PD - 96187 IRFS3006-7PPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S VDSS 60V RDS(on) typ. 1.5m: max. 2.1m: ID (Silicon Limited) 293A ID (Package Limited) 240A c Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D S G S S S S D2Pak 7 Pin G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS Parameter Max. 293 207 240 1172 375 2.5 ± 20 11 -55 to + 175 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d e Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) A W W/°C V V/ns °C 300 x x 10lb in (1.1N m) 303 See Fig. 14, 15, 22a, 22b, g mJ A mJ Thermal Resistance Symbol RθJC RθJA www.irf.com Parameter kl Junction-to-Case Junction-to-Ambient (PCB Mount) jk Typ. Max. Units ––– ––– 0.4 40 °C/W 1 10/06/08 IRFS3006-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS RG(int) Min. Typ. Max. Units Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 60 ––– ––– 2.0 ––– ––– ––– ––– ––– 0.07 1.5 ––– ––– ––– ––– ––– Internal Gate Resistance ––– 2.1 Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 5mA 2.1 mΩ VGS = 10V, ID = 168A 4.0 V VDS = VGS, ID = 250µA VDS = 60V, VGS = 0V 20 µA 250 VDS = 60V, VGS = 0V, TJ = 125°C VGS = 20V 100 nA VGS = -20V -100 d g ––– Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units i h Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) 290 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 200 37 60 140 14 61 118 69 8850 1007 525 1460 1915 ––– 300 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Conditions S VDS = 25V, ID = 168A ID = 168A VDS = 30V nC VGS = 10V ID = 168A, VDS =0V, VGS = 10V VDD = 39V ID = 168A ns RG = 2.7Ω VGS = 10V VGS = 0V VDS = 50V pF ƒ = 1.0MHz (See Fig 5) VGS = 0V, VDS = 0V to 48V (See Fig 11) VGS = 0V, VDS = 0V to 48V g g i h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes: Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 240A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.021mH RG = 25Ω, IAS = 168A, VGS =10V. Part not recommended for use above this value . ISD ≤ 168A, di/dt ≤ 1410 A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 Min. Typ. Max. Units ––– ––– ––– ––– 293 c 1172 Conditions MOSFET symbol A showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 168A, VGS = 0V TJ = 25°C VR = 51V, ––– 44 ––– ns TJ = 125°C IF = 168A ––– 48 ––– di/dt = 100A/µs TJ = 25°C ––– 51 ––– nC TJ = 125°C ––– 62 ––– ––– 2.03 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniquea refer to applocation note # AN-994 echniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C RθJC value shown is at time zero www.irf.com IRFS3006-7PPbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V 10 1 3.5V ≤60µs PULSE WIDTH 100 BOTTOM VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V 3.5V 10 ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.1 1 0.1 1 10 100 0.1 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 V DS, Drain-to-Source Voltage (V) 1000 T J = 175°C 100 T J = 25°C 10 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 1.5 1.0 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 4. Normalized On-Resistance vs. Temperature 16.0 VGS, Gate-to-Source Voltage (V) ID= 168A C oss = C ds + C gd Ciss Coss Crss 1000 2.0 T J , Junction Temperature (°C) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 10000 VGS = 10V 0.5 Fig 3. Typical Transfer Characteristics 100000 ID = 168A 7 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 100 VDS= 48V VDS= 30V 12.0 8.0 4.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 40 80 120 160 200 240 280 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFS3006-7PPbF 10000 T J = 175°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec LIMITED BY PACKAGE 10 10msec DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.1 0.0 0.4 0.8 1.2 1.6 2.0 0.1 VSD, Source-to-Drain Voltage (V) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 350 Limited By Package ID, Drain Current (A) 300 250 200 150 100 50 0 50 75 100 125 10 150 175 80 Id = 5mA 75 70 65 60 55 -60 -40 -20 0 20 40 60 80 100120140160180 T C , Case Temperature (°C) T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1400 EAS , Single Pulse Avalanche Energy (mJ) 2.5 ID 35A 70A BOTTOM 168A 1200 2.0 TOP Energy (µJ) 1000 1.5 1.0 0.5 800 600 400 200 0 0.0 0 10 20 30 40 50 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS, Drain-to-Source Voltage (V) 60 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFS3006-7PPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.001 0.0001 1E-006 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 1E-005 Ri (°C/W) R4 R4 0.0001 τ4 τ4 τi (sec) 0.0062 0.000005 0.0431 0.000045 0.1462 0.001067 0.2047 0.010195 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 350 300 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 168A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS3006-7PPbF 20 ID = 250µA ID = 1.0mA ID = 1.0A 4.0 IF = 112A V R = 51V 16 TJ = 25°C TJ = 125°C 3.5 3.0 IRR (A) VGS(th), Gate threshold Voltage (V) 4.5 2.5 12 8 2.0 4 1.5 0 1.0 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 600 800 1000 1200 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 20 600 16 IF = 168A V R = 51V 500 TJ = 25°C TJ = 125°C IF = 112A V R = 51V 400 TJ = 25°C TJ = 125°C 12 QRR (A) IRR (A) 400 diF /dt (A/µs) T J , Temperature ( °C ) 8 300 200 4 100 0 0 0 200 400 600 800 1000 1200 0 200 diF /dt (A/µs) 400 600 800 1000 1200 diF /dt (A/µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt QRR (A) 600 500 IF = 168A V R = 51V 400 TJ = 25°C TJ = 125°C 300 200 100 0 0 200 400 600 800 1000 1200 diF /dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS3006-7PPbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFS3006-7PPbF D2Pak (TO-263CB) 7 Long Leads Package Outline Dimensions are shown in milimeters (inches) D2Pak - 7 Pin Part Marking Information 14 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com IRFS3006-7PPbF D2Pak - 7 Pin Tape and Reel Dimensions are shown in milimeters (inches) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008 9