StrongIRFET IRFH7004PbF HEXFET® Power MOSFET Applications l l l l l l l l l Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 1.1mΩ 1.4mΩ 259A ID (Package Limited) 100A c Benefits l l Base Part Number Package Type IRFH7004PBF PQFN 5mm x 6mm PQFN 5X6 mm Standard Pack Form Quantity Tape and Reel 4000 6.0 IRFH7004TRPBF 300 250 4.0 T J = 125°C 2.0 Limited By Package 200 150 100 50 T J = 25°C 0.0 0 4 6 8 10 12 14 16 18 20 25 Fig 1. Typical On-Resistance vs. Gate Voltage www.irf.com © 2015 International Rectifier 50 75 100 125 150 T C , Case Temperature (°C) VGS, Gate -to -Source Voltage (V) 1 Orderable Part Number ID = 100A ID, Drain Current (A) l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability RoHS Compliant containing no Lead, no Bromide, and no Halogen RDS(on), Drain-to -Source On Resistance (m Ω) l Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback March 17, 2015 IRFH7004PbF Absolute Maximum Ratings Symbol Parameter Max. c c ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 259 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 164 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 100 IDM Pulsed Drain Current 1247 d Units A Maximum Power Dissipation 156 W Linear Derating Factor 1.3 W/°C VGS Gate-to-Source Voltage ± 20 V TJ Operating Junction and -55 to + 150 TSTG Storage Temperature Range PD @TC = 25°C Avalanche Characteristics Single Pulse Avalanche Energy EAS (Thermally limited) e Single Pulse Avalanche Energy l Avalanche Currentd Repetitive Avalanche Energy d EAS (Thermally limited) IAR EAR °C mJ 191 479 A See Fig. 14, 15, 22a, 22b mJ Thermal Resistance Symbol RθJC (Bottom) RθJC (Top) k Junction-to-Case k Parameter Junction-to-Case j Junction-to-Ambient j Junction-to-Ambient RθJA RθJA (<10s) Typ. Max. 0.5 0.8 ––– 15 ––– 34 ––– 21 Units °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.033 ––– V/°C VGS = 0V, ID = 250μA RDS(on) Static Drain-to-Source On-Resistance ––– 1.1 1.4 mΩ VGS = 10V, ID = 100A ––– 1.7 ––– mΩ VGS = 6.0V, ID = 50A Reference to 25°C, ID = 1.0mA g g VGS(th) Gate Threshold Voltage 2.2 3.0 3.9 V VDS = VGS, ID = 150μA IDSS Drain-to-Source Leakage Current ––– ––– 1.0 μA VDS = 40V, VGS = 0V ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.4 ––– RG Notes: Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.038mH RG = 50Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 1366A/μs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 www.irf.com © 2015 International Rectifier d VDS = 40V, VGS = 0V, TJ = 125°C VGS = -20V Ω Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of FR-4 material. Rθ is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 31A, VGS =10V. Submit Datasheet Feedback March 17, 2015 IRFH7004PbF Dynamic @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units gfs Symbol Forward Transconductance Parameter 117 ––– ––– S VDS = 10V, ID = 100A Conditions Qg Total Gate Charge ––– 129 194 nC ID = 100A Qgs Gate-to-Source Charge ––– 34 ––– VDS =20V Qgd Gate-to-Drain ("Miller") Charge ––– 40 ––– VGS = 10V g Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 169 ––– td(on) Turn-On Delay Time ––– 15 ––– tr Rise Time ––– 51 ––– ID = 30A td(off) Turn-Off Delay Time ––– 73 ––– RG = 2.7Ω tf Fall Time ––– 49 ––– Ciss Input Capacitance ––– 6419 ––– Coss Output Capacitance ––– 952 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 656 ––– ƒ = 1.0 MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1161 ––– VGS = 0V, VDS = 0V to 32V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 1305 ––– VGS = 0V, VDS Min. Typ. Max. ––– ––– 100 ns VDD = 20V VGS = 10V pF g VGS = 0V i = 0V to 32V h Diode Characteristics Symbol IS Parameter Continuous Source Current c Units A Pulsed Source Current (Body Diode) d ––– ––– 1247 A Diode Forward Voltage ––– 0.95 1.3 V dv/dt Peak Diode Recovery ––– 2.5 ––– V/ns trr Reverse Recovery Time ––– 35 ––– ns ––– 35 ––– ––– 26 ––– ––– 27 ––– ––– 1.5 ––– f Reverse Recovery Charge IRRM Reverse Recovery Current 3 integral reverse G S p-n junction diode. VSD Qrr D showing the (Body Diode) ISM Conditions MOSFET symbol www.irf.com © 2015 International Rectifier nC TJ = 25°C, IS = 100A, VGS = 0V g TJ = 175°C, IS = 100A, VDS = 40V TJ = 25°C VR = 34V, TJ = 125°C IF = 100A TJ = 25°C di/dt = 100A/μs g TJ = 125°C A Submit Datasheet Feedback TJ = 25°C March 17, 2015 IRFH7004PbF 10000 10000 VGS 15V 10V 8.0V 7.0V 6.0V 5.0V 4.5V 4.25V 1000 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1000 100 10 BOTTOM 100 4.25V 10 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH 4.25V Tj = 150°C Tj = 25°C 1 1 0.1 1 10 0.1 100 Fig 3. Typical Output Characteristics 100 1.8 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 4. Typical Output Characteristics 10000 1000 T J = 150°C 100 T J = 25°C 10 VDS = 10V ≤60μs PULSE WIDTH 1.0 ID = 100A VGS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 3 4 5 6 7 8 9 -60 -40 -20 0 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd 10000 Ciss 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Coss Crss 1000 ID= 100A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 100 0.1 1 10 0 100 Fig 7. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com © 2015 International Rectifier 20 40 60 80 100 120 140 160 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.0V 4.5V 4.25V Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback March 17, 2015 IRFH7004PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10000 1000 T J = 150°C 100 T J = 25°C 10 VGS = 0V 0.5 1.0 1.5 2.0 1000 100μsec 100 10msec 1 DC 0.1 2.5 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area 1.0 49 VDS= 0V to 32V Id = 1.0mA 0.8 47 46 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) Tc = 25°C Tj = 150°C Single Pulse 0.1 Fig 9. Typical Source-Drain Diode Forward Voltage 48 1msec Limited by package 10 0.01 1.0 0.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 45 44 0.6 0.4 43 42 0.2 41 0.0 40 -60 -40 -20 0 0 20 40 60 80 100 120 140 160 T J , Temperature ( °C ) 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( mΩ) 5 Fig 12. Typical COSS Stored Energy 40 VGS = 5.0V VGS = 6.0V VGS = 7.0V VGS = 8.0V 30 VGS =10V 20 10 0 0 200 400 600 800 1000 1200 1400 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7004PbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 125°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 125°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth 140 120 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A 100 80 60 40 20 0 25 50 75 100 125 Starting T J , Junction Temperature (°C) 150 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7004PbF 10 IF = 60A V R = 34V 8 TJ = 25°C TJ = 125°C 3.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 ID = 150μA ID = 1.0mA 2.0 6 4 ID = 1.0A 2 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 0 200 T J , Temperature ( °C ) 600 800 1000 diF /dt (A/μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 10 300 IF = 100A V R = 34V 8 TJ = 25°C TJ = 125°C 6 QRR (nC) IRRM (A) 400 4 250 IF = 60A V R = 34V 200 TJ = 25°C TJ = 125°C 150 100 2 50 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 19 - Typical Recovery Current vs. dif/dt Fig. 20 - Typical Stored Charge vs. dif/dt 250 IF = 100A V R = 34V QRR (nC) 200 TJ = 25°C TJ = 125°C 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 21 - Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7004PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω I AS Fig 22b. Unclamped Inductive Waveforms Fig 22a. Unclamped Inductive Test Circuit R D VDS V GS VDS 90% D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K s VCC Vgs(th) Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 24b. Gate Charge Waveform Submit Datasheet Feedback March 17, 2015 IRFH7004PbF PQFN 5x6 Outline "B" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7004PbF PQFN 5x6 Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Dimension design to accommodate the component width Bo Dimension design to accommodate the component lenght Ko Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between s ucces sive cavity centers W P1 DES CRIPTION QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Note: All dimens ion are nominal Package T ype Reel Diameter (Inch) QTY Reel Width W1 (mm) Ao (mm) Bo (mm) Ko (mm) P1 (mm) W (mm) Pin 1 Quadrant 5 X 6 PQFN 13 4000 12.4 6.300 5.300 1.20 8.00 12 Q1 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015 IRFH7004PbF † Qualification information Industrial Qualification level Moisture Sensitivity Level (per JE DE C JE S D47F PQFN 5mm x 6mm RoHS compliant †† guidelines ) MS L1 †† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Applicable version of JEDEC standard at the time of product release. Revision History Date Comment • Updated EAS (L =1mH) = 479mJ on page 2 2/19/2015 • Updated note 10 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 31A, VGS =10V”. on page 2 3/17/2015 • Updated package outline and tape and reel on pages 9 and 10. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback March 17, 2015