PD - 95521A IRFR3504ZPbF IRFU3504ZPbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 40V RDS(on) = 9.0mΩ G ID = 42A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR3504Z I-Pak IRFU3504Z Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 77 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 42 310 PD @TC = 25°C Power Dissipation VGS EAS (Thermally limited) EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range c d h Junction-to-Ambient www.kersemi.com mJ A -55 to + 175 °C Parameter RθJA 77 110 300 (1.6mm from case ) y i y 10 lbf in (1.1N m) Thermal Resistance RθJA W W/°C V mJ Mounting Torque, 6-32 or M3 screw Junction-to-Case Junction-to-Ambient (PCB mount) 90 0.60 ± 20 See Fig.12a, 12b, 15, 16 g Soldering Temperature, for 10 seconds RθJC A 54 c Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Units Typ. Max. ––– 1.66 ––– 40 ––– 110 Units °C/W 1 1/17/05 IRFR/U3504ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.032 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 8.23 9.0 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 32 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 ––– -200 IGSS V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A e V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 42A 20 µA VDS = 40V, VGS = 0V nA VGS = 20V VDS = 40V, VGS = 0V, TJ = 125°C Gate-to-Source Reverse Leakage ––– Qg VGS = -20V Total Gate Charge ––– 30 45 Qgs Gate-to-Source Charge ––– 9.6 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 12 ––– VGS = 10V td(on) Turn-On Delay Time ––– 15 ––– VDD = 20V tr Rise Time ––– 74 ––– td(off) Turn-Off Delay Time ––– 30 ––– tf Fall Time ––– 38 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, ID = 42A nC VDS = 32V e ID = 42A ns nH RG = 15 Ω e D LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 1510 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 340 ––– Crss Reverse Transfer Capacitance ––– 190 ––– Coss Output Capacitance ––– 1100 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 340 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 460 ––– VGS = 0V, VDS = 0V to 32V G S VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 42 ISM (Body Diode) Pulsed Source Current ––– ––– 310 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 18 27 ns Qrr Reverse Recovery Charge ––– 9.2 14 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V e TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.kersemi.com IRFR/U3504ZPbF 1000 1000 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 4.5V 30µs PULSE WIDTH Tj = 25°C 100 BOTTOM 10 4.5V 30µs PULSE WIDTH Tj = 175°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 100.0 T J = 175°C 10.0 T J = 25°C 1.0 VDS = 20V 30µs PULSE WIDTH Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V T J = 175°C 50 40 T J = 25°C 30 20 10 VDS = 10V 380µs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.kersemi.com 10.0 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U3504ZPbF 2500 VGS, Gate-to-Source Voltage (V) C rss = C gd 2000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C oss = C ds + C gd Ciss 1500 1000 Coss 500 ID= 42A VDS= 32V VDS= 20V VDS= 8.0V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 0 0 1 10 0 100 30 40 50 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 20 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 100.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 175°C 10.0 T J = 25°C 1.0 100µsec 10 1msec 1 VGS = 0V 0.1 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 2.2 10msec Tc = 25°C Tj = 175°C Single Pulse 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.kersemi.com IRFR/U3504ZPbF 80 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 ID , Drain Current (A) LIMITED BY PACKAGE 60 40 20 0 25 50 75 100 125 150 175 ID = 42A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 Ci= τi/Ri Ci= i/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ Ri (°C/W) τi (sec) 1.117 0.000536 0.5422 0.004428 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFR/U3504ZPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 320 15V ID 5.0A 6.4A BOTTOM 42A 280 TOP 240 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 4.5 QGD VGS(th) Gate threshold Voltage (V) QGS VG Charge Fig 13a. Basic Gate Charge Waveform L 4.0 3.5 ID = 250µA 3.0 2.5 VCC DUT 0 1K 2.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.kersemi.com IRFR/U3504ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.kersemi.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. P D (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U3504ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.kersemi.com IRFR/U3504ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234 ASSEMBLED ON WW 16, 1999 IN THE ASSEMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in as sembly line position indicates "Lead-Free" IRFU120 12 916A 34 ASSEMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNATIONAL RECTIFIER LOGO IRFU120 12 ASSEMBLY LOT CODE www.kersemi.com 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = ASSEMBLY SITE CODE 9 IRFR/U3504ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H AS S EMB LY LOT CODE 5678 AS S EMBLED ON WW 19, 1999 IN T HE AS SEMB LY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRF U120 919A 56 78 AS SEMB LY LOT CODE Note: "P" in assembly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU 120 56 AS S EMBLY LOT CODE 10 78 DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBLY S IT E CODE www.kersemi.com IRFR/U3504ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.09mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 42A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by www.kersemi.com 11