StrongIRFET™ IRFP7537PbF HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters 3.30m 172A S TO-247 IRFP7537PbF D Drain Standard Pack Form Quantity Tube 25 12 S Source Orderable Part Number IRFP7537PbF 200 ID = 100A 10 8 6 TJ = 125°C 4 TJ = 25°C 2 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 max GD ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) TO-247 2.75m ID G Gate IRFP7537PbF RDS(on) typ. S Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free, RoHS Compliant Package Type 60V G Base part number VDSS D www.irf.com © 2014 International Rectifier 150 100 50 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback November 18, 2014 IRFP7537PbF Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C Parameter Max. Continuous Drain Current, VGS @ 10V 172 Continuous Drain Current, VGS @ 10V 121 Pulsed Drain Current 700 Maximum Power Dissipation 230 Linear Derating Factor 1.5 VGS Gate-to-Source Voltage ± 20 TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics 250 EAS (Thermally limited) Single Pulse Avalanche Energy 554 EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current See Fig 15, 16, 23a, 23b Repetitive Avalanche Energy EAR Thermal Resistance Symbol Parameter Typ. Max. Junction-to-Case RJC ––– 0.66 Case-to-Sink, Flat Greased Surface RCS 0.24 ––– Junction-to-Ambient RJA ––– 40 Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Min. 60 ––– ––– ––– 2.1 ––– ––– ––– ––– ––– Typ. Max. ––– ––– 40 ––– 2.75 3.30 3.50 ––– ––– 3.7 ––– 1.0 ––– 150 ––– 100 ––– -100 2.0 ––– Units A W W/°C V °C mJ A mJ Units °C/W Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 100A m VGS = 6.0V, ID = 50A V VDS = VGS, ID = 150µA VDS =60 V, VGS = 0V µA VDS =60V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 50µH, RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 1130A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V. 2 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback November 18, 2014 IRFP7537PbF Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time Min. 190 ––– ––– ––– ––– ––– ––– Typ. ––– 142 36 43 99 15 105 td(off) Turn-Off Delay Time ––– 82 tf Ciss Coss Crss Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) ––– ––– ––– ––– 84 7020 640 395 ––– 665 ––– VGS = 0V, VDS = 0V to 48V ––– 880 ––– VGS = 0V, VDS = 0V to 48V Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 172 ––– ––– 700 Conditions MOSFET symbol showing the integral reverse p-n junction diode. VSD Diode Forward Voltage ––– ––– 1.2 dv/dt Peak Diode Recovery dv/dt trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– ––– ––– 10 39 41 46 56 2.1 ––– ––– ––– ––– ––– ––– Coss eff.(ER) Coss eff.(TR) Max. Units Conditions ––– S VDS = 10V, ID =100A 210 ID = 100A ––– VDS = 30V nC ––– VGS = 10V ––– ––– VDD = 30V ––– ID = 100A ns ––– RG= 2.7 VGS = 10V ––– ––– ––– ––– pF VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 Diode Characteristics Symbol IS ISM 3 www.irf.com © 2014 International Rectifier A V D G S TJ = 25°C,IS = 100A,VGS = 0V V/ns TJ = 175°C,IS =100A,VDS = 60V TJ = 25°C VDD = 51V ns TJ = 125°C IF = 100A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Submit Datasheet Feedback November 18, 2014 IRFP7537PbF 1000 1000 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 BOTTOM 4.5V 100 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 2.4 1000 100 TJ = 175°C TJ = 25°C 10 1 VDS = 25V 60µs PULSE WIDTH ID = 100A VGS = 10V 2.0 1.6 1.2 0.8 0.4 0.1 2 3 4 5 6 -60 7 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss Coss Crss 1000 60 100 140 180 14.0 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 20 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -20 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics ID = 100A 12.0 VDS = 48V VDS = 30V 10.0 VDS= 12V 8.0 6.0 4.0 2.0 0.0 100 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 1 VDS, Drain-to-Source Voltage (V) www.irf.com © 2014 International Rectifier 0 50 100 150 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback November 18, 2014 IRFP7537PbF 1000 TJ = 175°C 100 TJ = 25°C 10 100µsec ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 1 VGS = 0V 100 10msec 1 Tc = 25°C Tj = 175°C Single Pulse DC 0.1 0.1 0.1 0.4 0.7 1.0 1.3 1.6 1.9 0.1 2.2 1 10 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.2 78 Id = 1.0mA 76 1.0 74 0.8 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 1msec OPERATION IN THIS AREA LIMITED BY RDS(on) 10 72 70 0.6 0.4 68 0.2 66 0.0 64 -60 -20 20 60 100 140 0 180 TJ , Temperature ( °C ) 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) RDS (on), Drain-to -Source On Resistance (m) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 5.1 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 4.6 4.1 3.6 3.1 2.6 0 50 100 150 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback November 18, 2014 IRFP7537PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 300 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2014 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback November 18, 2014 IRFP7537PbF 12 IF = 60A VR = 51V 4.0 TJ = 25°C TJ = 125°C 9 3.5 IRRM (A) VGS(th), Gate threshold Voltage (V) 4.5 3.0 2.5 2.0 6 ID = 150µA ID = 250µA ID = 1.0mA ID = 1.0A 1.5 3 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 diF /dt (A/µs) Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 15 225 12 IF = 100A VR = 51V 200 TJ = 25°C TJ = 125°C 175 9 QRR (nC) IRRM (A) 400 6 IF = 60A VR = 51V TJ = 25°C TJ = 125°C 150 125 100 75 3 50 0 25 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 225 IF = 100A VR = 51V 200 TJ = 25°C TJ = 125°C QRR (nC) 175 150 125 100 75 50 25 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback November 18, 2014 IRFP7537PbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG IAS 20V tp + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2014 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback November 18, 2014 IRFP7537PbF TO-247AC Package Outline (Dimensions are shown in millimeters (inches)) TO-247AC Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 135H 57 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback November 18, 2014 IRFP7537PbF Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level Moisture Sensitivity Level TO-247 N/A Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Revision History Date 11/18/2014 Comments Updated EAS (L =1mH) = 554mJ on page 2 Updated note 8 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V”. on page 2 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback November 18, 2014