PD - 96190 IRFB4310GPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits HEXFET® Power MOSFET D G Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free S VDSS RDS(on) typ. max. ID 100V 5.6m: 7.0m: 130A S D G TO-220AB IRFB4310GPbF Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS Parameter Max. 130 92 550 300 2.0 ± 20 14 -55 to + 175 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dV/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c e g Units c c Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V A W W/°C V V/ns °C 300 x x 10lb in (1.1N m) 980 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient jk Typ. Max. Units ––– 0.50 ––– 0.50 ––– 62 °C/W 1 10/15/08 IRFB4310GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance RG Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.064 ––– 5.6 7.0 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.4 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 250µA µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain d g Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 160 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 170 46 62 26 110 68 78 7670 540 280 650 720.1 ––– 250 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 50V, ID = 75A ID = 75A VDS = 80V VGS = 10V VDD = 65V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V g g i, See Fig.11 h, See Fig. 5 Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.35mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 550A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– 130 ––– ––– c 550 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V VR = 85V, ––– 45 68 ns TJ = 25°C TJ = 125°C IF = 75A ––– 55 83 di/dt = 100A/µs ––– 82 120 nC TJ = 25°C TJ = 125°C ––– 120 180 ––– 3.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com IRFB4310GPbF 1000 1000 100 BOTTOM 10 BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 4.5V 0.1 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current(Α) ≤ 60µs PULSE WIDTH Tj = 175°C 10 1 100 TJ = 175°C 10 TJ = 25°C VDS = 50V ≤ 60µs PULSE WIDTH 1 3.0 4.0 5.0 6.0 7.0 ID = 75A VGS = 10V 2.5 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 12000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 8000 6000 4000 2000 Coss Crss 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 75A VDS = 80V VDS= 50V VDS= 20V 16 12 8 4 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 0 40 80 120 160 200 240 280 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB4310GPbF 10000 TJ = 175°C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100 100µsec 10 1 VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1 V(BR)DSS , Drain-to-Source Breakdown Voltage 140 ID, Drain Current (A) Limited By Package 100 80 60 40 20 0 25 50 75 100 125 150 100 1000 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 120 10 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 120 115 110 105 100 -60 -40 -20 0 175 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ) 4.0 3.5 3.0 Energy (µJ) 10msec DC 0.1 0.1 2.5 2.0 1.5 1.0 0.5 0.0 2400 I D 12A 17A BOTTOM 75A TOP 2000 1600 1200 800 400 0 0 20 40 60 80 100 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 1msec Tc = 25°C Tj = 175°C Single Pulse 120 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFB4310GPbF 1 Thermal Response ( ZthJC ) D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ Ri (°C/W) τi (sec) 0.1962 0.00117 0.2542 τ2 0.016569 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 1000 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 800 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 5 IRFB4310GPbF 20 ID = 1.0A ID = 1.0mA ID = 250µA 4.0 16 IRRM - (A) VGS(th) Gate threshold Voltage (V) 5.0 3.0 12 8 IF = 30A VR = 85V 2.0 4 1.0 TJ = 125°C TJ = 25°C 0 -75 -50 -25 0 25 50 75 100 125 150 175 100 200 300 400 500 600 700 800 900 1000 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig. 17 - Typical Recovery Current vs. dif/dt 20 500 16 400 QRR - (nC) IRRM - (A) Fig 16. Threshold Voltage Vs. Temperature 12 8 4 IF = 45A VR = 85V 300 200 IF = 30A VR = 85V 100 TJ = 125°C TJ = 25°C TJ = 125°C 0 TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 500 QRR - (nC) 400 300 200 100 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB4310GPbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFB4310GPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5)%*3%) 1RWH*VXIIL[LQSDUWQXPEHU LQGLFDWHV+DORJHQ)UHH 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( < /$67',*,72) &$/(1'$5<($5 :: :25.:((. ; )$&725<&2'( TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/2008 8 www.irf.com