IRF IRLR3636PBF

PD - 96224
IRLR3636PbF
IRLU3636PbF
Applications
l DC Motor Drive
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
G
Benefits
l Optimized for Logic Level Drive
l Very Low RDS(ON) at 4.5V VGS
l Superior R*Q at 4.5V V GS
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
ID (Package Limited)
60V
5.4m:
6.8m:
99A
50A
c
D
S
S
D
G
G
D-Pak
I-Pak
IRLR3636PbF IRLU3636PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Package Limited)
99
70
50
396
143
0.95
±16
22
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
f
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
Units
c
c
A
W
W/°C
V
V/ns
-55 to + 175
°C
300 (1.6mm from case)
e
170
d
See Fig.14, 15, 22a, 22b
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθJA
RθJA
www.irf.com
k
Parameter
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
j
Typ.
Max.
Units
–––
–––
–––
1.05
50
110
°C/W
1
02/06/09
IRLR/U3636PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
60
–––
–––
–––
1.0
–––
–––
–––
–––
RG(int)
Internal Gate Resistance
–––
–––
0.07
5.4
6.6
–––
–––
–––
–––
–––
0.6
Conditions
–––
V VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 5mA
6.8
VGS = 10V, ID = 50A
mΩ
8.3
VGS = 4.5V, ID = 50A
2.5
V VDS = VGS, ID = 100µA
VDS = 60V, VGS = 0V
20
µA
250
VDS = 60V, VGS = 0V, TJ = 125°C
VGS = 16V
100
nA
-100
VGS = -16V
d
g
g
–––
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
i
h
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
31
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
33
11
15
18
45
216
43
69
3779
332
163
437
636
–––
49
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Conditions
S
VDS = 25V, ID = 50A
ID = 50A
VDS = 30V
nC
VGS = 4.5V
ID = 50A, VDS =0V, VGS = 4.5V
VDD = 39V
ID = 50A
ns
RG = 7.5 Ω
VGS = 4.5V
VGS = 0V
VDS = 50V
pF ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 48V ,See Fig.11
VGS = 0V, VDS = 0V to 48V
g
g
i
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
d
Notes:
 Calcuted continuous current based on maximum allowable junction
temperature Bond wire current limit is 50A. Note that current
limitation arising from heating of the device leds may occur with
some lead mounting arrangements.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.136 mH
RG = 25Ω, IAS = 50A, VGS =10V. Part not recommended for use
above this value .
„ ISD ≤ 50A, di/dt ≤ 1109 A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
Min. Typ. Max. Units
–––
–––
–––
–––
99
c
396
Conditions
MOSFET symbol
A
showing the
integral reverse
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 50A, VGS = 0V
TJ = 25°C
VR = 51V,
–––
27
–––
ns
T
=
125°C
I
–––
32
–––
J
F = 50A
di/dt
= 100A/µs
TJ = 25°C
–––
31
–––
nC
TJ = 125°C
–––
43
–––
–––
2.1
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
g
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For
recommended footprint and soldering techniquea refer to applocation
note # AN- 994 echniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRLR/U3636PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
4.5V
4.0V
3.5V
3.3V
3.0V
2.7V
10
2.7V
1
100
≤60µs PULSE WIDTH
Tj = 25°C
1
10
2.7V
10
≤60µs PULSE WIDTH
Tj = 175°C
1
0.1
0.1
BOTTOM
0.1
100
Fig 1. Typical Output Characteristics
10
100
Fig 2. Typical Output Characteristics
1000
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 175°C
T J = 25°C
10
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 50A
VGS = 10V
2.0
1.5
1.0
0.5
2
3
4
5
6
7
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
10000
Ciss
1000
-60 -40 -20 0 20 40 60 80 100120140160180
Coss
Crss
Fig 4. Normalized On-Resistance vs. Temperature
5.0
ID= 50A
4.5
VGS, Gate-to-Source Voltage (V)
1
C, Capacitance (pF)
VGS
15V
10V
4.5V
4.0V
3.5V
3.3V
3.0V
2.7V
VDS= 48V
VDS= 30V
VDS= 12V
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
35
40
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRLR/U3636PbF
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY R
DS(on)
T J = 175°C
100
T J = 25°C
10
1
100µsec
100
LIMITED BY PACKAGE
10
1msec
10msec
1
VGS = 0V
0.1
0.1
0.1
0.4
0.7
1
1.3
1.6
0.1
1.9
Limited By Package
ID, Drain Current (A)
90
80
70
60
50
40
30
20
10
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
110
25
100
80
Id = 5mA
75
70
65
60
55
50
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
0.8
EAS , Single Pulse Avalanche Energy (mJ)
800
0.6
Energy (µJ)
10
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
100
1
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
0.4
0.2
0.0
ID
5.69A
10.64A
BOTTOM 50A
700
TOP
600
500
400
300
200
100
0
0
5 10 15 20 25 30 35 40 45 50 55 60 65
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
Tc = 25°C
Tj = 175°C
Single Pulse
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRLR/U3636PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ1
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
0.0001
τ3
τ4
τ4
Ri (°C/W)
τi (sec)
0.02028
0.000011
0.29406
0.000158
0.49179
0.001393
0.24336
0.00725
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
10
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
200
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 50A
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRLR/U3636PbF
14
IF = 20A
V R = 51V
12
2.5
TJ = 25°C
TJ = 125°C
10
2.0
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
3.0
1.5
ID = 100µA
ID = 250µA
ID = 1.0mA
1.0
8
6
4
ID = 1.0A
0.5
2
0.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
350
16
IF = 30A
V R = 51V
14
TJ = 25°C
TJ = 125°C
250
QRR (A)
10
IF = 20A
V R = 51V
300
TJ = 25°C
TJ = 125°C
12
IRRM (A)
400
diF /dt (A/µs)
8
6
200
150
100
4
50
2
0
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
350
IF = 30A
V R = 51V
300
TJ = 25°C
TJ = 125°C
QRR (A)
250
200
150
100
50
0
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRLR/U3636PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRLR/U3636PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
3$57180%(5
:,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5
$
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/</,1($
'$7(&2'(
<($5
:((.
/,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
$66(0%/<
LQGLFDWHV/HDG)UHH
/27&2'(
3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV
/HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO
25
3$57180%(5
,17(51$7,21$/
5(&7,),(5
,5)5
'$7(&2'(
3
'(6,*1$7(6/($')5((
3
'(6,*1$7(6/($')5((
/2*2
352'8&7237,21$/
352'8&748$/,),('727+(
$66(0%/<
&21680(5/(9(/237,21$/
/27&2'(
<($5
:((.
$
$66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRLR/U3636PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
(;$03/( 7+,6,6$1,5)8
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1($
25
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$66(0%/<
/27&2'(
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRLR/U3636PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2009
10
www.irf.com