ Vci1x5 Vci1x-4 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 1 0 1 ↑ ↑ Vci1x5 Vci1x –3 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 1 1 0 ↑ ↑ Vci1x4 Vci1x –4 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, 1 1 1 ↑ ↑ Vci1x4 Vci1x-3 DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, Note 1) The capacitor connection pins are step-up capacitors which are necessary for DDVDH, VCL, VGH, VGL voltages. Note 2) Each of following voltages should be within the following range: DDVDH = 6.0 V (Max.), VCL = - 3.3V (Min.), VGH = 16.5 V (Max.), VGL = -15V (Min.) Ver 2.3 62/113 2007/07/19 ST7712 AP[2:0]: Adjust the amount of constant current from the constant current source of operational amplifier for the liquid crystal drive power supply. When the amount of constant current is set large, the liquid crystal drive capacity will be enhanced and the display quality will improve, while the current consumption will increase. Select an optimum amount of current taking both the display quality and the current consumption into account. During non-display operation, set AP[2:0]= “000” to halt the operational amplifier and step-up circuits to reduce current consumption. AP2 0 0 0 0 1 1 1 1 AP1 0 0 1 1 0 0 1 1 AP0 0 1 0 1 0 1 0 1 Output OP Driver current adjustment Setting Disabled Setting Disabled 0.54 0.75 1 1.26 1.53 1.74 DK: Control the operation of the step-up circuit 1. When turning on the power supply, stop the startup of VLOUT1 for a moment, and wait for an enough time until VLOUT2 is stabilized before starting up VLOUT1. DK 0 1 Operation of step-up circuit 1 Operation Halt SLP: When SLP = 1, the sleep mode is entered. SLP 0 Status Operation 1 Sleep only OSC is working In the sleep mode, internal display operation is halted except the R-C oscillator to reduce current consumption. Only power control instructions (BT[2:0], DC[2:0], AP[2:0], SLP, STB, VC[2:0], VRH[4:0], VCOMG, VDV[4:0], and VCM[4:0] bits) are executed during the sleep mode. No change is made to the DDRAM data or instructions during the sleep mode, and the DDRAM data and the instructions are retained. STB: When STB = 1, the standby mode is entered. STB Status 0 Operation 1 Stand-by OSC is halted In the standby mode, display operation is completely halted, and all internal operations including the internal R-C oscillator and reception of external clock pulse, are halted. For details, see the “Standby Mode” section. Only instructions to release from the standby mode (STB = 0) and to start oscillation are accepted during the standby mode. DDRAM data and instructions are susceptible to destruction during the standby mode and require resetting after release from the standby mode. Ver 2.3 63/113 2007/07/19 ST7712 Power Control 2 (11h) W/R RS D15 D14 W 1 - DC2[2:0] - 1 INI D13 0 D12 0 D11 D10 D9 - DC1[2:0] - 1 0 D8 0 D7 D6 D5 - DC0[2:0] - 1 0 D4 0 D3 D2 D1 - VC[2:0] - 1 0 D0 0 DC2[2:0]: Set the frequency of the step-up circuit 4. Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes the higher current consumption, too. DC22 0 0 0 0 1 1 1 1 DC21 0 0 1 1 0 0 1 1 DC20 0 1 0 1 0 1 0 1 frequency of the step-up circuit 4 fosc/4 fosc/8 fosc/16 fosc/32 fosc/64 fosc/128 Setting disable Setting disable DC1[2:0]: : Set the frequency of the step-up circuit 2. Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes the higher current consumption, too. DC12 DC11 DC10 frequency of the step-up circuit 2 0 0 0 fosc/4 0 0 1 fosc/8 0 1 0 fosc/16 0 1 1 fosc/32 1 0 0 fosc/64 1 0 1 fosc/128 1 1 0 Setting disable 1 1 1 Setting disable DC0[2:0]: : Set the frequency of the step-up circuit 1. Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes the higher current consumption, too. DC02 0 0 0 0 1 DC01 0 0 1 1 0 DC00 0 1 0 1 0 1 0 1 1 1 0 1 1 1 Ver 2.3 frequency of the step-up circuit 1 fosc/2 fosc/4 fosc/8 fosc/16 fosc/32 fosc/64 Setting disable Setting disable 64/113 2007/07/19 ST7712 VC[2:0]: Adjust the reference voltage for VREG1OUT, VciOUT voltages to the optimum ratio of VCI. VC2 0 0 0 0 1 1 1 1 VC1 0 0 1 1 0 0 1 1 VC0 0 1 0 1 0 1 0 1 REGP reference voltage VCI 0.92xVCI 0.87xVCI 0.83xVCI 0.76xVCI 0.73xVCI Hi-Z VCIRIN (2.4V regulated) Power Control 3 (12h) W/R RS D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 W 1 - - - - - - - - - - - PON - - - - - - - - - - INI 0 D3 D2 D1 D0 VRH[3:0] 0 0 0 0 PON: Start operation of Step 2 and Step 4 circuit. PON = “0”: stop operation of Step 2 and Step 4 circuit; PON =”1”: start operation the operation of Step 2 and Step 4circuit. VRH[3:0]: Set the ratio of VREG1OUT voltage (the reference voltage for VCOM and grayscale voltage). REGP voltage is amplified by 1.33 ~ 2.79 times. VRH3 VRH2 VRH1 VRH0 VREG1OUT ratio by REGP ` 0 0 0 0 1.33 0 0 0 1 1.45 0 0 1 0 1.55 0 0 1 1 1.66 0 1 0 0 1.76 0 1 0 1 1.81 0 1 1 0 1.86 0 1 1 1 Halt 1 0 0 0 1.91 1 0 0 1 1.96 1 0 1 0 2.01 1 0 1 1 2.07 1 1 0 0 2.13 1 1 0 1 2.17 1 1 1 0 2.22 1 1 1 1 Halt Ver 2.3 65/113 2007/07/19 ST7712 Power Control 4 (13h) W/R RS D15 D14 D13 D12 W 1 - - VCOMG VDV[4:0] - - 0 0 INI D11 0 D10 0 D9 0 D8 0 D7 D6 D5 - VCM[4:0] - 0 0 D4 D3 D2 D1 D0 VCMF[1:0] 0 0 0 0 0 VCOMG: When VCOMG = 1, VCOML can output the negative voltage. VCOMG = 1 is valid when PON = 1. When VCOMG = 0, VCOML will fixed to GND. VDV[4:0]: Set the Vcom alternating amplitude during Vcom alternating drive. The amplitude can be selected among VREG1OUT x discrete times from 0.6 to 1.2. When VCOMG = 0, this setting is invalid. VDV4 VDV3 VDV2 VDV1 VDV0 0 0 0 0 0 VREG1OUTx0.6 0 0 0 0 1 VREG1OUTx0.61 0 0 0 1 0 VREG1OUTx0.62 0 0 0 1 1 VREG1OUTx0.63 0 0 1 0 0 VREG1OUTx0.64 0 0 1 0 1 VREG1OUTx0.65 0 0 1 1 0 VREG1OUTx0.66 0 0 1 1 1 VREG1OUTx0.67 0 1 0 0 0 VREG1OUTx0.68 0 1 0 0 1 VREG1OUTx0.70 0 1 0 1 0 VREG1OUTx0.71 0 1 0 1 1 VREG1OUTx0.72 0 1 1 0 0 VREG1OUTx0.74 0 1 1 0 1 VREG1OUTx0.75 0 1 1 1 0 VREG1OUTx0.77 1 0 0 0 0 VREG1OUT x0.78 1 0 0 0 1 VREG1OUT x0.8 1 0 0 1 0 VREG1OUT x0.81 1 0 0 1 1 VREG1OUT x0.83 1 0 1 0 0 VREG1OUT x0.85 1 0 1 0 1 VREG1OUT x0.87 1 0 1 1 0 VREG1OUT x0.89 1 0 1 1 1 VREG1OUT x0.91 1 1 0 0 0 VREG1OUT x0.93 1 1 0 0 1 VREG1OUT x0.96 1 1 0 1 0 VREG1OUT x0.98 1 1 0 1 1 VREG1OUT x1.04 1 1 1 0 0 VREG1OUT x1.07 Ver 2.3 66/113 Vcom amplitude 2007/07/19 ST7712 1 1 1 0 1 VREG1OUT x1.10 1 1 1 1 0 VREG1OUT x 1.13 1 1 1 1 1 VREG1OUTx1.16 VCM[4:0]: Set the VcomH voltage (a high-level voltage at the Vcom alternating drive). These bits amplify the VcomH voltage 0.4 to 0.98 times the VREG1 voltage. When VCM[4:0] = “11111” and VCMF[1:0] = “11”, the adjustment of the internal volume stops, and VcomH can be adjusted from VcomR by an external resistor. VCM4 VCM3 VCM2 VCM1 VCM0 0 0 0 0 0 VREG1OUTx0.98 0 0 0 0 1 VREG1OUTx0.96 0 0 0 1 0 VREG1OUTx0.94 0 0 0 1 1 VREG1OUTx0.92 0 0 1 0 0 VREG1OUTx0.90 0 0 1 0 1 VREG1OUTx0.88 0 0 1 1 0 VREG1OUTx0.86 0 0 1 1 1 VREG1OUTx0.84 0 1 0 0 0 VREG1OUTx0.82 0 1 0 0 1 VREG1OUTx0.80 0 1 0 1 0 VREG1OUTx0.78 0 1 0 1 1 VREG1OUTx0.76 0 1 1 0 0 VREG1OUTx0.74 0 1 1 0 1 VREG1OUTx0.72 0 1 1 1 0 VREG1OUTx0.70 0 1 1 1 1 VREG1OUTx0.68 1 0 0 0 0 VREG1OUT x0.66 1 0 0 0 1 VREG1OUT x0.64 1 0 0 1 0 VREG1OUT x0.62 1 0 0 1 1 VREG1OUT x0.60 1 0 1 0 0 VREG1OUT x0.58 1 0 1 0 1 VREG1OUT x0.56 1 0 1 1 0 VREG1OUT x0.54 1 0 1 1 1 VREG1OUT x0.52 1 1 0 0 0 VREG1OUT x0.50 1 1 0 0 1 VREG1OUT x0.48 1 1 0 1 0 VREG1OUT x0.46 1 1 0 1 1 VREG1OUT x0.44 1 1 1 0 0 VREG1OUT x0.42 1 1 1 0 1 VREG1OUT x0.40 Ver 2.3 67/113 VcomH 2007/07/19 ST7712 1 1 1 1 0 VREG1OUT x 0.38 1 1 1 1 1 Halt internal volume. Adjust with a variable external resistor from VcomR. (Note: VCMF[1:0]=”11”) VCMF[1:0]: To fine tune the VCOM value. After adjust the VCOM by setting VCM[4:0], the fine tuning of each scale of VCM[4:0] can be achieved by setting VCMF[1:0]. Each scale of VCM[4:0] can be divided into 4 . When use VcomR as VcomH reference voltage VCMF[1:0], should be “11” Fuse Set (15h) W/R RS D15 D14 W 1 - - R 1 0 - INI D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 - - - - - - - - FSAEN 0 0 0 0 0 0 0 0 0 * * * - - - - - - - - - 0 1 0 D2 D1 D0 * * * 0 0 0 FSA[4:0] Write FSAEN: When FSAEN=0, the VcomH Reference voltage is shifted by setting up the fuse pins of FUSA[4:0]. When FSAEN=1, the VcomH Reference voltage is shifted by setting up the registers of FSA[4:0]. FSA[4:0]: FSA[4:0] are the fuse registers for VcomH reference voltage offset. The more accurate VcomH voltage can be adjusted by setting FSA[4:0]. Read D[5]: Read the stats of FSAEN D[4:0]: Read the status of FUSA[4:0] or FSA[4:0]. When FSAEN=0, the read-out value of D[4:0] is the setting value of FUSA[4:0] When FSAEN=1, the read-out value of D[4:0] is the setting value of FSA[4:0] Ver 2.3 68/113 2007/07/19 ST7712 Fuse set flow chart Trim Fuse: 1. Connect ground to pin VSSF of ST7712, 2. Vci pad should be connected with FUSA4 to FUSA0 sequentially with a voltage pulse. The width of pulse should be longer than 100ms, the voltage level should be higher than 10V (Current limitation of power supply should be smaller 200mA to avoid damaging fuse circuit) and current level should be higher than 50mA. 3. Each fuse pins within FUSA0 to FUSA3 corresponding to the registers FSA0 to FSA3 won't be trimmed when each register value is 0. THe fuse pin FUSA4 won't be trimmed as the logic value of corresponding register FSA4 is 1. 4. Set register FSAN to 0 in command 15H to enable the VCOM adjustment controlled by fuse pins FUSA[4:0]. Example: FSA4 FSA3 FSA2 FSA1 FSA0 Initial 1 0 0 0 0 Adjusted by Register 0 0 1 1 0 Yes No Yes Yes No Need to Trim Ver 2.3 69/113 2007/07/19 ST7712 Connect diagram RAM Address Set (21h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 AD[15:0] 0 0 0 0 0 0 0 0 AD[15:0]: Set DDRAM addresses to the address counter (AC). The AC is automatically updated according to the AM and ID bit settings after the DDRAM data is written. This allows consecutive accesses without resetting address. Once the DDRAM data is read, the AC is not automatically updated. DDRAM address setting is not allowed in the standby mode. Make sure that the address is set within the specified window address. Bitmap data for Gate Ver 2.3 DDRAM Setting G0 G1 G2 : G128 G129 G130 G131 Bitmap data for Source S0 SS1 .. S130 “0000”H “0001”H .. “0082”H “0100”H “0101”H .. “0182”H “0200”H “0201”H .. “0282”H : : .. : “8000”H “8001”H .. “8082”H “8100”H “8101”H .. “8182”H “8200”H “8201”H .. “8282”H “8300”H “8301”H .. “8382”H 70/113 S131 “0083”H “0183”H “0283”H : “8083”H “8183”H “8283”H “8383”H 2007/07/19 ST7712 Write Data to DDRAM (22h) W/R RS D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 W 1 WD[17:0] R 1 RD[17:0] D7 D6 D5 D4 D3 D2 D1 D0 Write WD[17:0]: Write 18-bit data to the DDRAM (depend on the selected interface). This data selects the grayscale level. After a write, the address is automatically updated according to AM and ID bit settings. During the standby mode, the DDRAM cannot be accessed. Write Data Flow chart Ver 2.3 71/113 2007/07/19 ST7712 Read RD[17:0]: Read 18-bit data from the DDRAM (depend on the selected interface). When the data is read to the MCU, the first-word read immediately after the DDRAM address setting is latched from the DDRAM to the internal read-data latch. The data on the data bus (DB17–DB0) becomes invalid and the second-word read is normal. 18bit and 16bit interface mode Read flow chart Ver 2.3 9bit, 8bit and SPI interface mode Read flow chart 72/113 2007/07/19 ST7712 Gamma Control Set (30h~39h) W/R RS D15 D14 D13 D12 D11 W 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INI W 1 INI W 1 INI W 1 INI W 1 INI W 1 INI W 1 INI W 1 INI W 1 INI W 1 INI D10 D9 D8 PKP1[2:0] 0 0 0 PKP3[2:0] 0 0 0 PKP5[2:0] 0 0 0 PRP1[2:0] 0 0 0 PKN1[2:0] 0 0 0 PKN3[2:0] 0 0 0 PKN5[2:0] 0 0 0 PRN1[2:0] 0 0 0 VRP1[4:0] 0 0 0 0 0 VRN1[4:0] 0 0 0 0 0 D7 D6 D5 D4 D3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D2 D1 D0 PKP0[2:0] 0 0 0 PKP2[2:0] 0 0 0 PKP4[2:0] 0 0 0 PRP0[2:0] 0 0 0 PKN0[2:0] 0 0 0 PKN2[2:0] 0 0 0 PKN4[2:0] 0 0 0 PRN0[2:0] 0 0 0 VRP0[3:0] 0 0 0 0 VRN0[3:0] 0 0 0 0 PKP5[2:0]~ PKP0[2:0]: The γ fine adjustment registers for positive polarity. PRP1[2:0]~ PRP0[2:0]: The γ gradient adjustment registers for positive polarity. PKN5[2:0]~ PKN0[2:0]: The γ fine adjustment registers for negative polarity. PRN1[2:0] ~PRN0[2:0]: The γ gradient adjustment registers for negative polarity. VRP1[4:0]~ VRP0[3:0]: The amplitude adjustment registers for positive polarity. VRN1[4:0]~ VRN0[3:0]: The amplitude adjustment registers for negative polarity. For details, see the “Gamma Control” section. Ver 2.3 73/113 2007/07/19 ST7712 Gate Scan Set (40h) W/R RS D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 W 1 - - - - - - - - - - - - - - - - - - - - - - INI D4 D3 D2 D1 D0 SCN[4:0] 0 0 0 0 0 SCN[4:0]: Set the scanning starting position of the gate driver. SCN4 SCN3 SCN2 SCN1 SCN0 0 0 0 0 : 1 1 : 1 0 0 0 0 : 0 0 : 1 0 0 0 0 : 0 0 : 1 0 0 1 1 : 0 0 : 1 0 1 0 1 : 0 1 : 1 Scan start line (Start line=SCN*8) 0 G7 G15 G23 : 127 Setting disable Note: When setting the Gate scan set instruction SCN[4:0] value, it will not output data . Vertical Scroll Set (41h) W/R RS D15 D14 D13 D12 D11 D10 D9 D8 W 1 - - - - - - - - - - - - - - - - INI D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 VL[7:0] 0 0 0 0 0 VL[7:0]: Specify scroll length at the scroll display for vertical smooth scrolling. The number of raster-rows is specified from 0 to 131. The raster-rows of the specified number are scrolled during display. When the 132nd raster-row is displayed, the scrolling display starts to fresh from the 1st raster-row. The display-start raster-row VL[7:0] is valid when VLE[0] = 1 or VLE[1] = 1. VL7 VL6 VL5 VL4 VL3 VL2 VL1 VL0 Display-start Raster-row 0 0 0 0 0 0 0 0 0 raster-row 0 0 0 0 0 0 0 1 1 raster-row 0 0 0 0 0 0 1 0 2 raster-row 0 0 0 0 0 0 1 1 3 raster-row : : : : : : : : : 1 0 0 0 0 0 1 0 130 raster-row 1 0 0 0 0 0 1 1 131 raster-row 1 0 0 0 0 1 0 0 Setting disable : : : : : : : : 1 1 1 1 1 1 1 1 Note: The scroll range of screen can’t not over partial display screen size or it will happen abnormal display. Ver 2.3 74/113 2007/07/19 ST7712 1st Screen Drive Set (42h) W/R RS D15 W 1 SE1[7:0] INI 0 D14 0 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 SS1[7:0] 0 0 0 0 0 0 0 0 st SE1[7:0]: Setting the end line of 1 screen. The liquid crystal is driven by to the gate driver of the set value. For instance, when SS1[7:0]= “03”H and SE1[7:0] = “09”H, the liquid crystal is driven from G3 to G9, and G0 to G2, and G10 thereafter are non-display drive. Ensure that 00h≦SS1[7:0]≦SE1[7:0]≦83h. st SS1[7:0]: Setting the start line of 1 screen. The liquid crystal is driven by from the gate driver of the set value . 2nd Screen Drive Set (43h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 SE2[7:0] 0 0 0 0 0 D4 D3 D2 D1 D0 0 0 0 SS2[7:0] 0 0 0 0 0 0 0 0 nd SE2[7:0]: Setting the end line of 2 screen. The liquid crystal is driven by from the gate driver of the set value . nd SS2[7:0]: Setting the start line of 2 screen. The liquid crystal is driven by from the gate driver of the set value . Note1: The second screen is driven when SPT = 1. Note2: Ensure that 00h≦SS1[7:0]≦ SE1[7:0]≦SS2[7:0]≦SE2[7:0]≦83h. Horizontal RAM Address Position (44h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 HEA[7:0] 0 0 0 0 0 D4 D3 D2 D1 D0 0 0 0 HSA[7:0] 0 0 0 0 0 0 0 0 HEA[7:0]: Setting the end line of the window-address range in the horizontal direction by address. HSA[7:0]: Setting the Start line of the window-address range in the horizontal direction by address. These addresses must be set before RAM write and data are written to DDRAM within the area limited by the addresses set by HSA[7:0] and HEA[7:0]. Note: Ensure that “00h”≦ HSA[7:0]≦HEA[7:0]≦“83h Ver 2.3 75/113 2007/07/19 ST7712 Vertical RAM Address Position (45h) W/R RS W 1 INI D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 VEA[7:0] 0 0 0 0 0 D4 D3 D2 D1 D0 0 0 0 VSA[7:0] 0 0 0 0 0 0 0 0 VEA[7:0]: Setting the end line of the window-address range in the vertical direction by address. VSA[7:0]: Setting the start line of the window-address range in the vertical direction by address. These addresses must be set before RAM write and data are written to DDRAM within the area limited by the addresses set by VSA[7:0] and VEA[7:0]. Note: Ensure that “00h”≦ VEA[7:0]≦VSA[7:0]≦“83h” “00h”≦ HSA[7:0]≦HEA[7:0]≦“83h” “00h”≦ VSA[7:0]≦VEA[7:0]≦“83h” Ver 2.3 76/113 2007/07/19 ST7712 9 Instruction Setting Flow Make the setting for each instruction according to the following sequence. 9.1 Display OFF & Display ON Ver 2.3 77/113 2007/07/19 ST7712 9.2 Initial Code Setting Flow chart When turning on the power supply, follow the sequence below. The stabilization time for the oscillation circuits, step-up circuits, and operation amplifiers may vary depending on the external resistors and capacitors. Ver 2.3 78/113 2007/07/19 ST7712 9.3 Power Supply Setting Flow Ver 2.3 79/113 2007/07/19 ST7712 9.4 Sleep and Standby Sequence Ver 2.3 80/113 2007/07/19 ST7712 9.5 Partial Display Setting Flow Ver 2.3 81/113 2007/07/19 ST7712 9.6 Switch Between 262,144-color mode and 8-color mode setting flow chart Ver 2.3 262,144 color to 8 color 8 color to 262,144 color Display off GON=0, DTE=0,D[1:0]=0,0 Display off GON=0, DTE=0,D[1:0]=0,0 RAM setting RAM setting LCD Driving Wave Form set B/C=0 LCD Driving Wave Form set B/C=1 Power Control 1 SAP=000,BT[2:0], AP=000 Power Control 1 SAP=[2:0],BT[2:0], AP=[2:0] CL=1 CL=0 Display on GON=1, DTE=1,D[1:0]=1,1 Display on GON=1, DTE=1,D[1:0]=1,1 Display in 8 color mode Display in 262,144 color mode 82/113 2007/07/19 ST7712 10. Absolute Maximum Values Item Symbol Unit Value Notes Power supply voltage (1) Vcc V -0.3 ~ + 4.6 1, 2 Power supply voltage (2) Vci - GND V -0.3 ~ + 4.6 1, 2 Power supply voltage (3) DDVDH - GND V -0.3 ~ + 7.0 1, 2 Power supply voltage (4) GND -VCL V -0.3 ~ -4.0 1, 2 Power supply voltage (5) DDVDH- VCL V -0.3 ~ + 8.0 1 Power supply voltage (6) VGH - GND V -0.3 ~ + 16.5 1, 2 Power supply voltage (7) GND - VGL V -0.3 ~ - 15 1, 2 Input voltage Vt V -0.3 ~ Vcc + 0.3 1 Operating temperature Topr °C -40 ~ + 85 1, 3 Storage temperature Tstg °C -55 ~ + 110 1 Note 1) The LSI may be permanently damaged if it is used under the condition exceeding the above absolute maximum values. It is also recommended to use the LSI within the electric characteristic conditions during normal operation. Exceeding the conditions may lead to malfunction of LSI and affect its credibility. Note 2) The voltage from GND. Note 3) The DC and AC characteristics of chip and wafer products are guaranteed at 85 °C. Ver 2.3 83/113 2007/07/19 ST7712 10. Electric Characteristics DC Characteristics (VDD = 1.8 to 3.3 V, Ta = –40 to +85°C Item Note 1 Symb Uni ol t Input high value VIH Input low voltage (1) ) Test Condition Min Typ Max Notes V VCC = 1.8 to 3.3 V 0.8 VCC -- VCC 1 VIL1 V VCC = 1.8 to 3.3 V 0 -- 0.2 VCC 1 VIL2 V Vcc=1.8V to 2.4V 0 -- 0.2 VCC 1 Vcc=2.4V to 3.3V 0 -- 0.2 VCC 1 VCC = 1.8 to 3.3 V, 0.8VCC -- Vcc 1 0 -- 0.2 VCC 1 0 -- 1 1 (OSC1 pin) Input low voltage (2) (Except OSC1 pin) Output high voltage (1) VOH V (DB0~17 pins) Output low voltage (1) IOH = 0.1 mA VOL V (DB0~17 pins) I/O leakage current VCC = 1.8 to 3.3 V, IOL = 0.1 mA ILi µA Vin = 0 to VCC IOP1 mA R-C oscillation=190KHZ; VCC = 2.8 V, (IIOVCC+IVCC+IVCI) Current consumption during normal operation 262K DVDDH=5.4V, REV=1, Ta = 25°C, mode SAP=”010”,AP=”010”,FLD=”01”, (IIOVCC-GND+IVCC-GND+IVCI- BC=1, NW=”00000” RAM data GND) 0000h Current consumption Iop2 µA R-C oscillation=190KHZ; VCC = 2.8 V, 8-color mode, 30-line partial DVDDH=5.4V, REV=1, Ta = 25°C, (IIOVCC-GND+IVCC-GND+IVCI- SAP=”010”,AP=”010”,FLD=”01”, GND) BC=1, NW=”00000” RAM data 1.3 1 350 1 0000h Current consumption during IVCC µA normal operation (Vcc-GND) R-C oscillation=190KHZ; VCC = 2.8 V, -- 60 80 1 DVDDH=5.4V, REV=0, Ta = 25°C, SAP=”010”,AP=”010”,FLD=”01”, BC=1, NW=”00000” RAM data 0000h LCD power supply current IVci1 mA R-C oscillation=190KHZ; VCC = 2.8 V, (Vci-GND) 262,144 color DVDDH=5.4V, REV=1, Ta = 25°C, display mode SAP=”010”,AP=”010”,FLD=”01”, 1.2 1 250 1 BC=1, NW=”00000” RAM data 0000h LCD power supply current (Vci-GND) 8-color mode, Ver 2.3 IVci2 µA R-C oscillation=190KHZ; VCC = 2.8 V, DVDDH=5.4V, REV=1, Ta = 25°C, 84/113 2007/07/19 ST7712 30-line partial SAP=”010”,AP=”010”,FLD=”01”, BC=1, NW=”00000” RAM data 0000h Current consumption during IST µA Vcc = 2.8V, Ta<=50°C -- 40 100 1 ILCD µA Vcc=2.8V, VDH=5.243V, CR -- 450 550 1 standby & sleep operation (VDD-GND) Liquid Crystal Power Current (DDVDH-GND) Oscillation=190KHz; Ta=25°C, RAMdata:0000h, REV=”0”, SAP=”010”,AP=”010”, VRN[4:0]=”0”, PKP[52:00]=”0”, PRP[52:00]=”0”, VRN[4:0]=VRP[4:0]=”0” PKP[52:00]=”0”, PRP[52:00]=”0” Liquid Crystal Drive Voltage VLCD V -- 4.5 -- 6.0 1 ∠Vo mV Source>4.2V, Source<0.8V -- 20 -- 1 35 1 (DDVDH-GND) Output Voltage deviation 0.8V<Source<4.2 Variation of average output mV -- 12 -- -- voltage Gate Ron resistor Ron Ω 360 1 Notes to Electrical Characteristics 1. The TEST1 and TEST2 pins must be grounded (GND). The IM3/2/1/0 must be fixed at either GND or Iovcc level 2. The output voltage difference is the difference in voltage levels output from adjacent source pins for a same grayscale. This value is for reference. 3. The average output voltage variance is the difference in the average source output voltages of the same product. The average voltage source output voltage is measured when all output pins output the voltage for a same grayscale. Ver 2.3 85/113 2007/07/19 ST7712 AC Characteristics (VDD = 1.8 to 3.3 V, Ta = –40 to +85°C ) Clock Characteristics (VDD = 1.8 to 3.3 V) Item Symbol Unit Test Condition Min Typ Max External clock Fcp kHz VDD = 1.8 t0 3.3V 100 270 600 External clock duty ratio Duty % VDD = 1.8 t0 3.3V 45 50 55 External clock rise time Trcp µs VDD = 1.8 t0 3.3V -- -- 0.2 External clock fall time Tfcp µs VDD = 1.8 t0 3.3V -- -- 0.2 R-C oscillation clock FOSC kHz Rf=240KΩ VCC=3V 192 240 288 Notes Frequency Liquid crystal driver output characteristics Item Symbol Unit Test Condition Min Typ Max Driver output tdd µs VDD =2.8V, VDH=5.4V, -- 30 -- delay time CR oscillation ;fosc=190kHz(132 lines), Ta=25℃、REV="0", SAP="010", AP=”010”, VRN[4:0]="0",VRP[4:0]="0" PKP[52:00]="0",PRP[12:00]="0" PKP[52:00]="0",PRP[12:00]="0" All pins changes at the same time from same grayscale. The time till output level reaches ―35mV when VCOM polarity changes. Load resistance R=10kΩ、Load capacity C=20pF Ver 2.3 86/113 2007/07/19 ST7712 Electrical Characteristics 1. Applies to the internal oscillator operations using external oscillation resistor Rf OSC1 Rf The oscillation frequency may vary depending on the capacitors for OSC1, OSC2 pins. Place OSC1 and OSC2 close to each other. OSC2 Notes: The Rf resistor value should be based on the RC loading of panel and FPC to fine tune Rf value to apparoach the osc frequency that customer need. Ver 2.3 87/113 2007/07/19 ST7712 11. TIMING CHARACTERISISTICS condition: :Bare Die System Bus Read/Write Characteristics 1(For the 8080 Series MPU) RS VIH VIH VIL VIL tAW8 tAH8 VIH XCS VIH VIL VIL tCYC8 tCCLR,tCCLW VIH WR,RD VIH VIL VIL tCCHR,tCCHW tDH8 tDS8 DB17 to DB0 (Write) VIH VIH VIL VIL tACC8 tOH8 DB17 to DB0 (Read) VOH VOH VOL VOL Figure 11-1 (VDD =3.3V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 30 ns System cycle time tCYC8 120 ns tCCLW 50 ns tCCHW 70 ns tDS8 50 ns tDH8 10 ns tCCLR 80 ns tCCHR 80 ns RS Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RD Enable H pulse width (READ) Ver 2.3 88/113 2007/07/19 ST7712 (VDD =2.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 30 ns System cycle time tCYC8 120 ns tCCLW 50 ns tCCHW 70 ns tDS8 50 ns tDH8 10 ns tCCLR 80 ns tCCHR 80 ns RS Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RD Enable H pulse width (READ) (VDD =1.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 30 ns System cycle time tCYC8 120 ns tCCLW 50 ns tCCHW 70 ns tDS8 50 ns tDH8 10 ns tCCLR 80 ns tCCHR 80 ns RS Enable L pulse width (WRITE) WR Enable H pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RD Enable H pulse width (READ) Ver 2.3 89/113 2007/07/19 ST7712 System Bus Read/Write Characteristics 1(For the 6800 Series MPU) Figure 11-2 (VDD =3.3V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 20 ns System cycle time tCYC8 80 ns tEWLW 40 ns tEWHW 40 ns tDS8 40 ns tDH8 10 ns tACC6 70 ns tOH6 70 ns RS Enable H pulse width (WRITE) E Enable L pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RW Enable H pulse width (READ) Ver 2.3 90/113 2007/07/19 ST7712 (VDD =2.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 20 ns System cycle time tCYC8 80 ns tCCLW 40 ns tCCHW 40 ns tDS8 40 ns tDH8 10 ns tCCLR 70 ns tCCHR 70 ns RS Enable L pulse width (WRITE) E Enable H pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RW Enable H pulse width (READ) (VDD =1.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Address hold time Max tAH8 10 ns Address setup time tAW8 20 ns System cycle time tCYC8 80 ns tCCLW 40 ns tCCHW 40 ns tDS8 40 ns tDH8 10 ns tCCLR 70 ns tCCHR 70 ns RS Enable L pulse width (WRITE) E Enable H pulse width (WRITE) WRITE Data setup time DB0~DB17 WRITE Data hold time Enable L pulse width (READ) RW Enable H pulse width (READ) Ver 2.3 91/113 2007/07/19 ST7712 Serial Interface (4-Line Interface) Figure 11-3 (VDD =3.3V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Units Symbol Min Serial Clock Period tSCYC 50 tSHW 20 tSLW 30 tSAS 20 tSAH 10 tSDS 10 tSDH 20 tCSS 20 tCSH 30 SCL L pulse width (READ) tSDOS 110 ns SCL H pulse width (READ) tSDOH 110 ns SCL “H” pulse width SCL SCL “L” pulse width Address setup time RS Address hold time Data setup time Data hold time XCS-SCL time ns ns SDI Ver 2.3 Max ns XCS ns 92/113 2007/07/19 ST7712 (VDD =2.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Serial Clock Period Max tSCYC 50 tSHW 20 tSLW 30 tSAS 20 tSAH 10 tSDS 10 tSDH 20 tCSS 20 tCSH 30 SCL L pulse width (READ) tSDOS 110 ns SCL H pulse width (READ) tSDOH 110 ns SCL “H” pulse width SCL SCL “L” pulse width Address setup time ns RS Address hold time Data setup time ns SI Data hold time CS-SCL time ns XCS ns (VDD =1.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Serial Clock Period tSCYC 50 tSHW 20 tSLW 30 tSAS 20 tSAH 10 tSDS 10 tSDH 20 tCSS 20 tCSH 30 SCL L pulse width (READ) tSDOS 110 ns SCL H pulse width (READ) tSDOH 110 ns SCL “H” pulse width SCL SCL “L” pulse width Address setup time RS Address hold time Data setup time Data hold time XCS-SCL time ns ns SDI Ver 2.3 Max ns XCS ns 93/113 2007/07/19 ST7712 Serial Interface(3-Line Interface) Figure 11-4 (VDD =3.3V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Units Symbol Min Serial Clock Period Max tSCYC 50 tSHW 20 tSLW 30 tSDS 10 tSDH 20 tCSS 20 tCSH 30 SCL L pulse width (READ) tSDOS 110 ns SCL H pulse width (READ) tSDOH 110 ns SCL “H” pulse width SCL SCL “L” pulse width Data setup time ns SDI Data hold time XCS-SCL time ns XCS ns (VDD =2.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Serial Clock Period SCL “H” pulse width SCL SCL “L” pulse width Data setup time tSCYC 50 tSHW 20 tSLW 30 tSDS 10 tSDH 20 tCSS 20 tCSH 30 tSDOS 110 SDI Data hold time XCS-SCL time SCL L pulse width (READ) Ver 2.3 Max ns ns XCS ns 94/113 ns 2007/07/19 ST7712 SCL H pulse width (READ) tSDOH 110 ns (VDD =1.8V, Ta=-40℃ ℃~85℃ ℃) Rating Item Signal Symbol Units Min Serial Clock Period tSCYC 50 tSHW 20 tSLW 30 tSDS 10 tSDH 20 tCSS 20 tCSH 30 SCL L pulse width (READ) tSDOS 110 ns SCL H pulse width (READ) tSDOH 110 ns SCL “H” pulse width SCL SCL “L” pulse width Data setup time SDI Data hold time XCS-SCL time Ver 2.3 Max ns ns ns XCS 95/113 2007/07/19 ST7712 Reset Timing Characteristics (Vdd = 1.8 to 3.3V) tRW RES tR Internal status During reset Reset complete (VDD =3.3V, Ta=-40℃ ℃~85℃ ℃) Item Rating Symbol Min Reset low-level width tRW Reset high-level width tR 1 Typ -- Max -1 Units us (VDD =2.7V, Ta=-40℃ ℃~85℃ ℃) Item Rating Symbol Min Reset low-level width tRW Reset high-level width tR 1 Typ -- Max -1 Units us (VDD =1.8V, Ta=-40℃ ℃~85℃ ℃) Item Rating Symbol Min Reset low-level width tRW Reset high-level width tR Ver 2.3 1 Typ -- Max -1 96/113 Units us 2007/07/19 ST7712 12. THE MPU INTERFACE (REFERENCE EXAMPLES) The ST7712 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7712 series chips with fewer signal lines. The display area can be enlarged by using multiple ST7712 Series chips. When this is done, the chip select signal can be used to select the individual Ics to access. (1) 8080 Series 18bits MPUs (2) 8080 Series 16bits MPUs (3) 8080 Series 9 bits MPUs Ver 2.3 97/113 2007/07/19 ST7712 (4) 8080 Series 8 bits MPUs (5) 6800 Series 18 bits MPUs (6) 6800 Series 16 bits MPUs Ver 2.3 98/113 2007/07/19 ST7712 (7) 6800 Series 9 bits MPUs (8) 6800 Series 8 bits MPUs (9) Using the Serial Interface (4-line interface) Ver 2.3 99/113 2007/07/19 ST7712 Using the Serial Interface (3-line interface) Ver 2.3 ST7712 MPU (9) 100/113 2007/07/19 ST7712 13. Application circuit Ver 2.3 101/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 Interface: 8080 series-18bits DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G131 VCMDUMMY1 DUMMYB S394 S392 0.1uF(20V):C5,C6,C8,C9 G129 S395 S393 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) VR>200KΩ DISPLAY S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 102/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 8080 series-16bits Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G129 S395 S393 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) VR>200KΩ DISPLAY S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 103/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 8080 series-9bits Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G129 S395 S393 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 104/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 8080 series-8bits Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G129 S395 S393 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω 3Ω D3 C9 10Ω C5 10Ω 10Ω 10Ω C6 5Ω 5Ω 10Ω C7 C8 10Ω D2 10Ω Even lines Ver 2.3 105/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 Interface: 6800 series-18bits DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G131 VCMDUMMY1 DUMMYB S394 S392 0.1uF(20V):C5,C6,C8,C9 G129 S395 S393 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) VR>200KΩ DISPLAY S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 106/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 6800 series-16bits Vcc=2.4V~3.3V Vci=2.5V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 IOVCC=1.8V~3.3V G129 S395 S393 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 107/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 6800 series-9bits Vcc=2.4V~3.3V Vci=2.5V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 IOVCC=1.8V~3.3V G129 S395 S393 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω DB1 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 108/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: 6800 series-8bits Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE G129 S395 S393 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 S1 DUMMYC VCMDUMMY2 G128 G0 DUMMYD G130 G2 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option 3Ω VCC 30Ω XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω E_RD RW_WR RS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω XCS 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω 5Ω C7 C8 10Ω 10Ω D2 10Ω Even lines Ver 2.3 109/113 2007/07/19 ST7712 TFT Subtrate FPC Odd lines DUMMYA G3 G7 DUMMY9 open DUMMY8 open DUMMY7 open VCOM2 VCOM2 G1 G5 Interface: SPI 4-Lines Vcc=2.4V~3.3V Vci=2.5V~3.3V G131 VCMDUMMY1 DUMMYB S394 S392 IOVCC=1.8V~3.3V G129 S395 S393 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) DISPLAY VR>200KΩ S198 S199 S196 S197 S0 DUMMYC VCMDUMMY2 G128 S1 G130 X Y (0,0) DUMMY6 open VCL VCL VLOUT4 VCOML VCOML VCOML VCOMH VCOMH VCOMH DUMMY5 open VERG1OUT VCOMR VLPWR C11+ C11+ C11+ C11+ C11C11C11C11VLOUT1 VLOUT1 DDVDH DDVDH DDVDH DDVDH DDVDH DDVDH VCIOUT VCIOUT VCIOUT VCIOUT VCI1 VCI1 VCI1 VCI1 VCI1 VCI1 VMON VGS VGS REGP open FUS4 open FUS3 open FUS2 open FUS1 open FUS0 VSSF FUSA4 FUSA3 FUSA2 FUSA1 FUSA0 AGND AGND AGND AGND AGND AGND GND GND GND GND GND GND OSC2 OSC1 VCILVL VDDO VDDO VCI VCI VCI VCI VCI VCI VCC VCC VCC VCC VCC VCC IOVCC IOVCC XRESET DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB09 IOGNDDUM2 open IOGNDDUM2 open DB08 DB07 DB06 DB05 DB04 DB03 DB02 DB01 DB00 E_RD RW_WR RS SDO SDI SCL XCS FLM IOGNDDUM1 IOGNDDUM1 IM3 IM2 IM1 IM0 IOVCCDUM1 IOVCCDUM1 VGL VGL VGL VGL VLOUT3 C12C12C12C12C12+ C12+ C12+ C12+ C21C21C21+ C21+ C22C22C22+ C22+ VLOUT2 VGH VGH 10Ω CA 10Ω CC 10Ω CB 10Ω C1 30Ω VR 50Ω Option 30Ω CD 3Ω C2 3Ω C4 3Ω D1 3Ω 3Ω C3 3Ω 30Ω 30Ω 30Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω 3Ω GND Option 30Ω 30Ω 30Ω 10Ω CE Option VCC 3Ω XRESET 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω RW_WR RS SDO SDI SCL XCS 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 30Ω 3Ω 50Ω 50Ω 50Ω 50Ω 3Ω 3Ω D3 C9 3Ω 10Ω C5 10Ω 10Ω C6 10Ω 5Ω C7 5Ω C8 10Ω 10Ω D2 G0 DUMMYD G2 DUMMY4 VCOM1 VCOM1 DUMMY3 DUMMY2 DUMMY1 10Ω Even lines Ver 2.3 110/113 2007/07/19 ST7712 Interface: SPI 3-Lines Vcc=2.4V~3.3V Vci=2.5V~3.3V IOVCC=1.8V~3.3V 1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE 0.1uF(20V):C5,C6,C8,C9 Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V) VR>200KΩ Ver 2.3 111/113 2007/07/19 ST7712 ST7712 Serial Specification Revision History Ver 2.3 Version Date Description 0.0 2004/7/26 Preliminary spec. 0.2f 2005/6/8 Add application notes and timing 0.2f 2005/6/8 Add Alignment mark coordinate 0.2f 2005/6/8 Add instruction flow chart and demo code 0.3a 2005/7/7 Change GVDD to VREG1OUT 0.3a 2005/7/7 Modify partial_display flow chart code 0.3a 2005/7/7 Modify STB and SLP operation code form 0x0010 to 0x0001 0.3a 2005/7/7 Modify VCM and VDV register ratio table 0.3a 2005/7/7 Delete EQ description when Vcom<0 abnormal display 0.3a 2005/7/7 Modify application circuit and add recommend OBL resistor 0.3a 2005/7/7 0.4a 2005/9/5 Add VCMDUMMY1,VCMDUMMY2/DUMMY1~DUMMY9 /DUMMYA~DUMMYD description Add switch 8-color mode to 262,144-color mode flow chart and code 0.4a 2005/9/5 Add partial-display note 0.4a 2005/9/5 Modify partial-display flow chart 0.4a 2005/9/5 Modify DC1[2:0] and DC0[2:0] frequency 0.4a 2005/9/5 Modify Trim fuse note 0.4b 2005/9/26 Add 8 color mode data format table 0.4b 2005/9/26 Add power up command (04H) 0.4b 2005/9/26 Modify command 42H,43H set value of gate driver 0.4b 2005/9/26 Modify external capacitor(C5,C6.C8,C9) of power supply circuit range 0.1uF~1.0uF 0.4b 2005/9/26 Correct Partial_display flow chart 0.5 2005/10/3 Specification modify 0.6 2005/11/24 Modify VCM table 0.6 2005/11/24 Modify timing table and add SPI read timing 0.6 2005/11/24 Add cascade application note 0.6 2005/11/24 Modify power up command table(04H) 0.6 2005/11/24 Add BGR=1 application note 0.6 2005/11/24 Modify VOH/VOL specification table 0.6 2005/11/24 Add option test capacitance notes in Application circuit 0.6 2005/11/24 Modify internal signals of read mode 112/113 2007/07/19 ST7712 Ver 2.3 1.0 2006/01/04 VRH table modify 1.0 2006/01/04 Modify Trim fuse current limitation specification 1.0 2006/01/04 Modify 8 color display flow chart 1.0 2006/01/04 Modify 8 color mode and partial display current specification 1.0 2006/01/04 Modify SLP and STB example code setting value 1.1 2006/1/19 Modify SLP and STB flow chart 1.1 2006/1/19 Modify Initial Code Setting Flow Chart remark 1.1 2006/1/19 Add Power Supply Setting Flow 1.1 2006/1/19 Modify SLP and STB current maximum value 1.2 2006/5/10 Delete external resistor table and add application notes 1.2 2006/5/10 Disable SDT=1 colocks register value 1.2 2006/5/10 Add trim fuse connect diagram 2.0 2006/6/16 2.0 2006/6/16 Delet example initial code setting. Please refer to application notes Modify Chip thickness 381±25um400±25um and Bump heigh 17±3um15±3um 2.1 2006/7/4 Modify Figure 7.2.1 timing chart 2.1 2006/7/4 Modify 12.The MCU interface(reference sample) Data pin defind of IC side 2.1 2006/7/4 Modify 13. Application circuit the node of C1 2.2 2006/7/7 Modify SDO direction of Block diagram 2.3 2007/7/19 Correct I/O pad size 113/113 2007/07/19