StrongIRFET IRFB7440PbF Applications l l l l l l l l l HEXFET® Power MOSFET Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D G S VDSS RDS(on) typ. max. ID l l Base Part Number Package Type IRFB7440PbF TO-220 D S TO-220AB IRFB7440PbF G D S Gate Drain Source Standard Pack Form Quantity Tube 50 7.0 Complete Part Number IRFB7440PbF 200 ID = 100A Limited By Package 6.0 5.0 T J = 125°C 4.0 3.0 150 100 50 2.0 T J = 25°C 1.0 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 G ID, Drain Current (A) l 120A D Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free RoHS Compliant, Halogen-Free* RDS(on), Drain-to -Source On Resistance (m Ω) l c ID (Package Limited) Benefits l 40V 2.0mΩ 2.5mΩ 172A www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback February 19, 2015 IRFB7440PbF Absolute Maximum Ratings Symbol Parameter Max. Units c 122c 172 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 120 IDM Pulsed Drain Current 772 PD @TC = 25°C Maximum Power Dissipation 143 W Linear Derating Factor 0.95 W/°C VGS Gate-to-Source Voltage ± 20 V TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range d °C Soldering Temperature, for 10 seconds (1.6mm from case) x EAS (Thermally limited) EAS (Thermally limited) IAR EAR 300 x 10lbf in (1.1N m) Mounting torque, 6-32 or M3 screw Avalanche Characteristics A e Single Pulse Avalanche Energy k Avalanche Currentd Repetitive Avalanche Energy d Single Pulse Avalanche Energy 161 mJ 387 See Fig. 14, 15, 22a, 22b A mJ Thermal Resistance Symbol RθJC Junction-to-Case ––– Max. 1.05 RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 j Parameter Typ. Units °C/W Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)DSS Symbol Drain-to-Source Breakdown Voltage Parameter 40 ––– ––– V ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.035 ––– V/°C RDS(on) Static Drain-to-Source On-Resistance ––– 2.0 2.5 mΩ VGS = 10V, ID = 100A ––– 3.0 ––– mΩ VGS = 6.0V, ID = 50A 3.9 V μA VGS(th) Gate Threshold Voltage 2.2 3.0 IDSS Drain-to-Source Leakage Current ––– ––– 1.0 ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.6 ––– IGSS RG Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.032mH RG = 50Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 1330A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 www.irf.com © 2015 International Rectifier Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 5.0mA g g d VDS = VGS, ID = 100μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. Rθ is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 28A, * VGS =10V. Halogen -Free since April 30, 2014 Submit Datasheet Feedback February 19, 2015 IRFB7440PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units 88 ––– ––– S VDS = 10V, ID = 100A ––– 90 135 nC ID = 100A ––– 23 ––– VDS =20V 32 ––– VGS = 10V 58 ––– Conditions gfs Forward Transconductance Qg Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge ––– Qsync Total Gate Charge Sync. (Qg - Qgd) ––– td(on) Turn-On Delay Time ––– 24 ––– tr Rise Time ––– 68 ––– ID = 30A td(off) Turn-Off Delay Time ––– 115 ––– RG = 2.7Ω tf Fall Time ––– 68 ––– VGS = 10V Ciss Input Capacitance ––– 4730 ––– Coss Output Capacitance ––– 680 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 460 ––– ƒ = 1.0 MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 845 ––– VGS = 0V, VDS = 0V to 32V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 980 ––– VGS = 0V, VDS = 0V to 32V Min. Typ. Max. Units ––– ––– 172 A ––– ––– 772 A ns pF g VDD = 20V g VGS = 0V i h Diode Characteristics Symbol IS Parameter Continuous Source Current Pulsed Source Current (Body Diode) D showing the (Body Diode) ISM Conditions MOSFET symbol d integral reverse G VSD Diode Forward Voltage f ––– 0.9 1.3 V TJ = 25°C, IS = 100A, VGS = 0V dv/dt Peak Diode Recovery ––– 6.8 ––– V/ns trr Reverse Recovery Time ––– 24 ––– ns TJ = 25°C VR = 34V, ––– 28 ––– TJ = 125°C IF = 100A Qrr Reverse Recovery Charge ––– 17 ––– nC TJ = 25°C di/dt = 100A/μs ––– 20 ––– IRRM Reverse Recovery Current ––– 1.3 ––– A TJ = 25°C 3 S p-n junction diode. www.irf.com © 2015 International Rectifier g TJ = 175°C, IS = 100A, VDS = 40V g TJ = 125°C Submit Datasheet Feedback February 19, 2015 IRFB7440PbF 1000 1000 100 BOTTOM TOP 10 4.5V 1 ≤60μs PULSE WIDTH ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V ≤60μs PULSE WIDTH Tj = 25°C Tj = 175°C 0.1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 2.0 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 T J = 175°C T J = 25°C 10 VDS = 10V ≤60μs PULSE WIDTH ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 1.0 3 4 5 6 7 8 9 Fig 5. Typical Transfer Characteristics 100000 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics 10000 Ciss Coss Crss 1000 100 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback February 19, 2015 IRFB7440PbF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100μsec 1msec 100 Limited by package 10 1 VGS = 0V 0.1 DC 0.1 0.0 0.5 1.0 1.5 2.0 2.5 0.1 1 100 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.8 50 49 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Id = 5.0mA VDS= 0V to 32V 48 0.6 47 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 10msec Tc = 25°C Tj = 175°C Single Pulse 46 45 44 0.4 43 0.2 42 41 0.0 40 0 -60 -40 -20 0 20 40 60 80 100120140160180 5 T J , Temperature ( °C ) 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( mΩ) 10 Fig 12. Typical COSS Stored Energy 40 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V 30 VGS =10V 20 10 0 0 100 200 300 400 500 600 700 800 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFB7440PbF Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFB7440PbF 8 IF = 60A V R = 34V 7 4.0 TJ = 25°C TJ = 125°C 6 3.0 IRRM (A) VGS(th), Gate threshold Voltage (V) 5.0 ID = 100μA ID = 1.0mA ID = 1.0A 5 4 3 2.0 2 1 1.0 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 8 110 IF = 100A V R = 34V 7 IF = 60A V R = 34V 100 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 90 QRR (nC) 6 IRRM (A) 400 diF /dt (A/μs) 5 4 80 70 3 60 2 50 1 40 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt 100 IF = 100A V R = 34V QRR (nC) 80 TJ = 25°C TJ = 125°C 60 40 20 0 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 21 - Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFB7440PbF Driver Gate Drive D.U.T + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback February 19, 2015 IRFB7440PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFB7440PbF Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Industrial (per JEDEC JESD47F†† guidelines) TO-220 Not applicable Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Applicable version of JEDEC standard at the time of product release. Revision History Date 4/22/2014 Comment • Updated data sheet with new IR corporate template. • Updated package outline and part marking on page 9. • Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1. 2/19/2015 • Updated EAS (L =1mH) = 387mJ on page 2 • Updated note 9 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω , IAS = 28A, VGS =10V”. on page 2 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015