StrongIRFET™ IRF40H210 HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters VDSS RDS(on) typ. max 40V 1.4m 1.7m ID (Silicon Limited) 201A ID (Package Limited) 100A Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free, RoHS Compliant PQFN 5 x 6 mm Package Type IRF40H210 PQFN 5mm x 6mm Standard Pack Form Quantity Tape and Reel 4000 ID = 100A IRF40H210 200 5 Limited by package 175 4 3 TJ = 125°C 2 150 125 100 75 50 1 TJ = 25°C 25 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 Orderable Part Number 225 6 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) Base part number www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback April 1, 2015 IRF40H210 Absolute Maximum Rating Symbol ID @ TC(Bottom) = 25°C ID @ TC(Bottom) = 100°C ID @ TC(Bottom) = 25°C IDM PD @TC = 25°C VGS TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V(Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Junction-to-Case RJC (Bottom) Junction-to-Case RJC (Top) Junction-to-Ambient RJA Junction-to-Ambient RJA (<10s) Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance RG Max. 201 127 100 400* 125 1.0 ± 20 Units A W W/°C V -55 to + 150 °C 149 370 mJ See Fig 15, 16, 23a, 23b A mJ Typ. ––– ––– ––– ––– Max. 1.0 18 33 20 Units °C/W Min. 40 ––– Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = 250µA 42 ––– mV/°C Reference to 25°C, ID = 1mA ––– ––– 2.2 ––– ––– ––– ––– ––– 1.4 2.3 ––– ––– ––– ––– ––– 2.6 1.7 ––– 3.7 1.0 150 100 -100 ––– m V µA nA VGS = 10V, ID = 100A VGS = 6.0V, ID = 50A VDS = VGS, ID = 150µA VDS = 40 V, VGS = 0V VDS = 40V,VGS = 0V,TJ =125°C VGS = 20V VGS = -20V Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 100A by source bonding technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.030mH, RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 1117A/µs, VDD V(BR)DSS, TJ 150°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 27A, VGS =10V. * Pulse drain current is limited by source bonding technology. 2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40H210 Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg – Qgd) Turn-On Delay Time Rise Time Min. 113 ––– ––– ––– ––– ––– ––– Typ. ––– 101 30 31 70 9.2 25 td(off) Turn-Off Delay Time ––– 65 tf Ciss Coss Crss Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) ––– ––– ––– ––– 34 5406 805 518 ––– 962 ––– VGS = 0V, VDS = 0V to 32V ––– 1179 ––– VGS = 0V, VDS = 0V to 32V Min. Typ. Max. Units ––– ––– 100 ––– ––– 400* Conditions MOSFET symbol showing the integral reverse p-n junction diode. Coss eff.(ER) Coss eff.(TR) Diode Characteristics Symbol Parameter Continuous Source Current IS (Body Diode) Pulsed Source Current ISM (Body Diode) Max. Units Conditions ––– S VDS = 10V, ID = 100A 152 ID = 100A ––– VDS = 20V nC ––– VGS = 10V ––– ––– VDD = 20V ––– ID = 30A ns ––– RG= 2.7 VGS = 10V ––– ––– ––– ––– A VSD Diode Forward Voltage ––– 0.8 1.2 dv/dt Peak Diode Recovery dv/dt trr Reverse Recovery Time Qrr Reverse Recovery Charge ––– ––– ––– ––– ––– 6.2 21 22 32 38 ––– ––– ––– ––– ––– IRRM Reverse Recovery Current ––– 1.0 ––– 3 www.irf.com © 2015 International Rectifier pF V VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 D G S TJ = 25°C,IS = 100A,VGS = 0V V/ns TJ = 150°C,IS = 100A,VDS = 40V TJ = 25°C V = 34V, R ns TJ = 125°C IF = 100A = 100A/µs TJ = 25°C di/dt nC TJ = 125°C A TJ = 25°C Submit Datasheet Feedback April 1, 2015 IRF40H210 10000 10000 1000 BOTTOM 100 10 4.25V 1 1000 BOTTOM 100 4.25V 10 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 0.1 1 10 0.1 100 100 2.0 R DS(on) , Drain-to-Source On Resistance (Normalized) 10000 1000 100 TJ = 150°C TJ = 25°C 10 1 VDS = 10V 60µs PULSE WIDTH ID = 100A VGS = 10V 1.6 1.2 0.8 0.4 0.1 2 4 6 8 -60 -40 -20 0 10 Fig 5. Typical Transfer Characteristics 100000 Fig 6. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) 100 ID = 100A 12.0 VDS = 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.0V 4.5V 4.25V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.0V 4.5V 4.25V www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback April 1, 2015 IRF40H210 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10000 1000 100 10 TJ = 150°C TJ = 25°C 1 VGS = 0V OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 100 1msec 10 Limited by Package 1 10msec 0.01 0.1 0.1 0.4 0.7 1.0 1.3 1.6 0.1 1.9 1 10 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 49 0.8 Id = 1.0mA 47 0.6 45 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) DC Tc = 25°C Tj = 150°C Single Pulse 0.1 43 41 0.4 0.2 39 37 -60 -40 -20 0 0.0 20 40 60 80 100 120 140 160 0 TJ , Temperature ( °C ) 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) RDS (on), Drain-to -Source On Resistance (m) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 14 VGS = 5.0V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 12 10 8 6 4 2 0 0 50 100 150 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40H210 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 160 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A EAR , Avalanche Energy (mJ) 140 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback April 1, 2015 IRF40H210 10 IF = 60A VR = 34V 4.0 8 TJ = 25°C TJ = 125°C 3.5 3.0 IRRM (A) VGS(th), Gate threshold Voltage (V) 4.5 2.5 2.0 ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 1.5 6 4 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 0 200 TJ , Temperature ( °C ) 600 800 1000 diF /dt (A/µs) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 10 250 IF = 100A VR = 34V 8 IF = 60A VR = 34V 200 TJ = 25°C TJ = 125°C 6 QRR (nC) IRRM (A) 400 4 2 TJ = 25°C TJ = 125°C 150 100 50 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 200 IF = 100A VR = 34V TJ = 25°C TJ = 125°C QRR (nC) 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40H210 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V L VDS D.U.T RG IAS 20V tp tp DRIVER + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 24a. Switching Time Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback April 1, 2015 IRF40H210 PQFN 5x6 Outline "B" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40H210 PQFN Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Bo Ko W P1 DESCRIPTION Dimension design to accommodate the component width Dimension design to accommodate the component lenght Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Note: All dimension are nominal Package Type Reel Diameter (Inch) QTY Reel Width W1 (mm) Ao (mm) Bo (mm) Ko (mm) P1 (mm) W (mm) Pin 1 Quadrant 5 X 6 PQFN 13 4000 12.4 6.300 5.300 1.20 8.00 12 Q1 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015 IRF40H210 Qualification Information† Industrial Qualification Level (per JEDEC JESD47F†† guidelines) Moisture Sensitivity Level MSL1 PQFN 5mm x 6mm (per JEDEC J-STD-020D††) Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 1, 2015