StrongIRFET™ IRFH7085PbF HEXFET® Power MOSFET Application Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies DC/DC converters DC/AC Inverters Benefits Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free, RoHS Compliant VDSS 60V RDS(on) typ. 2.6m max 3.2m ID (Silicon Limited) 147A ID (Package Limited) 100A PQFN 5X6 mm Base part number Standard Pack Form Quantity Tape and Reel 4000 Package Type PQFN 5mm x 6mm 8.0 150 7.0 Limited By Package 125 6.0 T J = 125°C 5.0 4.0 T J = 25°C 3.0 100 75 50 25 2.0 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 IRFH7085TRPbF ID = 75A ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) IRFH7085PbF Orderable Part Number www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback March 17, 2015 IRFH7085PbF Absolute Maximum Rating Symbol Parameter ID @ TA = 25°C Continuous Drain Current, VGS @ 10V ID @ TC(Bottom) = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC(Bottom) = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current PD @ TC = 25°C Maximum Power Dissipation Linear Derating Factor VGS Gate-to-Source Voltage TJ Operating Junction and TSTG Storage Temperature Range Avalanche Characteristics Symbol Parameter EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy Avalanche Current IAR Repetitive Avalanche Energy EAR Thermal Resistance Parameter Junction-to-Case RJC (Bottom) Junction-to-Case RJC (Top) Junction-to-Ambient RJA Junction-to-Ambient RJA (<10s) Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance RG Min. 60 ––– ––– ––– 2.1 ––– ––– ––– ––– ––– Typ. ––– 43 2.6 3.6 ––– ––– ––– ––– ––– 1.4 Max. ––– ––– 3.2 ––– 3.7 1.0 150 100 -100 ––– Max. 23 147 93 100 590 156 1.25 ± 20 Units A A W W/°C V -55 to + 150 °C Max. 319 554 Units mJ See Fig 15, 16, 23a, 23b Typ. 0.5 ––– ––– ––– Units V mV/°C m V µA nA Max. 0.8 20 34 22 A mJ Units °C/W Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1.0mA VGS = 10V, ID = 75A VGS = 6.0V, ID = 38A VDS = VGS, ID = 150µA VDS = 60V, VGS = 0V VDS = 60V,VGS = 0V,TJ = 125°C VGS = 20V VGS = -20V Notes: Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 113µH, RG = 50, IAS = 75A, VGS = 10V. ISD 75A, di/dt 1280A/µs, VDD V(BR)DSS, TJ 150°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V. When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf 2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7085PbF Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Min. 140 ––– ––– ––– ––– ––– Typ. Max. Units Conditions ––– ––– S VDS = 10V, ID = 75A 110 165 ID = 75A VDS = 30V 30 ––– nC VGS = 10V 36 ––– 74 ––– 13 ––– VDD = 30V tr Rise Time ––– 25 ––– td(off) Turn-Off Delay Time ––– 63 ––– tf Ciss Coss Crss Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– 23 6460 560 380 ––– ––– ––– ––– Coss eff.(ER) Effective Output Capacitance (Energy Related) ––– 570 ––– VGS = 0V VDS = 25V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V Coss eff.(TR) Output Capacitance (Time Related) ––– 715 ––– VGS = 0V, VDS = 0V to 48V Min. Typ. Max. Units ––– ––– 147 ––– ––– 590 VSD Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage ––– ––– 1.2 dv/dt Peak Diode Recovery dv/dt ––– 3.0 ––– trr Reverse Recovery Time Qrr Reverse Recovery Charge ––– ––– ––– ––– 31 30 39 33 ––– ––– ––– ––– IRRM Reverse Recovery Current ––– 1.9 ––– ns ID = 30A RG = 2.7 VGS = 10V Diode Characteristics Symbol IS ISM 3 www.irf.com © 2015 International Rectifier A V Conditions MOSFET symbol showing the integral reverse p-n junction diode. D G S TJ = 25°C,IS = 75A,VGS = 0V V/ns TJ = 150°C,IS = 75A,VDS = 60V TJ = 25°C TJ = 125°C TJ = 25°C nC TJ = 125°C ns A TJ = 25°C Submit Datasheet Feedback VDD = 51V IF = 75A, di/dt = 100A/µs March 17, 2015 IRFH7085PbF 10000 1000 1000 BOTTOM 100 10 1 100 BOTTOM 10 4.3V 60µs PULSE WIDTH 60µs PULSE WIDTH 4.0V Tj = 25°C 0.1 0.1 1 Tj = 150°C 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.4 100 T J = 150°C T J = 25°C 10 VDS = 25V 60µs PULSE WIDTH 1.0 ID = 75A VGS = 10V 2.0 1.6 1.2 0.8 0.4 3 4 5 6 7 8 -60 -40 -20 0 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics 1000 ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics ID= 75A 12.0 VDS= 48V VDS= 30V 10.0 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 7.0V 6.0V 5.0V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 7.0V 6.0V 5.0V 4.5V 4.3V 4.0V www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 140 160 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback March 17, 2015 IRFH7085PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150°C 100 10 T J = 25°C 1msec 100 Limited by package 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V DC 0.01 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 1.1 1 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.2 76 Id = 1.0mA 1.0 72 0.8 Energy (µJ) 74 70 0.6 68 0.4 66 0.2 64 0.0 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 10 20 30 40 50 60 T J , Temperature ( °C ) VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy RDS(on), Drain-to -Source On Resistance ( m ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100µsec 70 3.4 VGS = 6.0V VGS = 7.0V VGS = 10V VGS = 15V 3.2 3.0 2.8 2.6 2.4 2.2 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7085PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 200 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 75A 160 120 80 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback March 17, 2015 IRFH7085PbF 12 4.0 10 IF = 45A V R = 51V TJ = 25°C 3.5 8 TJ = 125°C IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.5 3.0 ID ID ID ID 2.5 2.0 = 150µA = 250µA = 1.0mA = 1.0A 6 4 2 1.5 0 -75 -50 -25 0 25 50 75 100 125 150 0 200 T J , Temperature ( °C ) 600 800 1000 diF /dt (A/µs) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 12 200 IF = 75A V R = 51V 10 IF = 45A V R = 51V TJ = 25°C 160 TJ = 25°C TJ = 125°C TJ = 125°C QRR (nC) 8 IRRM (A) 400 6 120 80 4 40 2 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/µs) 400 600 800 1000 diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt 200 IF = 75A V R = 51V QRR (nC) 160 TJ = 25°C TJ = 125°C 120 80 40 0 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7085PbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V tp A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback March 17, 2015 IRFH7085PbF PQFN 5x6 Outline "B" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7085PbF PQFN 5x6 Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Bo Ko W P1 DESCRIPTION Dimension design to accommodate the component width Dimension design to accommodate the component lenght Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Note: All dimension are nominal Package Type Reel Diameter (Inch) QTY Reel Width W1 (mm) Ao (mm) Bo (mm) Ko (mm) P1 (mm) W (mm) Pin 1 Quadrant 5 X 6 PQFN 13 4000 12.4 6.300 5.300 1.20 8.00 12 Q1 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7085PbF Qualification Information† Industrial (per JEDEC JESD47F †† guidelines ) Qualification level Moisture Sensitivity Level PQFN 5mm x 6mm (per JEDEC J-STD-020D††) Yes RoHS Compliant † †† MSL1 Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Applicable version of JEDEC standard at the time of product release. Revision History Date Comments 11/7/2014 Added EAS (L =1mH) = 554mJ on page 2 Added note 9 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V”. on page 2 Added Pd @ Tc = 25°C on Absolute Max Rating table on page 2 3/17/2015 Updated package outline and tape and reel on pages 9 and 10. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015