StrongIRFETTM IRFP7430PbF Applications l l l l l l l l l HEXFET® Power MOSFET Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D G S l l l l 40V 1.0mΩ 1.3mΩ 404A ID (Package Limited) 195A c D Benefits l VDSS RDS(on) typ. max. ID (Silicon Limited) Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free RoHS Compliant, Halogen-Free* G D S TO-247AC IRFP7430PbF G D S Gate Drain Source Ordering Information Package Type IRFP7430PbF TO-247 Standard Pack Quantity Tube 50 6.0 Complete Part Number IRFP7430PbF 500 ID = 100A Limited By Package 400 4.0 T J = 125°C 2.0 300 200 100 T J = 25°C 0.0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 Form ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m Ω) Base Part Number www.irf.com © 2015 International Rectifier 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback February 19, 2015 IRFP7430PbF Absolute Maximum Ratings Symbol Parameter Max. Units c 286c 404 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 195 IDM Pulsed Drain Current 1524 d A Maximum Power Dissipation 366 W Linear Derating Factor 2.4 W/°C VGS Gate-to-Source Voltage ± 20 V TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range PD @TC = 25°C °C Soldering Temperature, for 10 seconds (1.6mm from case) x Avalanche Characteristics Single Pulse Avalanche Energy EAS (Thermally limited) e Single Pulse Avalanche Energy l Avalanche Currentd Repetitive Avalanche Energy d IAR EAR x 10lbf in (1.1N m) Mounting torque, 6-32 or M3 screw EAS (Thermally limited) 300 mJ 722 1405 A See Fig. 14, 15, 22a, 22b mJ Thermal Resistance Symbol Parameter k Typ. Max. RθJC Junction-to-Case ––– 0.41 RθCS Case-to-Sink, Flat Greased Surface 0.24 ––– RθJA Junction-to-Ambient ––– 40 j Units °C/W Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)DSS Symbol Drain-to-Source Breakdown Voltage Parameter 40 ––– ––– V ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.014 ––– V/°C Reference to 25°C, ID = 1.0mA RDS(on) Static Drain-to-Source On-Resistance ––– 1.0 1.3 mΩ VGS = 10V, ID = 100A 1.2 ––– mΩ VGS = 6.0V, ID 3.9 V μA VGS(th) Gate Threshold Voltage 2.2 ––– IDSS Drain-to-Source Leakage Current ––– ––– 1.0 ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.1 ––– IGSS RG Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.14mH RG = 50Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 990A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. www.irf.com © 2015 International Rectifier g = 50A g d VDS = VGS, ID = 250μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 53A, * 2 Conditions VGS = 0V, ID = 250μA VGS =10V. Halogen -Free since April 30, 2014 Submit Datasheet Feedback February 19, 2015 IRFP7430PbF Dynamic @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units gfs Symbol Forward Transconductance Parameter 150 ––– ––– S VDS = 10V, ID = 100A Qg Total Gate Charge ––– 300 460 nC ID = 100A Qgs Gate-to-Source Charge ––– 77 ––– VDS =20V Qgd Gate-to-Drain ("Miller") Charge ––– 98 ––– VGS = 10V Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 202 ––– td(on) Turn-On Delay Time ––– 32 ––– tr Rise Time ––– 105 ––– ID = 30A td(off) Turn-Off Delay Time ––– 160 ––– RG = 2.7Ω tf Fall Time ––– 100 ––– VGS = 10V Ciss Input Capacitance ––– 14240 ––– Coss Output Capacitance ––– 2130 ––– VDS = 25V Crss Reverse Transfer Capacitance Coss eff. (ER) Effective Output Capacitance (Energy Related) Coss eff. (TR) Effective Output Capacitance (Time Related) h i ns pF Conditions g VDD = 20V g VGS = 0V ––– 1460 ––– ƒ = 1.0 MHz ––– 2605 ––– VGS = 0V, VDS = 0V to 32V ––– 2920 ––– VGS = 0V, VDS Min. Typ. Max. ––– 376 i = 0V to 32V h Diode Characteristics Symbol IS Parameter Continuous Source Current ––– c Units A (Body Diode) (Body Diode) MOSFET symbol D showing the Pulsed Source Current ISM Conditions d ––– ––– 1576 A integral reverse G VSD Diode Forward Voltage ––– 0.86 1.2 V dv/dt Peak Diode Recovery ––– 2.7 ––– V/ns trr Reverse Recovery Time ––– 52 ––– ns TJ = 25°C VR = 34V, ––– 52 ––– TJ = 125°C IF = 100A Qrr Reverse Recovery Charge ––– 97 ––– nC TJ = 25°C di/dt = 100A/μs ––– 97 ––– IRRM Reverse Recovery Current ––– 2.3 ––– A TJ = 25°C 3 S p-n junction diode. f www.irf.com © 2015 International Rectifier TJ = 25°C, IS = 100A, VGS = 0V g TJ = 175°C, IS = 100A, VDS = 40V g TJ = 125°C Submit Datasheet Feedback February 19, 2015 IRFP7430PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V 10 4.5V BOTTOM 100 4.5V ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 175°C Tj = 25°C 10 1 0.1 1 10 0.1 100 Fig 3. Typical Output Characteristics 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 1000 100 T J = 25°C TJ = 175°C 10 VDS = 25V ≤60μs PULSE WIDTH 1.0 ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 2 3 4 5 6 7 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Ciss 10000 Coss Crss 1000 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V www.irf.com © 2015 International Rectifier 0 50 100 150 200 250 300 350 400 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback February 19, 2015 IRFP7430PbF 10000 T J = 175°C 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100 Limited by package 10msec 10 1 DC Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 1 10 100 VDS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 2.5 47 Id = 1.0mA VDS= 0V to 32V 46 2.0 45 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100μsec 1msec 44 43 1.5 1.0 42 0.5 41 40 0.0 0 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( mΩ) 5 Fig 12. Typical COSS Stored Energy 6.0 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V 4.0 VGS =10V 2.0 0.0 0 200 400 600 800 1000 1200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFP7430PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 800 700 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFP7430PbF 12 3.5 3.0 2.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 ID = 250μA ID = 1.0mA 2.0 ID = 1.0A 10 IF = 60A V R = 34V 8 TJ = 25°C TJ = 125°C 6 4 1.5 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 12 300 10 IF = 100A V R = 34V 8 TJ = 25°C TJ = 125°C IF = 60A V R = 34V 250 QRR (nC) IRRM (A) 400 diF /dt (A/μs) 6 TJ = 25°C TJ = 125°C 200 150 4 100 2 0 50 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt 260 IF = 100A V R = 34V QRR (nC) 220 TJ = 25°C TJ = 125°C 180 140 100 60 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 21 - Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFP7430PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback February 19, 2015 IRFP7430PbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015 IRFP7430PbF Qualification information† Industrial Qualification level Moisture Sensitivity Level (per JEDEC JESD47F†† guidelines) N/A †† (per JE DEC J-S T D-020D ) TO-247AC RoHS compliant Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Applicable version of JEDEC standard at the time of product release. Revision History Date 4/22/2014 Comment • Updated data sheet with new IR corporate template. • Updated package outline and part marking on page 9. • Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1. 2/19/2015 • Updated EAS (L =1mH) = 1405mJ on page 2 • Updated note 10 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω , IAS = 53A, VGS =10V”. on page 2 IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback February 19, 2015