IRF IRFH4201PBF

IRFH4201PbF
HEXFET® Power MOSFET
VDSS
25
RDS(on) max
(@ VGS = 10V)
(@ VGS = 4.5V)
V
0.95
m
1.25
Qg (typical)
46.0
nC
ID
(@TC (Bottom) = 25°C)
100
A
PQFN 5X6 mm
Applications

Synchronous Rectifier MOSFET for Sync Buck Converters

Secondary Synchronous Rectifier MOSFET for isolated DC-DC converters

Active ORing and Hot Swap

Battery Operated DC Motor Inverters
Features
Low RDSon (<0.95 m)
Low Thermal Resistance to PCB (<0.8°C/W)
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial Qualification
Base part number
Standard Pack
Form
Quantity
Tape and Reel
4000
Package Type
IRFH4201PbF
Benefits
Lower Conduction Losses
Enable better thermal dissipation
results in Increased Power Density
 Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
PQFN 5mm x 6 mm
Orderable Part Number
IRFH4201TRPbF
Absolute Maximum Ratings
Parameter
Max.
Units
VGS
Gate-to-Source Voltage
± 20
V
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
49
A
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
326
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 10V
206
ID @ TC(Bottom) = 25°C
100
IDM
Continuous Drain Current, VGS @ 10V
(Source Bonding Technology Limited)
Pulsed Drain Current 
PD @TA = 25°C
Power Dissipation 
3.5
PD @TC(Bottom) = 25°C
Power Dissipation
156
400
W
Linear Derating Factor
0.028
W/°C
TJ
Operating Junction and
-55 to + 150
°C
TSTG
Storage Temperature Range
Notes  through  are on page 8
1
www.irf.com
© 2013 International Rectifier
May 20, 2013
IRFH4201PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
BVDSS/TJ
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
VGS(th)
IDSS
IGSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
gfs
Forward Transconductance
Total Gate Charge
Qg
Qg
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Qgs1
Post-Vth Gate-to-Source Charge
Qgs2
Qgd
Gate-to-Drain Charge
Gate Charge Overdrive
Qgodr
Switch Charge (Qgs2 + Qgd)
Qsw
Output Charge
Qoss
RG
Gate Resistance
td(on)
Turn-On Delay Time
Rise Time
tr
td(off)
Turn-Off Delay Time
tf
Fall Time
Input Capacitance
Ciss
Output Capacitance
Coss
Crss
Reverse Transfer Capacitance
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy 
EAS
Avalanche Current 
IAR
Diode Characteristics
Parameter
Continuous Source Current
IS
(Body Diode)
ISM
Pulsed Source Current
(Body Diode) 
VSD
Diode Forward Voltage
Reverse Recovery Time
trr
Qrr
Reverse Recovery Charge
Min.
25
–––
–––
–––
1.1
–––
–––
–––
–––
175
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
20
0.70
0.97
1.6
-5.9
–––
–––
–––
–––
94.0
46.0
11.0
6.4
16.0
12.6
22.4
46.0
0.9
20
43
24
19
6100
1700
450
Max.
–––
–––
0.95
1.25
2.1
–––
1.0
100
-100
–––
–––
69.0
–––
–––
–––
–––
–––
–––
2.7
–––
–––
–––
–––
–––
–––
–––
Units
Conditions
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
m VGS = 10V, ID = 50A 
VGS = 4.5V, ID = 50A 
V
VDS = VGS, ID = 150µA
mV/°C
µA VDS = 20V, VGS = 0V
nA VGS = 20V
VGS = -20V
S
VDS = 13V, ID = 50A
nC VGS = 10V, VDS = 13V, ID = 50A
nC
nC
 ns
pF
Parameter
RJC (Bottom) Junction-to-Case 
Junction-to-Case 
RJC (Top)
VDS = 16V, VGS = 0V
VDD = 13V, VGS = 4.5V
ID = 50A
RG=1.8
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Typ.
–––
–––
Max.
478
50
Min.
–––
Typ.
–––
Max.
100
–––
–––
400
Units
Conditions
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
V
TJ = 25°C, IS = 50A, VGS = 0V 
ns TJ = 25°C, IF = 50A, VDD = 13V
nC di/dt = 400A/µs 
D
G
S
–––
–––
–––
–––
31
84
1.0
47
126
Thermal Resistance
VDS = 13V
VGS = 4.5V
ID = 50A
Typ.
–––
Max.
0.8
Units
–––
18
°C/W
RJA
Junction-to-Ambient 
–––
36
RJA (<10s)
Junction-to-Ambient 
–––
22
2
www.irf.com
© 2013 International Rectifier
May 20, 2013
IRFH4201PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.1V
2.9V
2.7V
2.5V
100
10
1
2.5V
BOTTOM
2.5V
10
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.01
0.1
1
10
1
100
0.01
1000
1000
10
100
1000
1.6
100
TJ = 150°C
10
TJ = 25°C
1
V DS = 15V
60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
0.1
ID = 50A
V GS = 10V
1.4
1.2
1.0
0.8
0.6
1.0
1.5
2.0
2.5
3.0
3.5
-60 -40 -20 0
V GS, Gate-to-Source Voltage (V)
100000
Fig 4. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
V GS, Gate-to-Source Voltage (V)
ID= 50A
Coss = Cds + Cgd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
0.1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Crss
100
12.0
V DS= 20V
V DS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
VGS
10V
5.0V
4.5V
3.5V
3.1V
2.9V
2.7V
2.5V
www.irf.com
© 2013 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
May 20, 2013
IRFH4201PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
TJ = 150°C
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
100
100µsec
Limited by package
10
1
V GS = 0V
1msec
DC
0.1
0.1
0.2
0.4
0.6
0.8
1.0
0.1
1.2
1
10
100
VDS , Drain-to-Source Voltage (V)
V SD, Source-to-Drain Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
350
2.6
V GS(th) , Gate threshold Voltage (V)
Limited by package
300
ID, Drain Current (A)
10msec
Tc = 25°C
Tj = 150°C
Single Pulse
250
200
150
100
50
0
2.4
2.2
2.0
1.8
1.6
1.4
1.2
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
0.8
25
50
75
100
125
150
-75 -50 -25
TC , Case Temperature (°C)
0
25
50
75 100 125 150
TJ , Temperature ( °C )
Fig 10. Drain-to–Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
© 2013 International Rectifier
May 20, 2013
5.0
2000
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m )
IRFH4201PbF
ID = 50A
4.0
3.0
2.0
TJ = 125°C
1.0
TJ = 25°C
ID
15A
24A
BOTTOM 50A
TOP
1600
1200
0.0
800
400
0
2
4
6
8
10
12
14
16
18
20
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
V GS, Gate -to -Source Voltage (V)
Fig 12. On– Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
5
www.irf.com
© 2013 International Rectifier
May 20, 2013
IRFH4201PbF
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
0.01
I AS
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 18. Gate Charge Test Circuit
6
www.irf.com
© 2013 International Rectifier
Qgd
Qgodr
Fig 19. Gate Charge Waveform
May 20, 2013
IRFH4201PbF
PQFN 5x6 Outline "B" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note
AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
7
www.irf.com
© 2013 International Rectifier
May 20, 2013
IRFH4201PbF
PQFN 5x6 Outline "B" Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Qualification Information† Industrial
(per JEDEC JESD47F†† guidelines)
Qualification Level PQFN 5mm x 6mm
Moisture Sensitivity Level
MSL1
(per JEDEC J-STD-020D††)
Yes
RoHS Compliant
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
†† Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
 Starting TJ = 25°C, L = 0.38mH, RG = 50, IAS = 50A.
 Pulse width  400µs; duty cycle  2%.
 R is measured at TJ of approximately 90°C.
 When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:
http://www.irf.com/technical-info/appnotes/an-994.pdf
 Calculated continuous current based on maximum allowable junction temperature.
 Current is limited to 100A by source bonding technology.
Revision History
Date
05/17/2013



Comments
Updated package 3D drawing, on page 1.
Added Continuous Drain Current limited by source bonding technology, on page 1.
Divided note 6 into note 6 & 7, on page 8.
01/15/2013

Release of final data sheet.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
8
www.irf.com
© 2013 International Rectifier
May 20, 2013