IRF1010Z Data Sheet (399 KB, EN)

PD - 95361A
IRF1010ZPbF
IRF1010ZSPbF
IRF1010ZLPbF
Features
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
HEXFET® Power MOSFET
D
VDSS = 55V
RDS(on) = 7.5mΩ
G
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
Absolute Maximum Ratings
ID = 75A
S
TO-220AB
IRF1010ZPbF
D2Pak
TO-262
IRF1010ZSPbF IRF1010ZLPbF
Parameter
Max.
Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
94
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
IDM
75
360
PD @TC = 25°C Power Dissipation
140
W
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS (Thermally limited) Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
EAS (Tested )
0.90
± 20
W/°C
V
130
mJ
66
c
d
c
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
-55 to + 175
°C
Mounting Torque, 6-32 or M3 screw
i
Parameter
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
www.irf.com
Junction-to-Ambient (PCB Mount)
A
mJ
Thermal Resistance
i
180
See Fig.12a, 12b, 15, 16
g
Soldering Temperature, for 10 seconds
RθJA
h
A
i
j
300 (1.6mm from case )
y
y
10 lbf in (1.1N m)
Typ.
Max.
Units
–––
1.11
°C/W
0.50
–––
–––
62
–––
40
1
07/06/10
IRF1010Z/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.049
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
5.8
7.5
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
33
–––
Drain-to-Source Leakage Current
–––
–––
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
63
95
Qgs
Gate-to-Source Charge
–––
19
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
24
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
18
–––
VDD = 28V
tr
Rise Time
–––
150
–––
td(off)
Turn-Off Delay Time
–––
36
–––
tf
Fall Time
–––
92
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
Ciss
Input Capacitance
–––
2840
–––
and center of die contact
VGS = 0V
Coss
Output Capacitance
–––
420
–––
Crss
Reverse Transfer Capacitance
–––
250
–––
Coss
Output Capacitance
–––
1630
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
360
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
560
–––
VGS = 0V, VDS = 0V to 44V
IGSS
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 75A
e
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 75A
20
µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
ID = 75A
nC
VDS = 44V
e
ID = 75A
ns
nH
RG = 6.8 Ω
e
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
75
ISM
(Body Diode)
Pulsed Source Current
–––
–––
360
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
22
33
ns
Qrr
Reverse Recovery Charge
–––
15
23
nC
ton
Forward Turn-On Time
2
c
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C, IF = 75A, VDD = 25V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF1010Z/S/LPbF
1000
1000
VGS
100
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
TOP
10
4.5V
1
0.1
10
100
4.5V
20µs PULSE WIDTH
Tj = 25°C
1
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
100
T J = 25°C
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current ( A)
20µs PULSE WIDTH
Tj = 175°C
T J = 175°C
100
10
VDS = 25V
20µs PULSE WIDTH
1
4.0
5.0
6.0
7.0
8.0
9.0
10.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
T J = 175°C
80
60
T J = 25°C
40
20
VDS = 10V
20µs PULSE WIDTH
0
11.0
0
20
40
60
80
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRF1010Z/S/LPbF
5000
VGS, Gate-to-Source Voltage (V)
C rss = C gd
4000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C oss = C ds + C gd
3000
Ciss
2000
1000
Coss
Crss
VDS= 44V
VDS= 28V
16
12
8
4
0
0
1
ID= 75A
10
0
100
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
T J = 175°C
10.0
T J = 25°C
1.0
VGS = 0V
0.1
0.2
0.6
1.0
1.4
60
80
100
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100.0
40
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
1.8
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
20
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
100µsec
10
1msec
1
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1010Z/S/LPbF
100
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
LIMITED BY PACKAGE
ID , Drain Current (A)
80
60
40
20
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
-60 -40 -20
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1010Z/S/LPbF
250
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
tp
EAS, Single Pulse Avalanche Energy (mJ)
15V
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
TOP
200
BOTTOM
ID
31A
53A
75A
150
100
50
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VCC
VGS(th) Gate threshold Voltage (V)
10 V
ID = 250µA
3.0
2.0
1.0
-75 -50 -25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF1010Z/S/LPbF
Avalanche Current (A)
1000
Duty Cycle = Single Pulse
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
100
0.01
0.05
10
0.10
1
0.1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
140
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
EAR , Avalanche Energy (mJ)
120
100
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1010Z/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1010Z/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 2000
IN THE AS SEMBLY LINE "C"
Note: "P" in assembly line position
indicates "Lead - Free"
INTERNATIONAL
RECTIFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF1010Z/S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF 530S WIT H
LOT CODE 8024
AS SEMBLED ON WW 02, 2000
IN T HE ASSE MBLY LINE "L"
INT ERNAT IONAL
RECT IF IE R
LOGO
ASSE MBLY
LOT CODE
PART NUMBER
F 530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INTERNAT IONAL
RECTIF IER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
F 530S
DAT E CODE
P = DESIGNAT ES LEAD - F REE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = ASSEMBLY SIT E CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF1010Z/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE AS SEMBLY LINE "C"
INTERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DATE CODE
P = DES IGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/datasheets/data/auirf1010z.pdf
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRF1010Z/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
TO-220AB
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
package is not recommended for Surface Mount Application.
Notes:
… Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = 75A, VGS =10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is only applied to TO-220AB pakcage.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the
4 or G-10 Material). For recommended footprint and soldering
same charging time as Coss while VDS is rising
techniques refer to application note #AN-994.
from 0 to 80% VDSS .
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
12
www.irf.com