IRFP7430 Data Sheet (258 KB, EN)

StrongIRFETTM
IRFP7430PbF
Applications
l
l
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
D
G
S
l
l
l
l
40V
1.0mΩ
1.3mΩ
404A
ID (Package Limited)
195A
c
D
Benefits
l
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
RoHS Compliant, Halogen-Free*
G
D
S
TO-247AC
IRFP7430PbF
G
D
S
Gate
Drain
Source
Ordering Information
Package Type
IRFP7430PbF
TO-247
Standard Pack
Quantity
Tube
50
6.0
Complete Part Number
IRFP7430PbF
500
ID = 100A
Limited By Package
400
4.0
T J = 125°C
2.0
300
200
100
T J = 25°C
0.0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
Form
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m Ω)
Base Part Number
www.irf.com © 2015 International Rectifier
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
c
286c
404
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
195
IDM
Pulsed Drain Current
1524
d
A
Maximum Power Dissipation
366
W
Linear Derating Factor
2.4
W/°C
VGS
Gate-to-Source Voltage
± 20
V
TJ
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
PD @TC = 25°C
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
x
Avalanche Characteristics
Single Pulse Avalanche Energy
EAS (Thermally limited)
e
Single Pulse Avalanche Energy l
Avalanche Currentd
Repetitive Avalanche Energy d
IAR
EAR
x
10lbf in (1.1N m)
Mounting torque, 6-32 or M3 screw
EAS (Thermally limited)
300
mJ
722
1405
A
See Fig. 14, 15, 22a, 22b
mJ
Thermal Resistance
Symbol
Parameter
k
Typ.
Max.
RθJC
Junction-to-Case
–––
0.41
RθCS
Case-to-Sink, Flat Greased Surface
0.24
–––
RθJA
Junction-to-Ambient
–––
40
j
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)DSS
Symbol
Drain-to-Source Breakdown Voltage
Parameter
40
–––
–––
V
ΔV(BR)DSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.014
–––
V/°C
Reference to 25°C, ID = 1.0mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.0
1.3
mΩ
VGS = 10V, ID = 100A
1.2
–––
mΩ
VGS = 6.0V, ID
3.9
V
μA
VGS(th)
Gate Threshold Voltage
2.2
–––
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
2.1
–––
IGSS
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.14mH
RG = 50Ω, IAS = 100A, VGS =10V.
„ ISD ≤ 100A, di/dt ≤ 990A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
www.irf.com © 2015 International Rectifier
g
= 50A g
d
VDS = VGS, ID = 250μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended
footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š Limited by TJmax, starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 53A,
*
2
Conditions
VGS = 0V, ID = 250μA
VGS =10V.
Halogen -Free since April 30, 2014
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
gfs
Symbol
Forward Transconductance
Parameter
150
–––
–––
S
VDS = 10V, ID = 100A
Qg
Total Gate Charge
–––
300
460
nC
ID = 100A
Qgs
Gate-to-Source Charge
–––
77
–––
VDS =20V
Qgd
Gate-to-Drain ("Miller") Charge
–––
98
–––
VGS = 10V
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
202
–––
td(on)
Turn-On Delay Time
–––
32
–––
tr
Rise Time
–––
105
–––
ID = 30A
td(off)
Turn-Off Delay Time
–––
160
–––
RG = 2.7Ω
tf
Fall Time
–––
100
–––
VGS = 10V
Ciss
Input Capacitance
–––
14240
–––
Coss
Output Capacitance
–––
2130
–––
VDS = 25V
Crss
Reverse Transfer Capacitance
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
Coss eff. (TR)
Effective Output Capacitance (Time Related)
h
i
ns
pF
Conditions
g
VDD = 20V
g
VGS = 0V
–––
1460
–––
ƒ = 1.0 MHz
–––
2605
–––
VGS = 0V, VDS = 0V to 32V
–––
2920
–––
VGS = 0V, VDS
Min.
Typ.
Max.
–––
376
i
= 0V to 32V h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
–––
c
Units
A
(Body Diode)
(Body Diode)
MOSFET symbol
D
showing the
Pulsed Source Current
ISM
Conditions
d
–––
–––
1576
A
integral reverse
G
VSD
Diode Forward Voltage
–––
0.86
1.2
V
dv/dt
Peak Diode Recovery
–––
2.7
–––
V/ns
trr
Reverse Recovery Time
–––
52
–––
ns
TJ = 25°C
VR = 34V,
–––
52
–––
TJ = 125°C
IF = 100A
Qrr
Reverse Recovery Charge
–––
97
–––
nC
TJ = 25°C
di/dt = 100A/μs
–––
97
–––
IRRM
Reverse Recovery Current
–––
2.3
–––
A
TJ = 25°C
3
S
p-n junction diode.
f
www.irf.com © 2015 International Rectifier
TJ = 25°C, IS = 100A, VGS = 0V
g
TJ = 175°C, IS = 100A, VDS = 40V
g
TJ = 125°C
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
10
4.5V
BOTTOM
100
4.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
1
0.1
1
10
0.1
100
Fig 3. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
100
T J = 25°C
TJ = 175°C
10
VDS = 25V
≤60μs PULSE WIDTH
1.0
ID = 100A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
2
3
4
5
6
7
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
10000
Coss
Crss
1000
ID= 100A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
4.8V
4.5V
www.irf.com © 2015 International Rectifier
0
50
100 150 200 250 300 350 400
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
Limited by package
10msec
10
1
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
0.1
2.5
1
10
100
VDS, Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
2.5
47
Id = 1.0mA
VDS= 0V to 32V
46
2.0
45
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100μsec
1msec
44
43
1.5
1.0
42
0.5
41
40
0.0
0
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
10
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
5
Fig 12. Typical COSS Stored Energy
6.0
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
4.0
VGS =10V
2.0
0.0
0
200
400
600
800
1000
1200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
800
700
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
600
500
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
12
3.5
3.0
2.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.0
ID = 250μA
ID = 1.0mA
2.0
ID = 1.0A
10
IF = 60A
V R = 34V
8
TJ = 25°C
TJ = 125°C
6
4
1.5
2
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
12
300
10
IF = 100A
V R = 34V
8
TJ = 25°C
TJ = 125°C
IF = 60A
V R = 34V
250
QRR (nC)
IRRM (A)
400
diF /dt (A/μs)
6
TJ = 25°C
TJ = 125°C
200
150
4
100
2
0
50
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
260
IF = 100A
V R = 34V
QRR (nC)
220
TJ = 25°C
TJ = 125°C
180
140
100
60
0
200
400
600
800
1000
diF /dt (A/μs)
Fig. 21 - Typical Stored Charge vs. dif/dt
7
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2015 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015
IRFP7430PbF
Qualification information†
Industrial
Qualification level
Moisture Sensitivity Level
(per JEDEC JESD47F†† guidelines)
N/A
††
(per JE DEC J-S T D-020D )
TO-247AC
RoHS compliant
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
4/22/2014
Comment
• Updated data sheet with new IR corporate template.
• Updated package outline and part marking on page 9.
• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.
2/19/2015
• Updated EAS (L =1mH) = 1405mJ on page 2
• Updated note 10 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω , IAS = 53A, VGS =10V”. on page 2
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com © 2015 International Rectifier
Submit Datasheet Feedback
February 19, 2015