IRFB7440G Data Sheet (260 KB, EN)

StrongIRFET™
IRFB7440GPbF
Applications
l
l
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
VDSS
RDS(on) typ.
max.
ID
D
G
l
l
G
Base Part Number
Package Type
IRFB7440GPbF
TO-220
S
G
D
S
Gate
Drain
Source
Standard Pack
Form
Quantity
Tube
50
7.0
Complete Part Number
IRFB7440GPbF
240
ID = 100A
6.0
Limited By Package
200
5.0
T J = 125°C
4.0
3.0
2.0
160
120
80
40
T J = 25°C
1.0
0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
D
TO-220AB
IRFB7440GPbF
ID, Drain Current (A)
l
120A
D
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
Halogen-Free
RDS(on), Drain-to -Source On Resistance (m Ω)
l
c
ID (Package Limited)
S
Benefits
l
40V
2.0mΩ
2.5mΩ
208A
www.irf.com © 2014 International Rectifier
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
c
147c
208
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
120
IDM
Pulsed Drain Current
772
PD @TC = 25°C
Maximum Power Dissipation
208
W
Linear Derating Factor
1.4
W/°C
VGS
Gate-to-Source Voltage
± 20
V
TJ
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
d
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
x
EAS (Thermally limited)
Single Pulse Avalanche Energy
EAS (Thermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
Thermal Resistance
Symbol
300
x
10lbf in (1.1N m)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
d
A
e
k
mJ
238
560
mJ
Typ.
Max.
–––
0.72
Case-to-Sink, Flat Greased Surface
0.50
–––
Junction-to-Ambient
–––
62
RθJC
Junction-to-Case
RθCS
RθJA
j
A
See Fig. 14, 15, 22a, 22b
d
Parameter
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)DSS
Symbol
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV(BR)DSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.035
–––
V/°C
Reference to 25°C, ID = 5.0mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.0
2.5
mΩ
VGS = 10V, ID = 100A
–––
3.0
–––
mΩ
VGS = 6.0V, ID
VGS(th)
Gate Threshold Voltage
2.2
3.0
3.9
V
VDS = VGS, ID = 100μA
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
VDS = 40V, VGS = 0V
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
2.6
–––
RG
Parameter
Conditions
VGS = 0V, ID = 250μA
g
= 50A g
d
VDS = 40V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
Notes:
 Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising
from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.048mH, RG = 50Ω, IAS = 100A, VGS =10V.
„ ISD ≤ 100A, di/dt ≤ 1330A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
ˆ Rθ is measured at TJ approximately 90°C.
‰ Limited by TJmax starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 34A, VGS =10V.
2
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Min.
Typ.
Max.
Units
88
–––
–––
S
VDS = 10V, ID = 100A
Conditions
nC
ID = 100A
Qg
Total Gate Charge
–––
90
135
Q gs
Gate-to-Source Charge
–––
23
–––
VDS =20V
Q gd
Gate-to-Drain ("Miller") Charge
–––
32
–––
VGS = 10V
Q sync
Total Gate Charge Sync. (Q g - Q gd )
–––
58
–––
ID = 100A, VDS =0V, VGS = 10V
ns
g
td(on)
Turn-On Delay Time
–––
24
–––
tr
Rise Time
–––
68
–––
ID = 30A
VDD = 20V
td(off)
Turn-Off Delay Time
–––
115
–––
RG = 2.7Ω
tf
Fall Time
–––
68
–––
Ciss
Input Capacitance
–––
4730
–––
Coss
Output Capacitance
–––
680
–––
Crss
Reverse Transfer Capacitance
–––
460
–––
ƒ = 1.0 MHz
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
–––
845
–––
VGS = 0V, VDS = 0V to 32V
Coss eff. (TR)
Effective Output Capacitance (Time Related)
–––
980
–––
VGS = 0V, VDS = 0V to 32V
Min.
Typ.
Max.
–––
–––
VGS = 10V
pF
g
VGS = 0V
VDS = 25V
i
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
c
208
Units
A
Pulsed Source Current
(Body Diode)
d
–––
–––
772
A
VSD
Diode Forward Voltage
–––
0.9
1.3
V
Peak Diode Recovery
–––
6.8
–––
V/ns
trr
Reverse Recovery Time
–––
24
–––
ns
–––
28
–––
–––
17
–––
–––
20
–––
–––
1.3
–––
f
Reverse Recovery Charge
Reverse Recovery Current
IRRM
3
G
integral reverse
p-n junction diode.
dv/dt
Q rr
D
showing the
(Body Diode)
ISM
Conditions
MOSFET symbol
www.irf.com © 2014 International Rectifier
nC
TJ = 25°C, IS = 100A, VGS = 0V
S
g
TJ = 175°C, IS = 100A, VDS = 40V
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 100A
TJ = 25°C
di/dt = 100A/μs
g
TJ = 125°C
A
TJ = 25°C
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
1000
1000
100
BOTTOM
TOP
10
4.5V
1
≤60μs PULSE WIDTH
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
2.0
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
T J = 175°C
T J = 25°C
10
VDS = 10V
≤60μs PULSE WIDTH
ID = 100A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
1.0
3
4
5
6
7
8
9
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
10000
Ciss
Coss
Crss
1000
100
ID= 100A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com © 2014 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
Limited by
package
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
2.5
0.1
1
0.8
50
Id = 5.0mA
VDS= 0V to 32V
48
0.6
47
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
49
10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
46
45
44
0.4
43
0.2
42
41
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
5
T J , Temperature ( °C )
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
10
Fig 12. Typical COSS Stored Energy
40
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
30
VGS =10V
20
10
0
0
100 200 300 400 500 600 700 800
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
1
Thermal Response ( Z thJC ) °C/W
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
8
IF = 60A
V R = 34V
7
4.0
TJ = 25°C
TJ = 125°C
6
3.0
IRRM (A)
VGS(th), Gate threshold Voltage (V)
5.0
ID = 100μA
ID = 1.0mA
ID = 1.0A
5
4
3
2.0
2
1
1.0
-75 -50 -25
0
0
25 50 75 100 125 150 175
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
8
110
IF = 100A
V R = 34V
7
IF = 60A
V R = 34V
100
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
90
QRR (nC)
6
IRRM (A)
400
diF /dt (A/μs)
5
4
80
70
3
60
2
50
1
40
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
100
IF = 100A
V R = 34V
QRR (nC)
80
TJ = 25°C
TJ = 125°C
60
40
20
0
0
200
400
600
800
1000
diF /dt (A/μs)
7
Fig. 21 - Typical Stored Charge vs. dif/dt
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2014 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRFB4310GPBF
Note: "G" suffix in part number
indicates "Halogen - F ree"
Note: "P" in as sembly line position
indicates "Lead - Free"
PART NUMBE R
INTERNAT IONAL
RECTIFIER
LOGO
DAT E CODE:
Y= LAS T DIGIT OF
CALENDAR YEAR
AS S EMBLY
LOT CODE
WW= WORK WEEK
X= FACTORY CODE
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFB7440GPbF
Qualification information†
Qualification level
Industrial
(per JEDEC JESD47F†† guidelines)
TO-220
Not applicable
Yes
Moisture Sensitivity Level
RoHS compliant
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
11/19/2014
Comment
• Updated data sheet with IR corporate template.
• Updated EAS (L =1mH) = 560mJ on page 2
• Updated note 9 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 34A, VGS =10V”. on page 2
• Updated package outline on page 9.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014