NXP Semiconductors Data Sheet: Technical Data Document Number: IMX7DCEC Rev. 2, 06/2016 MCIMX7DxDxxxxxC MCIMX7DxExxxxxC i.MX 7Dual Family of Applications Processors Data Sheet Package Information Plastic Package BGA 12 x 12 mm, 0.4 mm pitch BGA 19 x 19 mm, 0.75 mm pitch Ordering Information See Table 1 on page 3 1 i.MX 7Dual introduction The i.MX 7Dual family of processors represents NXP’s latest achievement in high-performance processing for low-power requirements with a high degree of functional integration. These processors are targeted towards the growing market of connected and portable devices. 1 2 3 4 The i.MX 7Dual family of processors features advanced implementation of the ARM® Cortex®-A7 core, which operates at speeds of up to 1 GHz. The i.MX 7Dual family provides up to 32-bit DDR3/DDR3L/LPDDR2/LPDDR3-1066 memory interface and a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors. 5 6 7 © 2016 NXP B.V. i.MX 7Dual introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 Ordering information. . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.1 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 3.1 Special signal considerations . . . . . . . . . . . . . . . . .16 3.2 Recommended connections for unused analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .20 4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . .20 4.2 Power supplies requirements and restrictions . . . .37 4.3 Integrated LDO voltage regulator parameters . . . .40 4.4 PLL electrical characteristics . . . . . . . . . . . . . . . . .42 4.5 On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . .42 4.6 I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . . .43 4.7 I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . . .47 4.8 Output buffer impedance parameters. . . . . . . . . . .51 4.9 System modules timing . . . . . . . . . . . . . . . . . . . . .53 4.10 General-purpose media interface (GPMI) timing . .73 4.11 External peripheral interface parameters . . . . . . . .81 4.12 12-Bit A/D converter (ADC) . . . . . . . . . . . . . . . . . 115 Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 116 5.1 Boot mode configuration pins . . . . . . . . . . . . . . . . 116 5.2 Boot device interface allocation . . . . . . . . . . . . . . 117 Package information and contact assignments . . . . . . . 119 6.1 12 x 12 mm package information . . . . . . . . . . . . . 119 6.2 19 x 19 mm package information . . . . . . . . . . . . .136 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 i.MX 7Dual introduction The i.MX 7Dual family of processors is specifically useful for applications such as: • Audio • Connected devices • Access control panels • Human-machine interfaces (HMI) • Portable medical and health care • IP phones • Smart appliances • Point of Sale • eReaders • Wearables • Home energy management systems The features of the i.MX 7Dual family of processors include the following: • ARM Cortex-A7 plus ARM Cortex-M4—Heterogeneous Multicore Processing architecture enables the device to run an open operating system like Linux/Android on the Cortex-A7 core and an RTOS like FreeRTOS™ on the Cortex-M4 core. • Two ARM Cortex-A7 cores—The processor enhances the capabilities of portable, connected applications by fulfilling the ever-increasing MIPS needs of operating systems and applications at lowest power consumption levels per MHz. • Multilevel memory system—The multilevel Cortex-A7 memory system is based on the L1 instruction and data caches, L2 cache, and internal and external memory. The processor supports many types of external memory devices, including DDR3, DDR3L, LPDDR2 and LPDDR3, NOR Flash, NAND Flash (MLC and SLC), QSPI Flash, and managed NAND, including eMMC rev. • Power efficiency—Power management implemented throughout the IC enables features and peripherals to consume minimum power in both active and various low-power modes. • Multimedia—The multimedia performance is enhanced by a multilevel cache system, NEON™ MPE (Media Processor Engine) coprocessor, a programmable smart DMA (SDMA) controller. • Up to two Gigabit Ethernet with AVB—10/100/1000 Mbps Ethernet controllers supporting IEEE Std 1588 time synchronization. • Electronic Paper Display Controller (EPDC)—The processor integrates an EPD controller that supports E Ink color and monochrome panels with up to 2048 x 1536 resolution at 106 Hz refresh, 4096 x 4096 resolution at 20 Hz refresh, and 5-bit grayscale (32-levels per color channel). • Human-machine interface (HMI)—i.MX 7Dual processor provides up to two separate display interfaces (parallel display and two-lane MIPI-DSI), CMOS sensor interface (two-lane MIPI-CSI and parallel). • Interface flexibility—i.MX 7Dual processor supports connections to a variety of interfaces: two high-speed USB on-the-go modules with PHY, High-Speed Inter-Chip USB, multiple expansion card ports (high-speed MMC/SDIO host and other), two Gigabit Ethernet controllers with support for Ethernet AVB, PCIe-II, two 12-bit ADCs with a total of 8 single-ended inputs, two CAN ports, and a variety of other popular interfaces (such as UART, I2C, and I2S). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 2 NXP Semiconductors i.MX 7Dual introduction • • Advanced security—The processors deliver hardware-enabled security features that enable secure e-commerce, digital rights management (DRM), information encryption, secure boot, and secure software downloads. The security features are discussed in detail in the i.MX 7Dual security reference manual. Integrated power management—The processors integrate linear regulators and internally generate voltage levels for different power domains. This significantly simplifies system power management structure. For a comprehensive list of the i.MX 7Dual features, see Section 1.2, “Features.” 1.1 Ordering information Table 1 provides examples of orderable sample part numbers covered by this data sheet. Table 1. Orderable parts 1 2 Cortex-A7 CPU Qualification Tier Speed Grade Temperature (Tj) Part Number Options MCIMX7D7DVK10SC EPDC, CAN 2 x Gigabit Ethernet 4 tamper pins 1 x ADC 1 GHz Consumer1 0 to +95C 12x12 mm, 0.4 mm pitch BGA MCIMX7D7DVM10SC EPDC, CAN 2 x Gigabit Ethernet 10 tamper pins 2 x ADC 1 GHz Consumer1 0 to +95C 19x19 mm, 0.75 mm pitch BGA MCIMX7D5EVM10SC No EPDC, CAN 2 x Gigabit Ethernet 10 tamper pins 2 x ADC 1 GHz Industrial2 -20 to 105C 19x19 mm, 0.75 mm pitch BGA MCIMX7D3DVK10SC No EPDC, No CAN 2 x Gigabit Ethernet 4 tamper pins 1 x ADC 1 GHz Consumer1 0 to +95C 12x12 mm, 0.4 mm pitch BGA MCIMX7D3EVK10SC No EPDC, No CAN 2 x Gigabit Ethernet 4 tamper pins 1 x ADC 1 GHz Industrial2 –20 to +105C 12x12 mm 0.4 mm pitch BGA Package Consumer qualification grade assumes 5-year lifetime with 50% duty cycle. Industrial qualification grade assumes 10-year lifetime with 100% duty cycle. Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the specific part number. Contact an NXP representative for additional details. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 3 i.MX 7Dual introduction Figure 1. Part number nomenclature—i.MX 7Dual family of processors 1.2 Features The i.MX 7Dual family of processors is based on ARM Cortex-A7 MPCore™ Platform, which has the following features: • Two ARM Cortex-A7 Cores (with TrustZone® technology) • The core configuration is symmetric, where each core includes: — 32 KByte L1 Instruction Cache — 32 KByte L1 Data Cache — Private Timer and Watchdog — NEON MPE (media processing engine) coprocessor The ARM Cortex-A7 Core complex shares: • General interrupt controller (GIC) with 128 interrupt support • Global timer • Snoop control unit (SCU) • 512 KB unified I/D L2 cache • Two master AXI bus interfaces output of L2 cache i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 4 NXP Semiconductors i.MX 7Dual introduction • • Frequency of the core (including NEON and L1 cache), as per Table 9. NEON MPE coprocessor — SIMD Media Processing Architecture — NEON register file with 32x64-bit general-purpose registers — NEON Integer execute pipeline (ALU, Shift, MAC) — NEON dual, single-precision floating point execute pipeline (FADD, FMUL) — NEON load/store and permute pipeline The ARM Cortex-M4 platform: • Cortex-M4 CPU core • MPU (memory protection unit) • FPU (floating-point unit) • 16 KByte instruction cache • 16 KByte data cache • 64 KByte TCM (tightly-coupled memory) The SoC-level memory system consists of the following additional components: — Boot ROM, including HAB (96 KB) — Internal multimedia / shared, fast access RAM (256 KB of total OCRAM) — Secure/nonsecure RAM (32 KB) • External memory interfaces: The i.MX 7Dual family of processors supports the latest, high-volume, cost effective DRAM, NOR, and NAND Flash memory standards. — Up to 32-bit LP-DDR2-1066, DDR3-1066, DDR3L-1066, and LPDDR3-1066 — 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 62 bits. — 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces. Each i.MX 7Dual processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Displays—Available interfaces. — One parallel 24-bit display port — One EPD port — One MIPI DSI port • Camera sensors: — One parallel Camera port (up to 24 bit and up to 133 MHz peak) — One MIPI CSI port • Expansion cards: — Three MMC/SD/SDIO card ports all supporting the following. Moreover, the third port can support HS400. – 1-bit or 4-bit transfer mode specifications for SD and SDIO cards, up to 208 MHz i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 5 i.MX 7Dual introduction • • • – 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in both SDR and DDR modes, including HS200 and HS400 DDR modes USB: — Two high-speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY — One high-speed USB 2.0 (480 Mbps) host with integrated HSIC USB (high-speed inter-chip USB) PHY Expansion PCI Express port (PCIe) v. 2.1 one lane — PCI Express (Gen 2.0) dual mode complex, supporting root complex operations and endpoint operations. Uses x1 PHY configuration. Miscellaneous IPs and interfaces: — Three instances of SAI supporting up to three I2S and AC97 ports — Seven UARTs, up to 4.0 Mbps: – Providing RS232 interface – Supporting 9-bit RS485 Multidrop mode — Four eCSPI (Enhanced CSPI) — Four I2C, supporting 400 kbps — Two 1-gigabit Ethernet controllers (designed to be compatible with IEEE Std 1588), 10/100/1000 Mbps with AVB support — Four pulse width modulators (PWM) — System JTAG controller (SJC) — GPIO with interrupt capabilities — 8x8 key pad port (KPP) — One quad SPI — Four watchdog timers (WDOG) — One (12 x 12 mm) or two (19 x 19 mm) 2-channel, 12-bit analog-to-digital converters (ADC)—effective number of bits (ENOB) can vary (typically 9–10 bits) depending on the system implementation and the condition of the power/ground noise condition The i.MX 7Dual family of processors integrates advanced power management unit and controllers: • PMU (power-management unit), multiple LDO supplies, for on-chip resources • Temperature sensor for monitoring the die temperature • Software state retention and power gating for ARM and NEON • Support for various levels of system power modes • Flexible clock gating control scheme The i.MX 7Dual family of processors uses dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 6 NXP Semiconductors i.MX 7Dual introduction The i.MX 7Dual family of processors incorporates the following hardware accelerators: • PXP—PiXel processing pipeline for imagine resize, rotation, overlay and CSC. Off loading key pixel processing operations are required to support the LCD and EPDC display applications. • EPDC Security functions are enabled and accelerated by the following hardware: • ARM TrustZone technology including separation of interrupts and memory mapping • SJC—System JTAG controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. • CAAM—Cryptographic acceleration and assurance module, containing cryptographic and hash engines supporting DPA (differential power analysis) protection, 32 KB secure RAM, and true and pseudo random number generator (NIST certified). • SNVS—Secure non-volatile storage, including secure real time clock • CSU—Central security unit. Enhancement for the IC identification module (IIM). Configured during boot and by eFuses and determines the security-level operation mode as well as the TrustZone policy. • A-HAB—Advanced high-assurance boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, SRK revocation mechanism, warm boot, CSU, and TrustZone initialization. NOTE The actual feature set depends on the part numbers as described in Table 1. Functions, such as display and camera interfaces, connectivity interfaces, may not be enabled for specific part numbers. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 7 Architectural overview 2 Architectural overview The following subsections provide an architectural overview of the i.MX 7Dual processor system. 2.1 Block diagram Figure 2 shows the functional modules in the i.MX 7Dual processor system. LPDDR2/LPDDR3 /DDR3/DDR3L NAND FLASH ARM Cortex A7 MPCore Platform CPU1 CPU0 I$ 32KB D$ 32KB External Memory DDR Controller EIM GPMI&BCH NOR Flash (Parallel) NEON QSPI L2 Cache 512KB OCRAM 320KB CAAM (32KB RAM) CSU OCOTP (eFuse) SNVS(SRTC) LCD Panel Display Interface LCDIF AXI and AHB Switch Fabric ROM 96KB Security Tamper Detection ARM Cortex M4 Platform Cortex-M4 Core Camera Interface CSI DAP TPIU CCM CTIs GPC SJC Modem IC SRC RC OSC GPT(4) AP Peripherals uSDHC(3) System Counter Smart DMA SDMA OCOTP Keypad Host (1) / OTG (2) Multi-Core Unit RDC MU SPBA SEMAPHORE Shared Peripherals eCSPI(3) EPD Panel Touch Panel Control USB 2.0 AVB ENET(2) PCIe v2.1 ADC (2) MMC/SD SDXC Timers WDOG(4) TCM 64KB EPD Controller MMC/SD eMMC/eSD XTAL OSC Flex Timer(2) MIPI CSI(2 lane) Sensors Crystal& Clock Source Clock & Reset PLLs I$ 16KB D$ 16KB FPU MPU Image Processing Pixel Processing Pipeline(PXP) MIPI DSI Camera FPU Debug SCU & Timer Internal Memory NOR FLASH (Quad SPI) JTAG (IEEE1149.6) Battery Ctrl Device 10/100/1000M Ethernet x2 FlexCAN(2) SIMv2(2) SAI(3) UART(3) I2C(4) PWM(4) KPP Power Management UART(4) Temp Monitor GPIO(7) LDOs IOMUX PCIe Bus WLAN eCSPI(1) Smart Card x2 CAN x2 USB OTG (dev/host) Figure 2. i.MX 7Dual System block diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 8 NXP Semiconductors Modules list 3 Modules list The i.MX 7Dual family of processors contains a variety of digital and analog modules. Table 2 describes these modules in alphabetical order. Table 2. i.MX 7Dual modules list Block Mnemonic Block Name Subsystem Brief Description ADC1 ADC2 Analog to Digital Converter ARM ARM Platform ARM BCH Binary-BCH ECC Processor System control peripherals CAAM Cryptographic accelerator and assurance module Security CCM GPC SRC Clock Control Module, General Power Controller, System Reset Controller Clocks, resets, and power control CSI Parallel CSI Multimedia peripherals The CSI IP provides parallel CSI standard camera interface port. The CSI parallel data ports are up to 24 bits. It is designed to support 24-bit RGB888/YUV444, CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and 8-bit/10-bit/16-bit Bayer data input. CSU Central Security Unit security The Central Security Unit (CSU) is responsible for setting comprehensive security policy within the i.MX 7Dual platform. DAP Debug Access Port System control peripherals The ADC is a 12-bit general purpose analog to digital converter (ADC2 is not available in the 12x12 package). The ARM Core Platform includes two Cortex-A7 coresand 1x Cortex-M4. It also includes associated sub-blocks, such as the Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, watchdog, and CoreSight debug modules. The BCH module provides up to 62-bit ECC encryption/decryption for NAND Flash controller (GPMI) CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, entropy source generator, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certifiable by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). CAAM also implements a Secure Memory mechanism. In i.MX 7Dual processors, the security memory provided is 32 KB. These modules are responsible for clock and reset distribution in the system, and also for the system power management. The DAP provides real-time access for the debugger without halting the core to access: • System memory and peripheral registers • All debug configuration registers The DAP also provides debugger access to JTAG scan chains. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 9 Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description eCSPI1 eCSPI2 eCSPI3 eCSPI4 Configurable SPI Connectivity Peripherals Full-duplex enhanced Synchronous Serial Interface, with data rate up to 52 Mbit/s. It is configurable to support Master/Slave modes, four chip selects to support multiple peripherals. EIM NOR-Flash /PSRAM interface Connectivity Peripherals The EIM NOR-FLASH / PSRAM provides: • Support for 16-bit (in Muxed I/O mode only) PSRAM memories (sync and async operating modes), at slow frequency • Support for 16-bit (in muxed and non-muxed I/O modes) NOR-Flash memories, at slow frequency • Multiple chip selects ENET1 ENET2 Ethernet Controller Connectivity peripherals The Ethernet Media Access Controller (MAC) is designed to support 10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external transceiver interface and transceiver function are required to complete the interface to the media. The module has dedicated hardware to support the IEEE 1588 standard. See the ENET chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details. EPDC Electrophoretic Display Controller Connectivity peripherals The EPDC is a feature-rich, low power, and high-performance direct-drive, active matrix EPD controller. It is specifically designed to drive E Ink™ EPD panels, supporting a wide variety of TFT backplanes. Various levels of flexibility and programmability have been introduced, as well as hardware support for different E Ink image enhancing algorithms, such as Regal D waveform support. FLEXCAN1 FLEXCAN2 Flexible Controller Area Network Connectivity peripherals The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the Electromagnetic interference (EMI) environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames. FLEXTIMER1 FLEXTIMER2 Flexible Timer Module Timer Peripherals GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 General Purpose I/O Modules System control peripherals Used for general purpose input/output to external ICs. Each GPIO module supports up to 32 bits of I/O. GPMI General Purpose Memory Interface Connectivity peripherals The GPMI module supports up to 8x NAND devices and 62-bit ECC encryption/decryption for NAND Flash Controller (GPMI2). GPMI supports separate DMA channels for each NAND device. Provide input signal capture and PWM support i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 10 NXP Semiconductors Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description GPT General Purpose Timer Timer peripherals Each GPT is a 32-bit “free-running” or “set and forget” mode timer with programmable prescaler and compare and capture register. A timer counter value can be captured using an external event and can be configured to trigger a capture event on either the leading or trailing edges of an input pulse. When the timer is configured to operate in “set and forget” mode, it is capable of providing precise interrupts at regular intervals with minimal processor intervention. The counter has output compare logic to provide the status and interrupt at comparison. This timer can be configured to run either on an external clock or on an internal clock. I2C1 I2C2 I2C3 I2C4 I2C Interface Connectivity peripherals I2C provide serial interface for external devices. Data rates of up to 320 kbps are supported. IOMUXC IOMUX Control System control peripherals This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable. KPP Key Pad Port Connectivity peripherals KPP Supports 8x8 external key pad matrix. KPP features are: • Open drain design • Glitch suppression circuit design • Multiple keys detection • Standby key press detection LCDIF LCD interface Multimedia peripherals The LCDIF is a general purpose display controller used to drive a wide range of display devices varying in size and capability. The LCDIF is designed to support dumb (synchronous 24-bit Parallel RGB interface). MIPI CSI (two-lane) MIPI Camera Interface Multimedia peripherals This module provides a two-lane MIPI camera interface operating up to a maximum bit rate of 1.5 Gbps. MIPI DSI (two-lane) MIPI Display Interface Connectivity peripherals This module provides a two-lane MIPI display interface operating up to a maximum bit rate of 1.5 Gbps. DDRC DDR Controller Connectivity peripherals The DDR Controller has the following features: • Supports 16/32-bit DDR3/DDR3L, LPDDR3, and LPDDR2-1066 • Supports up to 2 Gbyte DDR memory space MQS Medium-quality sound module Multimedia peripherals MQS is used to generate 2-channel, medium-quality, PWM-like audio, via two standard digital GPIO pins. The electronic specification is the same as the GPIO digital output. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 11 Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading, programming, and/or overriding identification and control information stored in on-chip fuse elements. The module supports electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible signals that can be used for software control of hardware elements, not requiring non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode, boot characteristics, and various control signals, requiring permanent non-volatility. OCRAM On-Chip Memory controller Data path The On-Chip Memory controller (OCRAM) module is designed as an interface between system’s AXI bus and internal (on-chip) SRAM memory module. In i.MX 7Dual processors, the OCRAM is used for controlling the 128 KB multimedia RAM through a 64-bit AXI bus. PCIe PCI Express 2.0 Connectivity peripherals PMU Power Management Unit Data path PWM1 PWM2 PWM3 PWM4 Pulse Width Modulation Connectivity peripherals The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. PXP PiXel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1 pixel/clock performance for combined operations, such as color-space conversion, alpha blending, gamma-mapping, and rotation. The PXP is enhanced with features specifically for gray scale applications. In addition, the PXP supports traditional pixel/frame processing paths for still-image and video processing applications, allowing it to interface with the integrated EPD. The PCIe IP provides PCI Express Gen 2.0 functionality. Integrated power management unit. Used to provide power to various SoC domains. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 12 NXP Semiconductors Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description QSPI Quad SPI Connectivity peripherals Quad SPI module act as an interface to external serial flash devices. This module contains the following features: • Flexible sequence engine to support various flash vendor devices • Single pad/Dual pad/Quad pad mode of operation • Single Data Rate/Double Data Rate mode of operation • Parallel Flash mode • DMA support • Memory mapped read access to connected flash devices • Multi-master access with priority and flexible and configurable buffer for each master SAI1 SAI2 SAI3 Synchronous Audio Interface Connectivity peripherals The SAI module provides a synchronous audio interface (SAI) that supports full duplex serial interfaces with frame synchronization, such as I2S, AC97, TDM, and codec/DSP interfaces. SDMA Smart Direct Memory Access System control peripherals The SDMA is a multichannel flexible DMA engine. It helps in maximizing system performance by offloading the various cores in dynamic data routing. It has the following features: • Powered by a 16-bit Instruction-Set micro-RISC engine • Multi-channel DMA supporting up to 32 time-division multiplexed DMA channels • 48 events with total flexibility to trigger any combination of channels • Memory accesses including linear, FIFO, and 2D addressing • Shared peripherals between ARM and SDMA • Very fast Context-Switching with 2-level priority based preemptive multi-tasking • DMA units with auto-flush and prefetch capability • Flexible address management for DMA transfers (increment, decrement, and no address changes on source and destination address) • DMA ports can handle unidirectional and bidirectional flows (Copy mode) • Up to 8-word buffer for configurable burst transfers for EMIv2.5 • Support of byte-swapping and CRC calculations • Library of Scripts and API is available SIMv2-1 SIMv2-2 Smart Card Connectivity peripherals Smart card interface designed to be compatible with ISO7816. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 13 Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description SJC System JTAG Controller System control peripherals The SJC provides JTAG interface (designed to be compatible with JTAG TAP standards) to internal logic. The i.MX 7Dual family of processors uses JTAG port for production, testing, and system debugging. Additionally, the SJC provides BSR (Boundary Scan Register) standard support, designed to be compatible with IEEE 1149.1 and IEEE1149.6 standards. The JTAG port must be accessible during platform initial laboratory bring-up, for manufacturing tests and troubleshooting, as well as for software debugging by authorized entities. The i.MX 7Dual SJC incorporates three security modes for protecting against unauthorized accesses. Modes are selected through eFUSE configuration. SNVS Secure Non-Volatile Storage Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security State Machine, Master Key Control, and Violation/Tamper Detection and reporting. TEMPSENSOR Temperature Sensor System control peripherals TZASC Trust-Zone Address Space Controller Security The TZASC (TZC-380 by ARM) provides security address region control functions required for intended application. It is used on the path to the DRAM controller. UART1 UART2 UART3 UART4 UART5 UART6 UART7 UART Interface Connectivity peripherals Each of the UARTv2 modules support the following serial data transmit/receive protocols and configurations: • 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none) • Programmable baud rates up to 4 Mbps. This is a higher max baud rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F standard. • 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud Temperature sensor i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 14 NXP Semiconductors Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description uSDHC1 uSDHC2 uSDHC3 SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller Connectivity peripherals i.MX 7Dual SoC characteristics: All the MMC/SD/SDIO controller IPs are based on the uSDHC IP. They are designed to be: • Fully compatible with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v5.0/v4.4/v4.41/v4.4/v4.3/v4.2. • Fully compatible with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications v 3.0 including high-capacity SDXC cards up to 2 TB. • Fully compatible with SDIO command/response sets and interrupt/Read-Wait mode as defined in the SDIO Card Specification, Part E1, v. 3.0 All the ports support: • 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max) • 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in both SDR and DDR modes, including HS200 and HS400. However, the SoC level integration and I/O muxing logic restrict the functionality to the following: • uSDHC1 and uSDHC2 are primarily intended to serve as external slots or interfaces to on-board SDIO devices. These ports are equipped with “Card detection” and “Write Protection” pads and do not support hardware reset. • uSDHC3 is primarily intended to serve interfaces to embedded MMC memory or interfaces to on-board SDIO devices. These ports do not have “Card detection” and “Write Protection” pads and do support hardware reset. • All ports can work with 1.8 V and 3.3 V cards. There are two completely independent I/O power domains for uSDHC1 and uSDHC2 in 4-bit configuration (SD interface). uSDHC3 is placed in his own independent power domain. USBOTG2 2x USB 2.0 High Speed OTG and HSIC USB Connectivity peripherals USBOTG2 contains: • Two high-speed OTG modules with integrated HS USB PHYs • One high-speed Host module connected to HSIC USB port. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 15 Modules list Table 2. i.MX 7Dual modules list(continued) Block Mnemonic Block Name Subsystem Brief Description WDOG1 WDOG3 WDOG4 Watchdog Timer peripherals The Watch dog timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line. WDOG2 (TrustZone) Watchdog (TrustZone technology) Timer peripherals The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping Normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system’s security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW. 3.1 Special signal considerations Table 3 lists special signal considerations for the i.MX 7Dual family of processors. The signal names are listed in alphabetical order. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 16 NXP Semiconductors Modules list The package contact assignments can be found in Section 6, “Package information and contact assignments.” Signal descriptions are provided in the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). Table 3. Special signal considerations Signal Name Remarks CCM_CLK1_P/ CCM_CLK1_N CCM_CLK2 One general purpose differential high speed clock input/output and one single-ended clock input are provided. Either or both of them can be used: • To feed an external reference clock to the PLLs and to the modules inside the SoC, for example, as an alternate reference clock for PCIe, Video/Audio interfaces and so forth. • To output the internal SoC clock to be used outside the SoC as either a reference clock or as a functional clock for peripherals; for example, it can be used as an output of the PCIe master clock (root complex use) See the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details on the respective clock trees. The CCM_CLK1_* inputs/outputs are an LVDS differential pair. Alternatively, a single-ended signal may be used to drive CCM_CLK1_P input. In this case corresponding CCM_CLK1_N input should be tied to the constant voltage level equal to 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. See the LVDS pad electrical specification for further details. CCM_CLK2 is a single-ended input referenced to ground. After initialization: • The CCM_CLK1_* inputs/outputs can be disabled if not used. Any of the unused CCM_CLK1_* pins may be left floating. • The CCM_CLK2 input should be grounded if not used. RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (100 k ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. It is recommended to use the configurable load capacitors provided in the IP instead of adding them externally. To hit the exact oscillation frequency, the configurable capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin should be left floating or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level. In the case when a high-accuracy realtime clock is not required, the system may use internal low frequency oscillator. It is recommended to connect RTC_XTALI to ground and keep RTC_XTALO floating. This will however result in increased power consumption, because the internal oscillator uses higher power than the RTC oscillator. Thus for lowest power configuration it is recommended to always install a crystal. XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 17 Modules list Table 3. Special signal considerations(continued) Signal Name Remarks DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a 1 kΩ 0.5% resistor to GND and a 1 kΩ 0.5% resistor to NVCC_DRAM. Shunt each resistor with a closely-mounted 0.1 µF capacitor. To reduce supply current, a pair of 1.5 kΩ 0.1% resistors can be used. Using resistors with recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is maintained when four DDR3 ICs plus the i.MX 7Dual are drawing current on the resistor divider. It is recommended to use regulated power supply for “big” memory configurations (more than eight devices) ZQPAD DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver calibration should be connected between this pad and GND. PCIE_VPH/PCIE_VPH_TX/ Short these pins to VDDA_PHY1P8 if using PCIe. User can leave these pins floating if not using PCIE_VPH_RX PCIe. PCIE_VP/PCIE_VP_TX/PC Short these pins to VDDD_1P0CAP if using PCIe. User can leave these pins floating if not using IE_VP_RX PCIe. VDDA_MIPI_1P8 Short these pins to VDDA_PHY_1P8 if using MIPI. User can leave these pins floating or grounded if not using MIPI. VDD_MIPI_1P0 Short these pins to VDDD_1P0_CAP if using MIPI. User can leave these pins floating or grounded if not using MIPI. GPANAIO JTAG_nnnn This signal is reserved for manufacturing use only. User must leave this connection floating. The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However, if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is followed. For example, do not use an external pull down on an input that has on-chip pull-up. JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and should be avoided. JTAG_MOD is referenced as SJC_MOD in the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). Both names refer to the same signal. JTAG_MOD must be externally connected to GND for normal operation. Termination to GND through an external pull-down resistor (such as 1 kΩ) is allowed. JTAG_MOD set to high configures the JTAG interface to a mode compatible with the IEEE 1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system TAPs to the chain. NC Do not connect. These signals are reserved and should be floated by the user. POR_B This cold reset negative logic input resets all modules and logic in the IC. May be used in addition to internally generated power on reset signal (logical AND, both internal and external signals are considered active low). ONOFF In Normal mode, may be connected to ON/OFF button (De-bouncing provided at this input). Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes “forced” OFF. TEST_MODE TEST_MODE is for factory use. This signal is internally connected to an on-chip pull-down device. The user must tie this signal to GND. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 18 NXP Semiconductors Modules list Table 3. Special signal considerations(continued) Signal Name Remarks PCIE_REXT The impedance calibration process requires connection of reference resistor 4.7 KΩ 1% precision resistor on PCIE_REXT pad to ground. USB_OTG1_REXT/USB_O The bias generation and impedance calibration process for the USB OTG PHYs requires TG2_REXT connection of 200 Ω (1% precision) reference resistors on each of the USB_OTG1_REXT and USB_OTG2_REXT pads to ground. USB_OTG1_CHD_B TEMPSENSOR_REXT An external pullup resistor with value in range from 10 kΩ to 100 kΩ should be connected between open-drain output USB_OTG1_CHD_B and supply VDD_USB_OTG1_3P3_IN for 3.3 V signaling. Optionally, a similarly valued pullup resistor could be connected instead between USB_OTG1_CHD_B and an unrelated supply up to 1.8 V, but in that case the output is only valid when both that supply and VDD_USB_OTG1_3P3_IN are powered. External 100 KΩ (1% precision) resistor connection pin Table 4. JTAG controller interface summary 3.2 JTAG I/O Type On-chip Termination JTAG_TCK Input 47 kΩ pull-up JTAG_TMS Input 47 kΩ pull-up JTAG_TDI Input 47 kΩ pull-up JTAG_TDO 3-state output 100 kΩ pull-up JTAG_TRSTB Input 47 kΩ pull-up JTAG_MOD Input 100 kΩ pull-up Recommended connections for unused analog interfaces Table 5 shows the recommended connections for unused analog interfaces. Table 5. Recommended connections for unused analog interfaces Module ADC Recommendation if Unused Package Net Name VDDA_ADC2_1P8, VDDA_ADC2_1P8, VDDA_ADC1_1P8, VDDA_ADC1_1P8 1.8 V ADC2_IN3, ADC2_IN2, ADC2_IN1, ADC2_IN0, ADC1_IN0, ADC1_IN1, ADC1_IN2, ADC1_IN3 Tie to ground LDO VDD_1P2_CAP Floating if USB_HSIC is not used MIPI VDD_MIPI_1P0, VDDA_MIPI_1P8 Floating or tie to ground MIPI_DSI_D0_N, MIPI_DSI_D0_P, MIPI_VREG_0P4V, MIPI_DSI_CLK_N, MIPI_DSI_CLK_P, MIPI_DSI_D1_N, MIPI_DSI_D1_P, MIPI_CSI_D0_N, MIPI_CSI_D0_P, MIPI_CSI_CLK_N, MIPI_CSI_CLK_P, MIPI_CSI_D1_N, MIPI_CSI_D1_P No connect i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 19 Electrical characteristics Table 5. Recommended connections for unused analog interfaces(continued) Module PCIe Recommendation if Unused Package Net Name PCIE_REFCLKIN_N, PCIE_REFCLKIN_P, PCIE_REFCLKOUT_N, PCIE_REFCLKOUT_P, PCIE_RX_N, PCIE_RX_P, PCIE_TX_N, PCIE_TX_P Floating PCIE_VP,PCIE_VP_RX,PCIE_VP_TX, PCIE_VPH,PCIE_VPH_RX,PCIE_VPH_TX, PCIE_REXT Tie to ground SNVS SNVS_TAMPER00, SNVS_TAMPER01, SNVS_TAMPER02, Float—configure with software SNVS_TAMPER03, SNVS_TAMPER04, SNVS_TAMPER05, SNVS_TAMPER06, SNVS_TAMPER07, SNVS_TAMPER08, SNVS_TAMPER09 Temperature sensor TEMPSENSOR_REXT Tie to ground or pulldown with 100 KΩ resistor TEMPSENSOR_RESERVE Floating VDD_TEMPSENSOR_1P8 1.8 V VDD_USB_H_1P2 Tie to ground USB_H_DATA, USB_H_STROBE Floating VDD_USB_OTG1_3P3_IN, VDD_USB_OTG1_1P0_CAP Tie to ground USB_OTG1_VBUS, USB_OTG1_DP, USB_OTG1_DN, USB_OTG1_ID, USB_OTG1_REXT, USB_OTG1_CHD_B Floating VDD_USB_OTG2_3P3_IN, VDD_USB_OTG2_1P0_CAP Tie to ground USB_OTG2_VBUS, USB_OTG2_DP, USB_OTG2_DN, USB_OTG2_ID, USB_OTG2_REXT Floating USB HSIC USB OTG1 USB OTG2 4 Electrical characteristics This section provides the device and module-level electrical characteristics for the i.MX 7Dual family of processors. 4.1 Chip-level conditions This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference to the individual tables and sections. Table 6. i.MX 7Dual Chip-level conditions For these characteristics, … Topic appears … Absolute maximum ratings on page 21 FPBGA case “X” and case “Y” package thermal resistance on page 22 Operating ranges on page 23 External clock sources on page 25 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 20 NXP Semiconductors Electrical characteristics Table 6. i.MX 7Dual Chip-level conditions(continued) For these characteristics, … Topic appears … Maximum supply currents on page 26 Power modes on page 29 USB PHY Suspend current consumption on page 32 4.1.1 Absolute maximum ratings CAUTION Stresses beyond those listed under Table 7 may affect reliability or cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operating ranges or parameters tables is not implied. Table 7. Absolute maximum ratings Parameter Description Symbol Min Max Unit Core supply voltages VDD_ARM VDD_SOC –0.5 1.5 V GPIO supply voltage NVCC_ENET1 NVCC_EPDC1 NVCC_EPDC2 NVCC_I2C NVCC_LCD NVCC_SAI NVCC_SD1 NVCC_SD2 NVCC_SD3 NVCC_SPI NVCC_UART –0.3 3.6 V DDR I/O supply voltage NVCC_DRAM –0.3 1.975 V Clock I/O supply voltage NVCC_DRAM_CKE –0.3 1.98 V VDD_SNVS_IN supply voltage VDD_SNVS_IN –0.3 3.6 V USB OTG PHY supply voltage VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN –0.3 3.6 V USB_OTG1_VBUS USB_OTG2_VBUS –0.3 5.25 V USB_OTG1_DP/USB_OTG1_DN USB_OTG2_DP/USB_OTG2_DN –0.3 3.63 V USB_OTG1_CHD_B — 3.6 V USB_VBUS input detected Input voltage on USB_OTG*_DP, USB_OTG*_DN pins USB_OTG1_CHD_B open-drain pullup voltage when external pullup resistor is connected to VDD_USB_OTG1_3P3_IN supply only i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 21 Electrical characteristics Table 7. Absolute maximum ratings(continued) Parameter Description USB_OTG1_CHD_B open-drain pullup voltage when external pullup resistor is connected to any supply other than VDD_USB_OTG1_3P3_IN Symbol Min Max Unit USB_OTG2_CHD_B — 1.975 V Vin/Vout –0.3 OVDD1+0.3 V — — 2000 500 V –40 150 Input/output voltage range ESD damage immunity: Vesd • Human Body Model (HBM) • Charge Device Model (CDM) Storage temperature range 1 TSTORAGE o C OVDD is the I/O supply voltage. 4.1.2 4.1.2.1 Thermal resistance FPBGA case “X” and case “Y” package thermal resistance Table 8 displays the thermal resistance data. Table 8. Thermal Resistance Data Rating Test conditions Junction to Ambient1 Junction to Ambient1 Symbol 12x12 19x19 Unit pkg value pkg value Single-layer board (1s); natural convection2 Four-layer board (2s2p); natural convection2 RθJA RθJA 55.4 32.6 44.4 30.2 oC/W Single-layer board (1s); airflow 200 ft/min2,3 Four-layer board (2s2p); airflow 200 ft/min2,3 RθJA RθJA 41.8 28.0 34.3 25.8 oC/W oC/W oC/W Junction to Board1,4 — RθJB 16.0 17.4 oC/W Junction to Case1,5 — RθJC 10.5 10.4 oC/W oC/W Junction to Package Top1,6 Natural Convection ΨJT 0.2 0.2 Junction to Package Bottom Natural Convection RθB_CSB 15.3 17.3 1 2 3 4 5 6 o C/W Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified package. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 22 NXP Semiconductors Electrical characteristics 4.1.3 Operating ranges Table 9 provides the operating ranges of the i.MX 7Dual family of processors. For details on the chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). Table 9. Operating ranges Parameter Description Symbol Min Typ Max1 Unit VDD_ARM 1.045 1.1 1.155 V See Table 1 for maximum frequencies. 0.95 1.0 1.155 V Operation at 800 MHz and below VDD_SOC 0.95 1.0 1.155 V — Standby/ Deep Sleep mode VDD_ARM 0 1.0 1.155 V VDD_SOC 0.95 1.0 1.155 V See Table 14, “Power modes,” on page 29. Power Supply Analog Domain and LDOs VDDA_1P8 1.71 1.8 1.89 V Power for analog LDO and internal analog blocks. Must match the range of voltages that the rechargeable backup battery supports. Backup battery supply range VDD_SNVS_IN 2.4 3.0 3.6 V — VDD_LPSR 1.71 1.8 1.89 V Power rail for Low Power State Retention mode Supply for 24 MHz crystal VDD_XTAL_1P8 1.650 1.8 1.950 V — Temperature sensor VDD_TEMPSENSOR 1.710 1.8 1.890 V — USB supply voltages VDD_USB_OTG1_3 P3_IN 3.0 3.3 3.6 V This rail is for USB VDD_USB_OTG2_3 P3_IN 3.0 3.3 3.6 V This rail is for USB NVCC_DRAM, NVCC_DRAM_CKE 1.14 1.2 1.3 V LPDDR2, LPDDR3 1.425 1.5 1.575 V DDR3 1.283 1.35 1.45 V DDR3L V Set to one-half NVCC_DRAM Run mode LDO for Low-Power State Retention mode DDR I/O supply voltage DRAM_VREF 0.49 × 0.5 × 0.51 × NVCC_DRAM) NVCC_DRAM NVCC_DRAM Comment i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 23 Electrical characteristics Table 9. Operating ranges(continued) Parameter Description Symbol Min Typ Max1 Unit NVCC_ENET1 NVCC_EPDC1 NVCC_EPDC2 NVCC_I2C NVCC_LCD NVCC_SAI NVCC_SD1 NVCC_SD2 NVCC_SD3 NVCC_SPI NVCC_UART 1.65, 3.0 1.8, 3.3 1.95, 3.6 V — NVCC_GPIO1 1.65 3.0 1.8, 3.3 1.95, 3.6 V Power for GPIO1_DATA00 ~ GPIO1_DATA07 NVCC_GPIO2 1.65 3.0 1.8, 3.3 1.95, 3.6 V Power for GPIO1_DATA08 ~ GPIO1_DATA15 and JTAG port PCIE_VPH PCIE_VPH_RX PCIE_VPH_TX VDDA_MIPI_1P8 1.71 1.8 1.89 V Supplied from VDDA_PHY_1P8 PCIE_VP PCIE_VP_RX PCIE_VP_TX VDD_MIPI_1P0 0.95 1.0 1.050 V Supplied from VDDD_CAP_1P0 VDD_USB_H_1P2 1.150 1.2 1.250 V Supplied from VDD_1P2_CAP Temperature sensor accuracy Tdelta — ±3 — °C Typical accuracy over the range –40°C to 125°C A/D converter VDDA_ADC1_1P8 1.71 1.8 1.89 V — VDDA_ADC2_1P8 1.71 1.8 1.89 V — Fuse power FUSE_FSOURCE 1.710 1.8 1.890 V Power supply for internal use Junction temperature, industrial T -20 — 105 oC GPIO supply voltages Voltage rails supplied from internal LDO 1 J Comment See Table 1 for complete list of junction temperature capabilities. Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the supply tolerance) is recommended. This results in an optimized power/speed ratio. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 24 NXP Semiconductors Electrical characteristics Table 10 shows on-chip LDO regulators that can supply on-chip loads. Table 10. On-chip LDOs1 and their on-chip loads Voltage Source Load Comment VDDD_1P0_CAP VDD_MIPI_1P0 Connect directly (short) via board level PCIE_VP PCIE_VP_RX PCIE_VP_TX VDD_1P2_CAP VDD_USB_H_1P2 Connect directly (short) via board level VDDA_PHY_1P8 VDDA_MIPI_1P8 Connect directly (short) via board level PCIE_VPH PCIE_VPH_RX PCIE_VPH_TX 1 On-chip LDOs are designed to supply i.MX 7Dual loads and must not be used to supply external loads. 4.1.4 External clock sources Each i.MX 7Dual processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency (XTALI). The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit, power-down real time clock operation, and slow system and watch-dog counters. The clock input can be connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is an internal resistor-capacitor (RC) oscillator, which can be used instead of the RTC_XTALI if accuracy is not important. The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other peripherals. The system clock input can be connected to either an external oscillator or a crystal using internal oscillator amplifier. Table 11 shows the interface frequency requirements. Table 11. External input clock frequency Parameter Description Symbol Min Typ Max Unit RTC_XTALI Oscillator1,2 fckil — 32.7683 — kHz Oscillator2,4 fxtal XTALI 24 MHz 1 External oscillator or a crystal with internal oscillator amplifier. The required frequency stability of this clock source is application dependent. 3 Recommended nominal frequency 32.768 kHz. 4 External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier. 2 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 25 Electrical characteristics The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time keeping and USB operation. For RTC_XTALI operation, two clock sources are available. If there is not an externally applied oscillator to RTC_XTALI, the internal oscillator takes over. • On-chip 32 kHz RC oscillator—this clock source has the following characteristics: — Approximately 25 µA more IDD than crystal oscillator — Approximately ±10% tolerance — No external component required — Starts up faster than 32 kHz crystal oscillator — Three configurations for this input: – External oscillator – External crystal coupled to RTC_XTALI and RTC_XTALO – Internal oscillator External crystal oscillator with on-chip support circuit: — At power up, RC oscillator is utilized. After crystal oscillator is stable, the clock circuit switches over to the crystal oscillator automatically. — Higher accuracy than RC oscillator — If no external crystal is present, then the RC oscillator is utilized The decision of choosing a clock source should be taken based on real-time clock use and precision timeout. 4.1.5 Maximum supply currents The Power Virus numbers shown in Table 12 represent a use case designed specifically to show the maximum current consumption possible. All cores are running at the defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to specifically show the worst case power consumption. The MC3xPF3000xxxx, NXP’s power management IC targeted for the i.MX 7Dual family of processors, supports the Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design is required for the increased system power dissipation. Table 12 represents the maximum momentary current transients on power lines, and should be used for power supply selection. Maximum currents are higher by far than the average power consumption of typical use cases. Table 12. Maximum supply currents Power Rail Source Conditions Max Current Unit VDD_ARM From PMIC — 500 mA VDD_SOC From PMIC — 1000 mA — 1 mA VDDA_1P8_IN From PMIC 150 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 26 NXP Semiconductors Electrical characteristics Table 12. Maximum supply currents(continued) Power Rail Source Conditions Max Current Unit VDD_SNVS_IN From PMIC or Coin cell — 1 mA VDD_XTAL_1P8 From PMIC — 5 mA VDD_LPSR_IN From PMIC — 5 mA VDD_TEMPSENSOR_1P8 From PMIC — 1 mA VDDA_ADC1_1P8 From PMIC — 5 mA VDDA_ADC2_1P8 From PMIC — 5 mA FUSE_FSOURCE From PMIC — 150 mA VDD_MIPI_1P0 From i.MX 7 internal LDO — 80 mA PCIE_VP From i.MX 7 internal LDO — 70 mA PCIE_VP_RX From i.MX 7 internal LDO — 35 mA PCIE_VP_TX From i.MX 7 internal LDO — 35 mA PCIE_VPH From i.MX 7 internal LDO — 25 mA PCIE_VPH_RX From i.MX 7 internal LDO — 15 mA PCIE_VPH_TX From i.MX 7 internal LDO — 15 mA NVCC_GPIO1 From PMIC N=12 mA NVCC_GPIO2 From PMIC N=14 Use max IO equation2 NVCC_SD2 From PMIC N=9 mA NVCC_SD3 From PMIC N=12 mA NVCC_SD1 From PMIC N=9 mA NVCC_ENET1 From PMIC N=16 mA NVCC_EPDC1 From PMIC N=16 mA NVCC_EPDC2 From PMIC N=17 mA NVCC_SAI From PMIC N=11 mA NVCC_LCD From PMIC N=29 mA NVCC_SPI From PMIC N=8 mA NVCC_ECSPI From PMIC N=8 mA NVCC_I2C From PMIC N=8 mA NVCC_UART From PMIC N=8 mA VDD_USB_OTG1_3P3_IN From PMIC — 50 mA VDD_USB_OTG2_3P3_IN From PMIC — 50 mA VDD_USB_H_1P2 From i.MX 7 internal LDO — 20 mA VDDA_MIPI_1P8 From i.MX 7 internal LDO — 5 mA DRAM_VREF From PMIC — 30 mA mA i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 27 Electrical characteristics Table 12. Maximum supply currents(continued) Power Rail Source Conditions Max Current Unit NVCC_DRAM_CKE From PMIC — 30 mA NVCC_DRAM From PMIC — —3 mA 1 The actual maximum current drawn from VDDA_1P8_IN is as shown plus any additional current drawn from the VDDD_1P0_CAP, VDD_1P2_CAP, VDDA_PHY_1P8 outputs, depending on actual application configuration (for example, VDD_MIPI_1P0, VDD_USB_H_1P2 and PCIE_VP/VPH supplies). 2 General equation for estimated, maximal power consumption of an I/O power supply: Imax = N × C × V × (0.5 × F) where: N = Number of I/O pins supplied by the power line C = Equivalent external capacitive load V = IO voltage (0.5 × F) = Data change rate, up to 0.5 of the clock rate (F) In this equation, Imax is in amps, C in farads, V in volts, and F in hertz. 3 The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators are typically available from the memory vendors. They take into account factors such as signal termination. 4.1.6 Power modes The i.MX 7Dual has the following power modes: • OFF mode: all power rails are off; • SNVS mode: only RTC and tamper detection logic is active; • LPSR mode: an extension of SNVS mode, with 16 GPIOs in low power state retention mode; • RUN Mode: all external power rails are on, CPU is active and running, other internal module can be on/off based on application; • Low Power mode (System Idle, Low Power Idle, and Deep Sleep): most external power rails are still on, CPU is in WFI state or power gated, most of the internal modules are clock gated or power gated. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 28 NXP Semiconductors Electrical characteristics The valid power mode transition is shown in this diagram. 7 1 OFF Low Power RUN 8 3 2 5 4 6 SNVS LPSR Figure 3. i.MX 7Dual Power Modes The power mode transition condition is defined in the following table. Table 13. Power Mode Transition Transition From To Condition 1 OFF RUN VDD_SVNS_IN supply present. 2 SNVS OFF VDD_SNVS_IN supply removal. 3 RUN SNVS ONOFF long press, or SW. 4 SNVS RUN ONOFF press, or RTC, or tamper event. 5 RUN LPSR SW. 6 LPSR RUN ONOFF press, or RTC, or tamper event, or GPIO event. 7 RUN 8 Low Power Low Power SW (CPU execute WFI) RUN RTC, tamper event, IRQ. The following table summarizes the external power supply state in all the power modes. Table 14. Power modes Power rail OFF SVNS LPSR RUN Low Power VDD_ARM OFF OFF OFF ON ON/ OFF VDD_SOC OFF OFF OFF ON ON VDDA_1P8_IN OFF OFF OFF ON ON VDD_SNVS_IN OFF ON ON ON ON VDD_LPSR_IN OFF OFF ON ON ON NVCC_GPIO1/2 OFF OFF ON ON ON NVCC_DRAM OFF OFF OFF ON ON i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 29 Electrical characteristics Table 14. Power modes(continued) Power rail OFF SVNS LPSR RUN Low Power NVCC_DRAM_CKE OFF OFF / ON OFF / ON ON ON NVCC_XXX OFF OFF OFF ON / OFF ON / OFF OFF / ON OFF / ON OFF / ON ON / OFF ON / OFF VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN The NVCC_DRAM_CKE can be still ON during SNVS/LPSR mode to keep the CKE/RESET pad in correct state to hold DRAM device in self-refresh mode. The NVCC_XXX can be off in RUN mode / Low Power mode if all the pads in that IO bank is not used in the application, the NVCC_XXX supply could be tied to GND. The VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN are fully asynchronous to other power rails, so it can be either ON/OFF in any of the power modes. 4.1.6.1 OFF Mode In OFF mode, all the power rails are shut off. 4.1.6.2 SNVS Mode SNVS mode is also called RTC mode, where only the power for the SNVS domain remain on. In this mode, only the RTC and tamper detection logic is still active. The power consumption in SNVS model with all the tamper detection logic enabled will be less than 5 uA @ 3.0 V on VDD_SNVS_IN for typical silicon at 25°C. The external DRAM device can keep in self-refresh when the chip stays in SNVS mode with NVCC_DRAM_CKE still powered. During the state transition between SNVS mode to/from ON mode, the DRAM_CKE pad and DRAM_RESET pad has to always stay in correct state to keep DRAM in self-refresh mode. No glitch / floating is allowed. 4.1.6.3 LPSR Mode LPSR is considered as an extension of the SNVS mode. All the features supported in SNVS mode is also supported in LPSR mode, including the capability of keeping DRAM device in self-refresh. In LPSR mode, three additional power rails will remain on: VDD_LPSR_IN, NVCC_GPIO1, and NVCC_GPIO2. These three power rails are used to supply the logic and IO pads in the LPSR domain. The purpose of this mode is to retain the state of 16 GPIO pads, so the other components in the whole system will have their control signal in correct state. Among all the 16 GPIO pads, the NVCC_GPIO1 supply the power for 8 GPIO pads, and the NVCC_GPIO2 supply the power for the other 8 GPIO pads. This allows the SoC to have some of its GPIO working at 1.8 V while others working at 3.3 V in the LPSR mode. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 30 NXP Semiconductors Electrical characteristics When LPSR mode is not needed for the application, the VDD_LPSR can be connected to VDDA_1P8 and NVCC_GPIO1/2 can be connected to the same power supply as NVCC_XXX for other GPIO banks. In LPSR mode, the supported wakeup source are RTC alarm, ONOFF event, security/tamper and also the 16 GPIO pads. 4.1.6.4 RUN Mode In RUN mode, the CPU is active and running, and the analog / digital peripheral modules inside the processor will be enabled. In this mode, all the external power rails to the processor have to be ON and the SoC will be able to draw as many current as listed in the Table 5 Maximum Power Requirement. In this mode, the PMIC should allow SoC to change the voltage of power rails through I2C/SPI interface. Typically, when the CPU is doing DVFS, it switches the VDD_ARM voltage according to Table 9 when the CPU’s frequency is switching between 1 GHz and 800 MHz (or below). 4.1.6.5 Low Power Mode When the CPU is not running, the processor can enter low power mode. i.MX 7Dual processor supports a very flexible set of power mode configurations in low power mode. Typically there are 3 low power modes used, System IDLE, Low Power IDLE and SUSPEND: • System IDLE—This is a mode that the CPU can automatically enter when there is no thread running. All the peripherals can keep working and the CPU’s state is retained so the interrupt response can be very short. The cores are able to individually enter the WAIT state. • Low Power IDLE—This mode is for the case when the system needs to have lower power but still keep some of the peripherals alive. Most of the peripherals, analog modules, and PHYs are shut off; see Table 5-5, “Low Power Mode Definition,” in the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details. The interrupt response in this mode is expected to be longer than the System IDLE, but its power is much lower. • Suspend—This mode has the greatest power savings; all clocks, unused analog/PHYs, and peripherals are off. The external DRAM stays in Self-Refresh mode. The exit time from this mode is much longer. In System IDLE and Low Power IDLE mode, the voltage on external power supplies remains the same as in RUN mode, so the external PMIC is not aware of the state of the processor. If any low-power setting needs to be applied to PMIC, it is done through the I2C/SPI interface before the processor enters a low-power mode. When the processor enters SUSPEND mode, it will assert the PMIC_STBY_REQ signal to PMIC. When this signal is asserted, the processor allows the PMIC to shut off VDD_ARM externally. However, in some application scenario, SW want to keep the data in L2 Cache to avoid performance impact on cache miss. In this case, the VDD_ARM cannot be shut off. To support both scenarios, the PMIC should have an option to shut off or keep VDD_ARM when it receives the PMIC_STBY_REQ. This should be configured through I2C/SPI interface before the processor enters SUSPEND mode. Except the VDD_ARM, the other power rails have to keep active in SUSPEND mode. Since the current on each power rail is greatly reduced in this mode, PMIC can enter its own low power mode to get extra i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 31 Electrical characteristics power saving. For example, the PMIC can change the DCDC rails to PFM mode to reduce the power consumption. The power consumption in low power modes is defined in Table 15. Table 15. Low Power Measurements System IDLE Power rail Low Power IDLE SUSPEND LPSR Voltage Current Power Voltage Current Power Voltage Current Power Voltage Current Power (V) (mA) (mW) (V) (mA) (mW) (V) (mA) (mW) (V) (mA) (mW) VDD_ARM 1.0 2.7 2.70 1.0 0.428 0.43 1.0 0.3 0.30 0.0 — 0.00 VDD_SOC 1.0 19.38 19.38 1.0 1.423 1.42 1.0 0.6 0.60 0.0 — 0.00 VDDA_1P8_IN 1.8 3.46 6.23 1.8 0.206 0.37 1.8 0.4 0.72 0.0 — 0.00 VDD_SNVS_IN 3.0 0.006 0.018 3.0 0.005 0.015 3.0 0.006 0.018 3.0 0.003 0.009 VDD_LPSR_IN 1.8 0.04 0.07 1.8 0.041 0.07 1.8 0.039 0.0702 1.8 0.04 0.07 NVCC_GPIO1/2 1.8 0.072 0.13 1.8 0.073 0.13 1.8 0.072 0.13 1.8 0.072 0.13 Total — — 28.53 — — 2.45 — — 1.84 — — 0.21 All the power numbers defined in Table 15 are based on typical silicon at 25°C. 4.1.7 USB PHY Suspend current consumption 4.1.7.1 Low Power Suspend Mode The VBUS Valid comparators and their associated bandgap circuits are enabled by default. Table 16 shows the USB interface current consumption in Suspend mode with default settings. Table 16. USB PHY current consumption with default settings1 Current 1 VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN 790 uA 790 uA Low Power Suspend is enabled by setting USBx_PORTSC1 [PHCD]=1 [Clock Disable (PLPSCD)]. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 32 NXP Semiconductors Electrical characteristics 4.1.7.2 4.1.7.2 Power-Down modes Table 17 shows the USB interface current consumption with only the OTG block powered down. Table 17. USB PHY current consumption with VBUS Valid Comparators disabled1 Current 1 VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN 730 uA 730 uA VBUS Valid comparators can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1. This signal powers down only the VBUS Valid comparator, and does not control power to the Session Valid Comparator, ADP Probe and Sense comparators, or the ID detection circuitry. In Power-Down mode, everything is powered down, including the USB_VBUS valid comparators and their associated bandgap circuity in typical condition. Table 18 shows the USB interface current consumption in Power-Down mode. Table 18. USB PHY current consumption in Power-Down mode1 Current 1 VDD_USB_OTG1_3P3_IN VDD_USB_OTG2_3P3_IN 200 uA 200 uA The VBUS Valid Comparators and their associated bandgap circuits can be disabled through software by setting USBNC_OTG*_PHY_CFG2[OTGDISABLE0] to 1 and USBNC_OTG*_PHY_CFG2[DRVVBUS0] to 0, respectively. 4.1.8 PCIe phy 2.1 DC electrical characteristics Table 19. PCIe recommended operating conditions Parameter VDD Description Low Power Supply Voltage for PHY Core (VDD of 1.0 nominal or 1.1 overdrive) High Power Supply Voltage for PHY Core TA Commercial Temperature Range TJ Simulation Junction Temperature Range Min Max Unit 1V 0.95 1.05 V 1.1 V 1.045 1.155 1.8 V 1.71 1.89 0 70 °C -40 125 °C Note: VDD should have no more than 40 mVpp AC power supply noise superimposed on the high power supply voltage for the PHY core (1.8 V nominal DC value). At the same time, VDD should have no more than 20 mVpp AC power supply noise superimposed on the low power supply voltage for the PHY core (1.0 V nominal value or 1.1 V overdrive DC value). The power supply voltage variation for the PHY core should have less than +/-5% including the board-level power supply variation and on-chip power supply variation due to the finite impedances in the package. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 33 Electrical characteristics Table 20. PCIe DC electrical characteristics Parameter VDD PD Description Min Typ Max Unit 1.0 - 5% 1.1 - 5% 1.0 (or 1.1) 1.0 + 5% 1.1 + 5% V 1.8 - 5% 1.8 1.8 + 5% V Normal — 130 — mW Partial Mode — 108 — mW Slumber Mode — 7 — mW Full Powerdown — 0.2 — mW Power Supply Voltage (VDD of 1.0 V nominal or 1.1 V overdrive for thin gate oxide /1.8 V for thick gate oxide) Power Consumption Table 21. PCIe PHY high-speed characteristics High Speed I/O Characteristics Description Unit Interval TX Serial output rise time (20% to 80%) TX Serial output fall time (80% to 20%) TX Serial data output voltage (Differential, pk–pk) Symbol Speed Min. Typ. Max. Unit UI 1.5 Gbps — 666.67 — ps 2.5 Gbps — 400 — 3.0 Gbps — 333.33 — 5.0 Gbps — 200 — 6.0 Gbps — 166.67 — 1.5 Gbps 50 — 273 2.5 Gbps 50 — — 3.0 Gbps 50 — 136 5.0 Gbps 30 — — 6.0 Gbps 33 — 80 1.5 Gbps 50 — 273 2.5 Gbps 50 — — 3.0 Gbps 50 — 136 5.0 Gbps 30 — — 6.0 Gbps 33 — 80 1.5 Gbps 400 — 600 2.5 Gbps 400 — 1200 3.0 Gbps 400 — 700 5.0 Gbps 400 — 1200 6.0 Gbps 240 — 900 TTXRISE TTXFALL ΔVTX ps ps mVp–p i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 34 NXP Semiconductors Electrical characteristics Table 21. PCIe PHY high-speed characteristics(continued) High Speed I/O Characteristics Description Symbol Speed Min. Typ. Max. Unit PCIe Tx deterministic jitter < 1.5 MHz TRJ 2.5 Gbps/ 5.0 Gbps — — 3 ps ps, rms PCIe Tx deterministic jitter > 1.5 MHz TDJ 5.0 Gbps/ 2.5 Gbps — — 30 ps/ 60 ps ps, pk–pk RX Serial data input voltage (Differential pk–pk) ΔVRX 1.5 Gbps 325 — 600 mVp–p 2.5 Gbps 120 — 1200 3.0 Gbps 275 — 750 5.0 Gbps 120 — 1200 6.0 Gbps 240 — 1000 Table 22. PCIe PHY reference clock timing requirements Description Symbol Min. Typ. Max. Unit FTOL –100 — 100 ppm DC 40 — 60 % Rise and Fall Time TR,TF — — 1.5 ns Peak to peak Jitter Jitter — — 40 ps,pk–pk RMS Jitter — — 2.5 ps,rms Period Jitter — — 25 ps ZC,DC 40 — 60 Ω Differential input high voltage VIH 150 — Differential input low voltage VIL — — -150 mV Absolute maximum input voltage VMAX 33 — 1.15 V Absolute minimum input voltage VMIN 400 — -0.3 V Absolute crossing point voltage VCROSS 250 — 1550 mV Frequency Tolerance Duty Cycle External Clock source output impedence mV i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 35 Electrical characteristics Table 23. PCIe PHY reference clock Transmit requirements Description Frequency of TBC Symbol Interface Speed Min Typ Max Unit FTBC 20-bit 1.5 Gbps — 75 — MHz 3.0 Gbps — 150 — 6.0 Gbps — 300 — 1.5 Gbps — 37.5 — 3.0 Gbps — 75 — 6.0 Gbps — 150 — 8-bit 2.5 Gbps — 250 — 16-bit 5.0 Gbps — DCTBC — — 40 — 60 % TSETUP.TX 20-bit 1.5 Gbps 2.0 — — ns 6.0 Gbps 1.0 — — 1.5 Gbps 2.0 — — 1.0 — — 2.0 — — 6.0 Gbps 1.0 — — 1.5 Gbps 2.0 — — 1.0 — — 40-bit Duty cycle of TBC TXD[0:30] setup time to the rising edge of TBC — 3.0 Gbps 40-bit 3.0 Gbps 6.0 Gbps TXD[0:30] hold time to the rising edge of TBC THOLD.TX 8-bit 2.5 Gbps 16-bit 5.0 Gbps 20-bit 1.5 Gbps ns 3.0 Gbps 40-bit 3.0 Gbps 6.0 Gbps Latency from the rising edge of TBC to the leading edge of the corresponding first transmitted serial output bit TXP/TXN TLAT.TX 8-bit 2.5 Gbps 16-bit 5.0 Gbps — 1.5 Gbps — 70 — 2.5 Gbps — 100 — 3.0 Gbps — 95 — 5.0 Gbps — 200 — 6.0 Gbps — 120 — bits i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 36 NXP Semiconductors Electrical characteristics Table 24. PCIe PHY reference clock Receive requirements Description Frequency of RBC Symbol Interface Speed Min Typ Max Unit FRBC 20-bit 1.5 Gbps — 75 — MHz 3.0 Gbps — 150 — 6.0 Gbps — 300 — 1.5 Gbps — 37.5 — 3.0 Gbps — 75 — 6.0 Gbps — 150 — 40-bit Duty cycle of TBC DCRBC — — 40 — 60 % RXD[0:30] delay time from the falling edge of RBC TDLY,RX — — — — 1.33 ns Latency from the leading edge of the corresponding first received serial input bit, RXP/RXN, to the rising edge of RBC TLAT.RX 20-bit 1.5 Gbps — 100 — bits 2.5 Gbps — 230 — 3.0 Gbps — 100 — 5.0 Gbps — 260 — 6.0 Gbps — 100 — Table 25. PCIe PHY output clock characteristics Description Frequency of PC_CLK Symbol Interface FPC_CLK Speed Min Typ Max HIGH_SPEED=1 Unit MHz PCIe — — 250 — Duty Cycle of PC_CLK DCPC_CLK — — 40 — 60 % Frequency of TX_CLK FTX_CLK 20-bit 1.5 Gbps — 75 — MHz 3.0 Gbps — 150 — 6.0 Gbps — 300 — 1.5 Gbps — 37.5 — 3.0 Gbps — 75 — 6.0 Gbps — 150 — — 40 — 60 40-bit Duty cycle of TX_CLK 4.2 DCTX_CLK — % Power supplies requirements and restrictions The system design must comply with power-up sequence, power-down sequence, and steady state guidelines as described in this section to guarantee the reliable operation of the device. Any deviation from these sequences may result in the following situations: • Excessive current during power-up phase i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 37 Electrical characteristics • • 4.2.1 Prevention of the device from booting Irreversible damage to the processor (worst-case scenario) Power-up sequence The i.MX7 processor has the following power-up sequence requirements: • VDD_SNVS_IN to be turned on before any other power supply. If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other supply is switched on. • VDD_SOC to be turned on before NVCC_DRAM and NVCC_DRAM_CKE. • VDD_ARM, VDD_SOC, VDDA_1P8_IN, VDD_LPSR_IN and all I/O power (NVCC_*) should be turned on after VDD_SVNS_IN is active. But there is no sequence requirement among these power rails other than the sequence requirement between VDD_SOC and NVCC_DRAM/NVCC_DRAM_CKE. • There are no special timing requirements for VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN. The POR_B input (if used) must be immediately asserted at power-up and remain asserted until the last power rail reaches its working voltage. In the absence of an external reset feeding the POR_B input, the internal POR module takes control. The power-up sequence is shown in Figure 4 with the following timing parameters: T1 Time from SVNS power stable to other power rails start to ramp, minimal delay is 2ms, no max delay requirement. T2 Time from first power rails (except SNVS) ramp up to all the power rails get stable, minimal delay is 0ms, no max delay requirement. T3 Time from all power rails get stable to power-on reset, minimal delay is 0ms, no max delay requirement. T6 Time from VDD_SOC get stable to NVCC_DRAM/NVCC_DRAM_CKE start to ramp, minimal delay is 0ms, no max delay requirement. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 38 NXP Semiconductors Electrical characteristics Figure 4. i.MX 7Dual power-up sequence 4.2.2 Power-down sequence The i.MX7 processors have the following power-down sequence requirements: • VDD_SNVS _IN to be turned off last after any other power supply. • NVCC_DRAM/NVCC_DRAM_CKE to be turned off before VDD_SOC. • There are no special timing requirements forVDD_USB_OTG1_3P3_IN andVDD_USB_OTG2_3P3_IN. The power-down sequence is shown in Figure 5 with the following timing parameters: T4 Time from first power rails (except SNVS) to ramp down to all the power rails (except SNVS) get to ground, minimal delay is 0ms, no max delay requirement. T5 Time from all the power rails power down (except SNVS) to SVNS power down, minimal delay is 0ms, no max delay requirement. T7 Time from NVCC_DRAM/NVCC_DRAM_CKE power down to VDD_SOC power down, minimal delay is 0ms, no max delay requirement. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 39 Electrical characteristics Figure 5. i.MX 7Dual power-down sequence 4.2.3 Power supplies usage I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package information and contact assignments.” 4.3 Integrated LDO voltage regulator parameters Various internal supplies can be powered from internal LDO voltage regulators. All the supply pins named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use only and should not be used to power any external circuitry. See the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details on the power tree scheme. NOTE The *_CAP signals must not be powered externally. The *_CAP pins are for the bypass capacitor connection only. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 40 NXP Semiconductors Electrical characteristics 4.3.1 Internal regulators Table 26. LDO parameters Parameter Min Max Units PVCC_GPIO_AT3P3_1P8 1.6 1.98 V VDD_1P2 1.1 1.32 V LPSR_1P0 0.95 1.155 V VDDA_PHY_1P8 1.6 1.98 V USB_OTG1_1P0 0.95 1.155 V 4.3.1.1 LDO_1P2 The LDO_1P2 regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P2_CAP, is 1.2 V. It is intended for use with the USB HSIC PHY, which uses this voltage level for its output driver. For additional information, see the “Power Management Unit (PMU)” chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). 4.3.1.2 LDO_1P0D The LDO_1P0D regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P0D_CAP, is 1.0 V. It is intended for use with the internal physical interfaces, including MIPI and PCIe PHY. For additional information, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). 4.3.1.3 LDO_1P0A The LDO_1P0A regulator implements a programmable linear-regulator function from VDDA_1P8_IN (see Table 9 for minimum and maximum input requirements). The typical output of the LDO, VDD_1P0A_CAP, is 1.0 V. It is intended for use with the internal analog modules, including the XTAL, ADC, PLL, and Temperature Sensor. For additional information, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). 4.3.1.4 LDO_USB1_1PO/LDO_USB2_1P0 The LDO_USB1_1P0/LDO_USB2_1P0 regulators implement a fixed linear-regulator function from VDD_USB_OTG1_3P3_IN and VDD_USB_OTG2_3P3_IN power inputs respectively (see Table 9 for minimum and maximum input requirements). The typical output voltage is 1.0 V. It is intended for use with the internal USB physical interfaces (USB PHY1 and USB PHY2). For additional information, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 41 Electrical characteristics 4.3.1.5 LDO_SVNS_1P8 1.8 V LDO from coin cell to generate 1.8 V power for SNVS and 32 K RTC. The LDO_SNVS_1P8 regulator implements a fixed linear-regulator function from VDD_SNVS_IN (see Table 9 for minimum and maximum input requirements). The typical output is 1.7 V. It is intended for use with the internal SNVS circuitry. For additional information, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). 4.4 PLL electrical characteristics Table 27. PLL Electrical Parameters PLL type Parameter Value AUDIO_PLL Clock output range 650 MHz–1.3 GHz Reference clock 24 MHz Lock time <11250 reference cycles Clock output range 650 MHz–1.3 GHz Reference clock 24 MHz Lock time <383 reference cycles Clock output range 480 MHz Reference clock 24 MHz Lock time <383 reference cycles Clock output range 650 MHz–1.3 GHz, set to 1.0 GHz Reference clock 24 MHz Lock time <11250 reference cycles Clock output range 800 MHz–1.2 GHz Reference clock 24 MHz Lock time <2250 reference cycles Clock output range 800 MHz–1066 MHz Reference clock 24 MHz Lock time >2250 reference cycles VIDEO_PLL SYS_PLL ENET_PLL ARM_PLL DRAM_PLL 4.5 4.5.1 On-chip oscillators OSC24M Power for the oscillator is supplied from a clean source of VDDA_1P8. This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implements an oscillator. The oscillator is powered from VDDA_1P8. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 42 NXP Semiconductors Electrical characteristics The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used. 4.5.2 OSC32K This block implements an internal amplifier, trimable load capacitors and a resistor that when combined with a suitable quartz crystal implements a low power oscillator. In addition, if the clock monitor determines that the OSC32K is not present then the source of the 32 kHz clock will automatically switch to the internal relaxation oscillator of lesser frequency accuracy. CAUTION The internal RTC oscillator does not provide an accurate frequency and is affected by process, voltage and temperature variations. NXP strongly recommends using an external crystal as the RTC_XTALI reference. If the internal oscillator is used instead, careful consideration must be given to the timing implications on all of the SoC modules dependent on this clock. The OSC32k runs from VDD_SNVS_1p8_CAP, which is regulated from VDD_SNVS. The target battery is an ~3 V coin cell for VDD_SNVS and the regulated output is ~1.75V. Table 28. OSC32K Main Characteristics Min Typ Max Comments Fosc — 32.768 KHz — This frequency is nominal and determined by the crystal selected. 32.0 K would work as well. Current consumption — 350 nA — The typical value shown is only for the oscillator, driven by an external crystal. If the interrelaxation oscillator is used instead of an external crystal then approximately 250 nA should be added to this value. Bias resistor — 200 MΩ This is the integrated bias resistor that sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain and will impact the circuit's ability to start up and maintain oscillations. Target Crystal Properties 4.6 Cload — 10 pF — Usually, crystals can be purchased tuned for different Cload. This Cload value is typically 1/2 of the capacitances realized on the PCB on either side of the quartz. A higher Cload will decrease oscillation margin but increases current oscillating through the crystal. The Cload is programmable in 2 pF steps. ESR — 50 KΩ — Equivalent series resistance of the crystal. Choosing a crystal with a higher value will decrease oscillating margin. I/O DC parameters This section includes the DC parameters of the following I/O types: i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 43 Electrical characteristics • • • General Purpose I/O (GPIO) Double Data Rate I/O (DDR) for LPDDR3 and DDR3 modes Differential I/O (CCM_CLK1) 4.6.1 General purpose I/O (GPIO) DC parameters Table 29 shows DC parameters for GPIO pads. The parameters in Table 29 are guaranteed per the operating ranges in Table 9, unless otherwise noted. Table 29. GPIO DC Parameters Parameter Symbol Max Units High-level output voltage VOH OVDD V Low-level output voltage VOL IOL=1.8mA, 3.6mA, 7.2mA, 10.8mA 0.2 × OVDD V High-level input voltage VIH — 0.7 × OVDD OVDD + 0.3 V Low-level input voltage VIL — –0.3 0.3 × OVDD V Input hysteresis VHYS — 0.15 — V Pull-up resistor (5_kΩ PU) — VDD = 1.8 ± 0.15 V 5.94 5.98 KΩ Pull-up resistor (5_kΩ PU) — VDD = 3.3 ± 0.3 V 4.8 5.3 KΩ Pull-up resistor (47_kΩ PU) — VDD = 1.8 ± 0.15 V 46.1 50.6 KΩ Pull-up resistor (47_kΩ PU) — VDD = 3.3 ± 0.3 V 45.8 49.8 KΩ Pull-up resistor (100_kΩ PU) — VDD = 1.8 ± 0.15 V 97.5 105.9 KΩ Pull-up resistor (100_kΩ PU) — VDD = 3.3 ± 0.3 V 101 105 KΩ Pull-down resistor (100_kΩ PU) — VDD = 1.8 ± 0.15 V 101 108.6 KΩ Pull-down resistor (100_kΩ PD) — VDD = 3.3 ± 0.3 V 101 108 KΩ Input current (no PU/PD) IOZ — –5 5 μΑ Sink/source current in Push-Pull mode — Driving currents (@100MHz, VOL/H = 0.5×OVDD, SS, 125°C) OVDD = 2.7 V –32.9 32.9 mA 4.6.2 Test Conditions Min IOH= –1.8mA, –3.6mA, –7.2mA, –10.8mA 0.8 × OVDD 0 DDR I/O DC electrical characteristics The DDR I/O pads support DDR3/DDR3L, LPDDR2, and LPDDR3 operational modes. The DDR Memory Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs. The DDRC supports the following memory types: • DDR3 SDRAM compliant to JESD79-3E DDR3 JEDEC standard release July, 2010 • LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009 • LPDDR3 SDRAM compliant to JESD209-3B LPDDR3 JEDEC standard release August, 2013 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 44 NXP Semiconductors Electrical characteristics DDRMC operation with the standards stated above is contingent upon the board DDR design adherence to the DDR design and layout requirements stated in the hardware development guide for the i.MX 7 application processor. Table 30. DC input logic level Characteristics DC input logic high1 DC input logic low 1 1 Symbol Min Max Unit VIH(DC) VREF +100 — mV VIL(DC) — VREF –100 It is the relationship of the VDDQ of the driving device and the VREF of the receiving device that determines noise margins. However, in the case of VIH(DC) max (that is, input overdrive), it is the VDDQ of the receiving device that is referenced. Table 31. Output DC current drive Characteristics Output minimum source DC current1 Output minimum sink DC current1 DC output high voltage(IOH = –0.1mA)1,2 DC output low voltage(IOL = 1 0.1mA)1,2 Symbol Min Max Unit IOH(DC) –4 — mA IOL(DC) 4 — mA VOH 0.9 × VDDQ — V VOL — 0.1 × VDDQ V When DDS=[111] and without ZQ calibration. The values of VOH and VOL are valid only for 1.2 V range. 2 Table 32. Input DC current Characteristics Symbol Min Max Unit current1,2 IIH –25 25 μA Low level input current1,2 IIL –25 25 μA High level input 1 2 The values of VOH and VOL are valid only for 1.2 V range. Driver Hi-Z and input power-down (PD=High) 4.6.2.1 LPDDR3 mode I/O DC parameters Table 33. LPDDR3 I/O DC electrical parameters Symbol Test Conditions Min Max Unit High-level output voltage VOH Ioh= -0.1mA 0.9 × OVDD — V Low-level output voltage VOL Iol= 0.1mA — 0.1 × OVDD V Input Reference Voltage Vref — 0.49 × OVDD 0.51 × OVDD V Parameters i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 45 Electrical characteristics Table 33. LPDDR3 I/O DC electrical parameters(continued) Symbol Test Conditions Min Max Unit DC High-Level input voltage Vih_DC — VRef + 0.100 OVDD V DC Low-Level input voltage Vil_DC — OVSS VRef – 0.100 Parameters 1 V Differential Input Logic High Vih_diff — 0.26 See note Differential Input Logic Low Vil_diff — See note1 -0.26 — Mmpupd — –15 15 % Rres — — 10 ? Rkeep — 110 175 k? Iin VI = 0, VI = OVDD -2.5 2.5 μA Pull-up/Pull-down Impedance Mismatch 240 ?unit calibration resolution Keeper Circuit Resistance Input current (no pull-up/down) 1 — The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. 4.6.3 Differential I/O port (CCM_CLK1P/N) The clock I/O interface is designed to be compatible with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits (2001), for details. Table 34 shows the clock I/O DC parameters. Table 34. Differential clock I/O DC electrical characteristics Symbol Parameter Test conditions Rload=100 Ω between padp and padn Min Typ Max Unit 250 350 450 mV Vpadp–Vpadn Vod Output Differential Voltage Voh High-level output voltage Vol Low-level output voltage Vocm Output common mode voltage 0.9 Vid Input Differential Voltage 100 600 Vicm Input common mode voltage 50m 1.57 V Icc-ovdd Tri-state I/O supply current 0.46 uA 1.025 1.175 1.325 V ipp_ibe=ipp_obe=0 irefin disabled (0uA) 1 2 0.675 0.825 0.975 1 Notes 1.1 Core supply is used mV Vpadp–Vpadn Vicm(max)=ovdd(m in)–Vid(min)/2 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 46 NXP Semiconductors Electrical characteristics Table 34. Differential clock I/O DC electrical characteristics(continued) Symbol Parameter Test conditions Min Typ Max Unit 0.35 1 uA Icc-ovdd-lp Tri-state I/O supply current in low-power mode ipp_pwr_stable_b_1p8 =1 (means 1.8 V) vddi is OFF irefin disabled (0 uA) Icc-vddi Tri-state core supply current ipp_ibe=ipp_obe=0 irefin disabled (0 uA) 0.8 Icc Power supply current (ovdd) Rload=100 Ω between padp and padn 4.7 1 2 Notes mA This is not including current through external Rload=100 Ω VOH_max = Vos_max + Vod_max/2 = 1.1+0.225 = 1.325 V. VOH_min = Vos_min + Vod_min/2 = 0.9+0.125 = 1.025 V. VOL_max = Vos_max - Vod_min/2 = 1.1-0.125 = 0.975 V. VOL_min = Vos_min - Vod_max/2 = 0.9 - 0.225 = 0.675 V 4.7 I/O AC parameters This section includes the AC parameters of the following I/O types: • General Purpose I/O (GPIO) • Double Data Rate I/O (DDR) for LPDDR2, LPDDR3 and DDR3/DDR3L modes • Differential I/O (CCM_CLK1) The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 6 and Figure 7. From Output Under Test Test Point CL CL includes package, probe and fixture capacitance Figure 6. Load circuit for output OVDD 80% 80% Output (at pad) 20% 0V 20% tr tf Figure 7. Output transition time waveform 4.7.1 General purpose I/O AC parameters This section presents the I/O AC parameters for GPIO in different modes. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the IOMUXC control registers. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 47 Electrical characteristics Table 35. Maximum input cell delay time Max Delay PAD → Y (ns) Cell name VDD=1.65 V T=125°C Process=Slow VDD=2.3 V T=125°C Process=Slow VDD=3.0 V T=125°C Process=Slow PBIDIRPUD_E33_33_NT_DR 0.9 1.5 1.4 Table 36. Output cell delay time for fixed load Simulated Cell Delay A PAD (ns) Parameter VDD = 1.65 V, T = 125°C DS0 DS1 SR Driver Type VDD = 2.3 V, T = 125°C VDD = 3.0 V, T = 125°C CL= 5 pF CL= 10 pF CL= 40 pF CL= 5 pF CL= 10 pF CL= 40 pF CL= 5 pF CL= 10 pF CL= 40 pF 0 0 1 1× Slow Slew 4.9 6.0 12.5 4.8 6.1 11.9 5.4 6.7 14.6 0 0 0 1× Fast Slew 3.8 4.7 11.2 3.8 5.1 12.8 4.2 5.3 13.5 0 1 1 2× Slow Slew 4.1 4.8 8.2 4.2 4.9 8.8 4.5 5.3 9.1 0 1 0 2× Fast Slew 2.8 3.3 6.4 2.9 3.4 7.2 3.1 3.7 7.2 1 0 1 4× Slow Slew 3.6 4.1 6.0 3.7 4.1 6.4 3.9 4.4 6.6 1 0 0 4× Fast Slew 2.2 2.5 4.1 2.3 2.6 4.6 2.4 2.8 4.8 1 1 1 6× Slow Slew 3.6 4.0 5.5 3.6 4.0 5.9 3.8 4.3 6.2 1 1 0 6× Fast Slew 2.0 2.3 3.4 2.1 2.3 3.8 2.2 2.5 3.9 Table 37. Maximum frequency of operation for input Maximum frequency (MHz) VDD = 1.8 V, CL = 50 fF VDD=2.5 V, CL =5 0 fF VDD = 3.3 V, CL = 50 fF 550 400 430 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 48 NXP Semiconductors Electrical characteristics Table 38. Maximum frequency of operation for output1 Maximum frequency (MHz) Parameter VDD = 1.8 V 1 VDD = 2.5 V VDD = 3.3 V CL= 5 pF CL= 10 pF CL= 40 pF CL= 5 pF CL= 10 pF CL= 40 pF CL= 5 pF CL= 10 pF CL= 40 pF 1× Slow Slew 100 70 25 90 60 20 95 60 20 0 1× Fast Slew 110 75 25 100 65 20 100 65 20 1 1 2× Slow Slew 120 100 50 120 100 40 115 95 40 0 1 0 2× Fast Slew 185 145 50 180 130 40 170 130 40 1 0 1 4× Slow Slew 140 125 85 135 120 70 130 115 70 1 0 0 4× Fast Slew 235 200 100 225 195 80 215 185 80 1 1 1 6× Slow Slew 140 125 90 135 120 85 130 115 80 1 1 0 6× Fast Slew 250 225 140 240 215 120 235 205 120 DS0 DS1 SR 0 0 1 0 0 0 Driver Type Maximum frequency value is obtained with lumped capacitor load. If you consider transmission line or SSN noise effect, it could be worse than suggested value. 4.7.2 Clock I/O AC parameters—CCM_CLK1_N/CCM_CLK1_P The differential output transition time waveform is shown in Figure 8. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 49 Electrical characteristics Figure 8. Differential LVDS driver transition time waveform Table 39 shows the AC parameters for clock I/O. Table 39. I/O AC Parameters of LVDS Pad Symbol Parameter Test conditions Tphld Output Differential propagation delay high to low Tplhd Output Differential propagation delay low to high Rload=100 Ω between padp and padn, Cload = 2pF Ttlh Min Typ Max Unit Notes — — 0.61 — — 0.61 Output Transition time low to high — — 0.17 Tthl Output Transition time high to low — — 0.17 Tphlr Input Differential propagation delay high to low — — 0.33 Tplhr Input Differential propagation delay low to high — — 0.33 Ttx Transmitter startup time (ipp-obe low to high) — — — 40 F Operating frequency — — Rload=100 Ω between padp and padn, Cload on ipp_ind=0.1 pF ns 1 2 ns 3 ns 4 500 1000 MHz — 1 At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%. Output differential signal measured. WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 20-80%. Output differential signal measured 3 At WCS, 125C, 1.62 V ovdd, 0.9 V vddi. Measurement levels are 50-50%. 4 TX startup time is defined as the time taken by transmitter for settling after its ipp_obe has been asserted. It is to stabilize the current reference. Functionality is guaranteed only after the startup time 2 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 50 NXP Semiconductors Electrical characteristics 4.8 Output buffer impedance parameters This section defines the I/O impedance parameters of the i.MX 7Dual family of processors for the following I/O types: • Double Data Rate I/O (DDR) for LPDDR2, LPDDR3, and DDR3/DDR3L modes • Differential I/O (CCM_CLK1) • USB battery charger detection open-drain output (USB_OTG1_CHD_B) NOTE DDR I/O output driver impedance is measured with “long” transmission line of impedance Ztl attached to I/O pad and incident wave launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that defines specific voltage of incident wave relative to OVDD. Output driver impedance is calculated from this voltage divider (see Figure 9). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 51 Electrical characteristics OVDD PMOS (Rpu) Ztl Ω, L = 20 inches ipp_do pad predriver Cload = 1p NMOS (Rpd) OVSS U,(V) Vin (do) VDD t,(ns) 0 U,(V) Vout (pad) OVDD Vref2 Vref1 Vref t,(ns) 0 Rpu = Vovdd - Vref1 Vref1 Rpd = Vref2 × Ztl × Ztl Vovdd - Vref2 Figure 9. Impedance matching load for measurement 4.8.1 DDR I/O output buffer impedance The LPDDR2 interface is designed to be fully compatible with JESD209-2B LPDDR2 JEDEC standard release June, 2009. The LPDDR3 interface mode is designed to be compatible with JESD209-3B JEDEC standard released August, 2013. The DDR3 interface is designed to be fully compatible with JESD79-3F DDR3 JEDEC standard release July, 2012. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 52 NXP Semiconductors Electrical characteristics Table 40 shows DDR I/O output buffer impedance of i.MX 7Dual family of processors. Table 40. DDR I/O output buffer impedance Typical Parameter Output Driver Impedance Test Conditions DSE (Drive Strength) Symbol Rdrv 000 001 010 011 100 101 110 111 NVCC_DRAM=1.5 V (DDR3) DDR_SEL=11 NVCC_DRAM=1.2 V (LPDDR2) DDR_SEL=10 Hi-Z 240 120 80 60 48 40 34 Hi-Z 240 120 80 60 48 40 34 Unit Ω Note: 1. Output driver impedance is controlled across PVTs using ZQ calibration procedure. 2. Calibration is done against 240 Ω external reference resistor. 3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs. 4.8.2 Differential I/O output buffer impedance The Differential CCM interface is designed to be compatible with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A, Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits (2001) for details. 4.8.3 USB battery charger detection driver impedance The USB_OTG1_CHD_B open-drain output pin can be used to signal the results of USB Battery Charger detection routines for the USB_OTG1 PHY instance to power management and monitoring devices. Use of this pin requires an external pullup resistor, for more information see Table 3, and Table 7. Table 41 shows the USB_OTG1_CHD_B pulldown driver impedance for the USB_OTG1_CHD_B pin. Table 41. USB_OTG1_CHD_B pulldown driver impedance (VDD_USB_OTG1_3P3_IN 3.3 V) Parameter Symbol Typical Unit Open-drain output driver pulldown impedance Rdrv_pd 1000 Ω 4.9 System modules timing This section contains the timing and electrical parameters for the modules in each i.MX 7Dual processor. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 53 Electrical characteristics 4.9.1 Reset timings parameters Figure 10 shows the reset timing and Table 42 lists the timing parameters. POR_B (Input) CC1 Figure 10. Reset timing diagram Table 42. Reset timing parameters ID CC1 4.9.2 Parameter Min Max Unit 1 — RTC_XTALI cycle Duration of POR_B to be qualified as valid. Note: POR_B rise/fall times must be 5 ns or less. WDOG Reset timing parameters Figure 11 shows the WDOG reset timing and Table 43 lists the timing parameters. WDOGx_B (Output) CC3 Figure 11. WDOGx_B timing diagram Table 43. WDOGx_B timing parameters ID CC3 Parameter Duration of WDOG1_B Assertion Min Max Unit 1 — RTC_XTALI cycle NOTE RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or approximately 30 μs. NOTE WDOGx_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUXC chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for detailed information. 4.9.3 External interface module (EIM) The following subsections provide information on the EIM. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 54 NXP Semiconductors Electrical characteristics 4.9.3.1 EIM interface pads allocation EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 44 provides EIM interface pads allocation in different modes. Table 44. EIM internal module multiplexing1 Non Multiplexed Address/Data Mode Setup EIM_ADDR [15:00] EIM_ADDR [25:16] EIM_DATA [07:00], EIM_EB0_B EIM_DATA [15:08], EIM_EB1_B 1 8 Bit Multiplexed Address/ Data Mode 16 Bit 16 Bit MUM = 0, DSZ = 100 MUM = 0, DSZ = 101 MUM = 0, DSZ = 001 MUM = 1, DSZ = 001 EIM_AD [15:00] EIM_ADDR [25:16] EIM_DATA [07:00] EIM_AD [15:00] EIM_ADDR [25:16] — EIM_AD [15:00] EIM_ADDR [25:16] EIM_DATA [07:00] EIM_AD [15:00] EIM_ADDR [25:16] EIM_AD [07:00] — EIM_DATA [15:08] EIM_DATA [15:08] EIM_AD [15:08] For more information on configuration ports mentioned in this table, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 55 Electrical characteristics 4.9.3.2 General EIM Timing—Synchronous mode Figure 12, Figure 13, and Table 45 specify the timings related to the EIM module. All EIM output control signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge according to corresponding assertion/negation control fields. , WE2 ... EIM_BCLK WE4 WE3 WE1 WE5 EIM_ADDRxx WE6 WE7 WE8 WE9 WE10 WE11 WE12 WE13 WE14 WE15 WE16 WE17 EIM_CSx_B EIM_WE_B EIM_OE_B EIM_EBx_B EIM_LBA_B Output Data Figure 12. EIM outputs timing diagram EIM_BCLK WE18 Input Data WE19 WE20 EIM_WAIT_B WE21 Figure 13. EIM inputs timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 56 NXP Semiconductors Electrical characteristics 4.9.3.3 Examples of EIM synchronous accesses Table 45. EIM bus timing parameters 1 BCD = 0 ID BCD = 1 BCD = 2 BCD = 3 Parameter Min Max Min Max Min Max Min Max t — 2xt — 3xt — 4xt — WE2 EIM_BCLK Low Level Width 0.4 x t — 0.8 x t — 1.2 x t — 1.6 x t — WE3 EIM_BCLK High Level Width 0.4 x t — 0.8 x t — 1.2 x t — 1.6 x t — -t + 1.75 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 WE1 EIM_BCLK Cycle time2 WE4 Clock rise to address valid3 -0.5 x t 1.25 WE5 Clock rise to address invalid -0.5 x t + 1.75 -t - 1.25 0.5 x t - 1.25 0.5 x t + 1.75 WE6 Clock rise to EIM_CSx_B valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE7 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_CSx_B invalid WE8 Clock rise to EIM_WE_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE9 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_WE_B Invalid WE10 Clock rise to EIM_OE_B Valid WE11 Clock rise to EIM_OE_B Invalid WE12 Clock rise to EIM_EBx_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 0.5 x t - 1.25 0.5 x t + 1.75 -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE13 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_EBx_B Invalid WE14 Clock rise to EIM_LBA_B Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE15 Clock rise to 0.5 x t - 1.25 0.5 x t + 1.75 EIM_LBA_B Invalid WE16 Clock rise to Output Data Valid -0.5 x t 1.25 t - 1.25 t + 1.75 -0.5 x t + 1.75 -t - 1.25 - t + 1.75 WE17 Clock rise to Output 0.5 x t - 1.25 0.5 x t + 1.75 Data Invalid t - 1.25 t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 -1.5 x t 1.25 -1.5 x t +1.75 -2 x t 1.25 -2 x t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75 1.25 WE18 Input Data setup time to Clock rise 2 — 4 — — — — — WE19 Input Data hold time from Clock rise 2 — 2 — — — — — WE20 EIM_WAIT_B setup time to Clock rise 2 — 4 — — — — — WE21 EIM_WAIT_B hold time from Clock rise 2 — 2 — — — — — i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 57 Electrical characteristics 1 t is the maximum EIM logic (axi_clk) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed latency configuration, whereas the maximum allowed EIM_BCLK frequency is: —Fixed latency for both read and write is 132 MHz. —Variable latency for read only is 132 MHz. —Variable latency for write only is 52 MHz. In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz. Write BCD = 1 and 104 MHz axi_clk, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other buses are impacted which are clocked from this source. See the CCM chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for a detailed clock tree description. 2 EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is defined as 50% as signal value. 3 For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value. Figure 14 to Figure 17 provide few examples of basic EIM accesses to external memory devices with the timing parameters mentioned previously for specific control parameters settings. EIM_BCLK EIM_ADDRxx EIM_CSx_B WE4 WE5 Address v1 Last Valid Address WE6 WE7 EIM_WE_B EIM_LBA_B WE14 WE15 WE10 WE11 WE12 WE13 EIM_OE_B EIM_EBx_B WE18 EIM_DATAxx D(v1) WE19 Figure 14. Synchronous memory read access, WSC=1 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 58 NXP Semiconductors Electrical characteristics EIM_BCLK WE5 WE4 EIM_ADDRxx Last Valid Address EIM_CSx_B EIM_WE_B Address V1 WE6 WE7 WE8 WE9 WE14 EIM_LBA_B WE15 EIM_OE_B WE13 WE12 EIM_EBx_B WE16 WE17 EIM_DATAxx D(V1) Figure 15. Synchronous memory, write access, WSC=1, WBEA=0 and WADVN=0 EIM_BCLK EIM_ADDRxx/ EIM_ADxx WE4 Last Valid Address WE5 WE17 WE16 Write Data Address V1 WE6 WE7 WE8 WE9 EIM_CSx_B EIM_WE_B WE14 WE15 EIM_LBA_B EIM_OE_B WE10 WE11 EIM_EBx_B Figure 16. Muxed Address/Data (A/D) mode, synchronous write access, WSC=6, ADVA=0, ADVN=1, and ADH=1 NOTE In 32-bit Muxed Address/Data (A/D) mode the 16 MSBs are driven on the data bus. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 59 Electrical characteristics EIM_BCLK EIM_ADDRxx/ EIM_ADxx WE4 WE5 Last Valid Address Address V1 WE6 WE19 Data WE18 EIM_CSx_B WE7 EIM_WE_B WE15 WE14 EIM_LBA_B WE10 WE11 EIM_OE_B WE12 WE13 EIM_EBx_B Figure 17. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0 4.9.3.4 General EIM timing—Asynchronous mode Figure 18 through Figure 22, and Table 46 help you determine timing parameters relative to the chip select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing parameters mentioned above. Asynchronous read & write access length in cycles may vary from what is shown in Figure 18 through Figure 21 as RWSC, OEN and CSN is configured differently. See the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for the EIM programming model. end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ WE31 EIM_ADxx Last Valid Address WE32 Next Address Address V1 EIM_WE_B EIM_LBA_B WE39 WE40 EIM_OE_B WE35 WE36 WE37 WE38 EIM_EBx_B EIM_DATAxx[7:0] WE44 MAXCO D(V1) WE43 MAXDI Figure 18. Asynchronous memory read access (RWSC = 5) i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 60 NXP Semiconductors Electrical characteristics end of access start of access INT_CLK MAXCSO EIM_CSx_B EIM_ADDRxx/ EIM_ADxx MAXDI WE31 D(V1) Addr. V1 WE32A WE44 EIM_WE_B WE40A WE39 EIM_LBA_B WE35A WE36 EIM_OE_B WE37 WE38 EIM_EBx_B MAXCO Figure 19. Asynchronous A/D muxed read access (RWSC = 5) EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address WE33 EIM_WE_B WE39 EIM_LBA_B WE32 Next Address Address V1 WE34 WE40 EIM_OE_B WE45 WE46 EIM_EBx_B WE42 EIM_DATAxx WE41 D(V1) Figure 20. Asynchronous memory write access i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 61 Electrical characteristics EIM_CSx_B EIM_ADDRxx/ WE41 WE31 D(V1) Addr. V1 EIM_DATAxx WE32A WE33 WE34 WE42 EIM_WE_B WE40A WE39 EIM_LBA_B EIM_OE_B WE45 WE46 EIM_EBx_B WE42 Figure 21. Asynchronous A/D muxed write access EIM_CSx_B EIM_ADDRxx WE31 Last Valid Address WE32 Next Address Address V1 EIM_WE_B WE39 WE40 WE35 WE36 WE37 WE38 EIM_LBA_B EIM_OE_B EIM_EBx_B WE44 EIM_DATAxx[7:0] D(V1) WE43 WE48 EIM_DTACK_B WE47 Figure 22. DTACK mode read access (DAP=0) i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 62 NXP Semiconductors Electrical characteristics EIM_CSx_B WE31 EIM_ADDRxx Last Valid Address EIM_WE_B EIM_LBA_B WE32 Next Address Address V1 WE33 WE34 WE39 WE40 WE45 WE46 EIM_OE_B EIM_EBx_B WE42 EIM_DATAxx D(V1) WE48 WE41 EIM_DTACK_B WE47 Figure 23. DTACK Mode write access (DAP=0) Table 46. EIM asynchronous timing parameters table relative chip to select Ref No. Parameter Determination by Synchronous measured parameters1 Min Max Unit WE31 EIM_CSx_B valid to Address Valid WE4 – WE6 – CSA2 — 3 – CSA ns WE32 Address Invalid to EIM_CSx_B invalid WE7 – WE5 – CSN3 — 3 – CSN ns t4 + WE4 – WE7 + (ADVN5 + ADVA6 + 1 – CSA) –3 + (ADVN + ADVA + 1 – CSA) — ns WE32A(m EIM_CSx_B valid to Address uxed A/D Invalid WE33 EIM_CSx_B Valid to EIM_WE_B Valid WE8 – WE6 + (WEA – WCSA) — 3 + (WEA – WCSA) ns WE34 EIM_WE_B Invalid to EIM_CSx_B Invalid WE7 – WE9 + (WEN – WCSN) — 3 + (WEN – WCSN) ns WE35 EIM_CSx_B Valid to EIM_OE_B Valid WE10 – WE6 + (OEA – RCSA) — 3 + (OEA – RCSA) ns WE35A (muxed A/D) EIM_CSx_B Valid to EIM_OE_B Valid WE10 – WE6 + (OEA + –3 + (OEA + 3 + (OEA + RADVN + RADVA + ADH + 1 – RADVN+RADVA+ RADVN+RADVA+AD RCSA) ADH+1–RCSA) H+1–RCSA) ns WE36 EIM_OE_B Invalid to EIM_CSx_B Invalid WE7 – WE11 + (OEN – RCSN) — 3 – (OEN – RCSN) ns WE37 EIM_CSx_B Valid to EIM_EBx_B Valid (Read access) WE12 – WE6 + (RBEA – RCSA) — 3 + (RBEA – RCSA) ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 63 Electrical characteristics Table 46. EIM asynchronous timing parameters table relative chip to select(continued) Ref No. Parameter WE38 EIM_EBx_B Invalid to EIM_CSx_B Invalid (Read access) WE39 EIM_CSx_B Valid to EIM_LBA_B Valid WE40 EIM_LBA_B Invalid to EIM_CSx_B Invalid (ADVL is asserted) WE40A (muxed A/D) EIM_CSx_B Valid to EIM_LBA_B Invalid Determination by Synchronous measured parameters1 Min Max Unit WE7 – WE13 + (RBEN – RCSN) — 3 – (RBEN– RCSN) ns WE14 – WE6 + (ADVA – CSA) — 3 + (ADVA – CSA) ns WE7 – WE15 – CSN — 3 – CSN ns WE14 – WE6 + (ADVN + ADVA + 1 – CSA) –3 + (ADVN + ADVA + 1 – CSA) 3 + (ADVN + ADVA + 1 – CSA) ns WE41 EIM_CSx_B Valid to Output Data Valid WE16 – WE6 – WCSA — 3 – WCSA ns WE41A (muxed A/D) EIM_CSx_B Valid to Output Data Valid WE16 – WE6 + (WADVN + WADVA + ADH + 1 – WCSA) — 3 + (WADVN + WADVA + ADH + 1 – WCSA) ns WE17 – WE7 – CSN — 3 – CSN ns 10 — — ns 10 — — ns WE42 MAXCO Output Data Invalid to EIM_CSx_B Invalid Output maximum delay from internal driving EIM_ADDRxx/control FFs to chip outputs MAXCSO Output maximum delay from CSx internal driving FFs to CSx out MAXDI EIM_DATAxx maximum delay from chip input data to its internal FF 5 — — ns WE43 Input Data Valid to EIM_CSx_B Invalid MAXCO – MAXCSO + MAXDI MAXCO – MAXCSO + MAXDI — ns WE44 EIM_CSx_B Invalid to Input Data invalid 0 0 — ns WE45 EIM_CSx_B Valid to EIM_EBx_B Valid (Write access) WE12 – WE6 + (WBEA – WCSA) — 3 + (WBEA – WCSA) ns WE46 EIM_EBx_B Invalid to EIM_CSx_B Invalid (Write access) WE7 – WE13 + (WBEN – WCSN) — –3 + (WBEN – WCSN) ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 64 NXP Semiconductors Electrical characteristics Table 46. EIM asynchronous timing parameters table relative chip to select(continued) Ref No. MAXDTI 1 2 3 4 5 6 Parameter MAXIMUM delay from EIM_DTACK_B to its internal FF + 2 cycles for synchronization WE47 EIM_DTACK_B Active to EIM_CSx_B Invalid WE48 EIM_CSx_B Invalid to EIM_DTACK_B Invalid Determination by Synchronous measured parameters1 Min Max Unit 10 — — ns MAXCO – MAXCSO + MAXDTI MAXCO – MAXCSO + MAXDTI — ns 0 0 — ns For more information on configuration parameters mentioned in this table, see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). In this table, CSA means WCSA when write operation or RCSA when read operation. In this table, CSN means WCSN when write operation or RCSN when read operation. t is axi_clk cycle time. In this table, ADVN means WADVN when write operation or RADVN when read operation. In this table, ADVA means WADVA when write operation or RADVA when read operation. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 65 Electrical characteristics 4.9.4 DDR SDRAM-specific parameters (DDR3, DDR3L, LPDDR3, and LPDDR2) 4.9.4.1 DDR3/DDR3L parameters Figure 24 shows the DDR3 basic timing diagram with the timing parameters provided in Table 47. DDR1 DRAM_SDCLKx_N DRAM_SDCLKx_P DDR2 DDR4 DRAM_CSx_B DDR5 DRAM_RAS_B DDR5 DDR4 DRAM_CAS_B DDR4 DDR5 DDR5 DRAM_SDWE_B DRAM_ODTx / DRAM_SDCKEx DDR4 DDR6 DDR7 DRAM_ADDRxx ROW/BA COL/BA Figure 24. DDR3 Command and Address Timing Diagram Table 47. DDR3 timing parameters CK = 533 MHz ID Parameter Symbol Unit Min Max DDR1 DRAM_SDCLKx_P clock high-level width tCH 0.47 0.53 tCK DDR2 DRAM_SDCLKx_P clock low-level width tCL 0.47 0.53 tCK DDR4 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B, DRAM_SDODTx setup time tIS 425 — ps DDR5 DRAM_CSx_B, DRAM_RAS_B, DRAM_CAS_B, DRAM_SDCKE, DRAM_SDWE_B, DRAM_SDODTx hold time tIH 375 — ps DDR6 Address output setup time tIS 425 — ps DDR7 Address output hold time tIH 375 — ps i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 66 NXP Semiconductors Electrical characteristics 1 2 All measurements are in reference to Vref level. Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF. Figure 25 shows the DDR3 write timing diagram. The timing parameters for this diagram appear in Table 48. DRAM_SDCLKx_P DRAM_SDCLKx_N DDR21 DDR22 DRAM_SDQSx_P (output) DDR18 DDR17 DDR23 DDR17 DDR18 DRAM_DATAxx (output) Data Data Data Data Data Data Data Data DRAM_DQMx (output) DM DM DM DM DM DM DM DM DDR17 DDR17 DDR18 DDR18 Figure 25. DDR3 write cycle Table 48. DDR3 write cycle CK = 533 MHz ID Parameter Symbol Unit Min Max DDR17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 225 — ps DDR18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 250 — ps DDR21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK DDR22 DRAM_SDQSx_P high level width tDQSH 0.45 0.55 tCK DDR23 DRAM_SDQSx_P low level width tDQSL 0.45 0.55 tCK To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were taken using balanced load and 25 Ω resistor from outputs to DDR_VREF. 1 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 67 Electrical characteristics Figure 26 shows the DDR3 read timing diagram. The timing parameters for this diagram appear in Table 49. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P (input) DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA DDR26 Figure 26. DDR3 read cycle Table 49. DDR3 read cycle CK = 533 MHz ID DDR26 Parameter Minimum required DRAM_DATAxx valid window width Symbol — Unit Min Max 510 — ps 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF. 4.9.4.2 LPDDR3 parameters Figure 27 shows the LPDDR3 basic timing diagram. The timing parameters for this diagram appear in Table 50. Figure 27. LPDDR3 command and address timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 68 NXP Semiconductors Electrical characteristics Table 50. LPDDR3 timing parameters1,2 CK = 533 MHz ID 1 2 Parameter Symbol Unit Min Max LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK LP2 SDRAM clock low-level width tCL 0.45 0.55 tCK LP3 DRAM_CSx_B tIS 390 — ps LP4 DRAM_CSx_E tIH 390 — ps LP3 DRAM_CAS_B setup time tIS 275 — ps LP4 DRAM_CAS_B hold time tIH 275 — ps All measurements are in reference to Vref level. Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF. Figure 28 shows the LPDDR3 write timing diagram. The timing parameters for this diagram appear in Table 51. Figure 28. LPDDR3 write cycle i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 69 Electrical characteristics Table 51. LPDDR3 write cycle1,2,3 CK = 533 MHz ID Parameter Symbol Unit Min Max LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 275 — ps LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 275 — ps LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK LP22 DRAM_SDQSx_P high level width tDQSH 0.4 — tCK LP23 DRAM_SDQSx_P low level width tDQSL 0.4 — tCK 1 To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in the middle of DRAM_DATAxx window. 2 All measurements are in reference to V level. ref 3 Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF. Figure 29 shows the LPDDR3 read timing diagram. The timing parameters for this diagram appear in Table 52. Figure 29. LPDDR3 read cycle Table 52. LPDDR3 read cycle1,2,3 CK = 533 MHz ID LP26 Parameter Minimum required DRAM_DATAxx valid window width for LPDDR3 Symbol — Unit Min Max 460 — ps 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATA_xx window. 2 All measurements are in reference to V level. ref 3 Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 70 NXP Semiconductors Electrical characteristics 4.9.4.3 LPDDR2 parameters Figure 30 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in Table 53. DRAM_SDCLKx_P LP1 LP4 DRAM_CSx_B LP2 LP3 DRAM_SDCKEx LP3 LP3 LP4 DRAM_CAS_B LP3 LP4 Figure 30. LPDDR2 command and address timing diagram Table 53. LPDDR2 timing parameters1,2 CK = 533 MHz ID 1 2 Parameter Symbol Unit Min Max LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK LP2 SDRAM clock low-level width tCL 0.45 0.55 tCK LP3 DRAM_CSx_B, DRAM_SDCKEx setup time tIS 370 — ps LP4 DRAM_CSx_B, DRAM_SDCKEx hold time tIH 370 — ps LP3 DRAM_CAS_B setup time tIS 770 — ps LP4 DRAM_CAS_B hold time tIH 770 — ps All measurements are in reference to Vref level. Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 71 Electrical characteristics Figure 31 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in Table 54. DRAM_SDCLKx_P DRAM_SDCLKx_N LP21 LP23 DRAM_SDCLKx_P (output) LP22 LP18 LP17 LP17 LP18 DRAM_DATAxx (output) Data Data Data Data Data Data Data Data DRAM_DQMx (output) DM DM DM DM DM DM DM DM LP17 LP17 LP18 LP18 Figure 31. LPDDR2 write cycle Table 54. LPDDR2 write cycle CK = 533 MHz ID Parameter Symbol Unit Min Max LP17 DRAM_DATAxx and DRAM_DQMx setup time to DRAM_SDQSx_P (differential strobe) tDS 360 — ps LP18 DRAM_DATAxx and DRAM_DQMx hold time to DRAM_SDQSx_P (differential strobe) tDH 360 — ps LP21 DRAM_SDQSx_P latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK LP22 DRAM_SDQSx_P high level width tDQSH 0.4 — tCK LP23 DRAM_SDQSx_P low level width tDQSL 0.4 — tCK 1 To receive the reported setup and hold values, write calibration should be performed in order to locate the DRAM_SDQS in the middle of DRAM_DATAxx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 72 NXP Semiconductors Electrical characteristics Figure 32 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in Table 55. DRAM_SDCLKx_P DRAM_SDCLKx_N DRAM_SDQSx_P (input) LP26 DRAM_DATAxx (input) DATA DATA DATA DATA DATA DATA DATA DATA Figure 32. LPDDR2 read cycle Table 55. LPDDR2 read cycle CK = 533 MHz ID LP26 Parameter Minimum required DRAM_DATAxx valid window width for LPDDR2 Symbol — Unit Min Max 230 — ps 1 To receive the reported setup and hold values, read calibration should be performed in order to locate the DRAM_SDQSx_P in the middle of DRAM_DATA_xx window. 2 All measurements are in reference to Vref level. 3 Measurements were done using balanced load and 25 Ω resistor from outputs to DDR_VREF. 4.10 General-purpose media interface (GPMI) timing The i.MX 7Dual GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode separately, as described in the following subsections. 4.10.1 Asynchronous mode AC timing (ONFI 1.0 compatible) Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 33 through Figure 36 depicts the relative timing between GPMI signals at the module level for different operations under asynchronous mode. Table 56 describes the timing parameters (NF1–NF17) that are shown in the figures. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 73 Electrical characteristics .!.$?#,% E&ϯ .!.$?#%?" E&Ϯ E&ϭ .!.$?7%?" E&ϱ E&ϰ E&ϲ .!.$?!,% E&ϳ E&ϴ E&ϵ ŽŵŵĂŶĚ .!.$?$!4!XX Figure 33. Command Latch cycle timing diagram E&ϭ .!.$?#,% E&ϯ .!.$?#%?" E&ϭϬ .!.$?7%?" E&ϱ .!.$?!,% E&ϭϭ E&ϳ E&ϲ E&ϴ EEͺddždž E&ϵ ĚĚƌĞƐƐ Figure 34. Address Latch cycle timing diagram E&ϭ .!.$?#,% .!.$?#%?" E&ϯ E&ϭϬ E&ϱ .!.$?7%?" E&ϲ .!.$?!,% E&ϳ E&ϵ E&ϴ .!.$?$!4!XX E&ϭϭ ĂƚĂƚŽE& Figure 35. Write Data Latch cycle timing diagram .!.$?#,% .!.$?#%?" E&ϭϰ .!.$?2%?" .!.$?2%!$9?" E&ϭϯ E&ϭϮ .!.$?$!4!XX E&ϭϱ E&ϭϲ E&ϭϳ ĂƚĂĨƌŽŵE& Figure 36. Read Data Latch cycle timing diagram (Non-EDO Mode) i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 74 NXP Semiconductors Electrical characteristics .!.$?#,% .!.$?#%?" E&ϭϰ E&ϭϯ .!.$?2%?" .!.$?2%!$9?" E&ϭϱ E&ϭϮ E&ϭϳ E&ϭϲ EEͺddždž ĂƚĂĨƌŽŵE& Figure 37. Read Data Latch cycle timing diagram (EDO mode) Table 56. Asynchronous mode timing parameters1 ID Parameter Timing T = GPMI Clock Cycle Symbol Min. 1 2 3 4 5 6 Unit Max. NF1 NAND_CLE setup time tCLS (AS + DS) × T - 0.12 [see notes2,3] ns NF2 NAND_CLE hold time tCLH DH × T - 0.72 [see note2] ns NF3 NAND_CE0_B setup time tCS (AS + DS + 1) × T [see notes3,2] ns NF4 NAND_CE0_B hold time tCH (DH+1) × T - 1 [see note2] ns NF5 NAND_WE_B pulse width tWP DS × T [see note2] ns NF6 NAND_ALE setup time tALS (AS + DS) × T - 0.49 [see notes3,2] ns NF7 NAND_ALE hold time tALH (DH × T - 0.42 [see note2] ns NF8 Data setup time tDS DS × T - 0.26 [see note2] ns NF9 Data hold time tDH DH × T - 1.37 [see note2] ns NF10 Write cycle time tWC (DS + DH) × T [see note2] ns NF11 NAND_WE_B hold time tWH DH × T [see note2] ns NF12 Ready to NAND_RE_B low tRR4 NF13 NAND_RE_B pulse width tRP DS × T [see note2] ns NF14 READ cycle time tRC (DS + DH) × T [see note2] ns NF15 NAND_RE_B high hold time tREH DH × T [see note2] ns NF16 Data setup on read tDSR — (DS × T -0.67)/18.38 [see notes5,6] ns NF17 Data hold on read tDHR 0.82/11.83 [see notes5,6] — ns (AS + 2) × T [see 3,2] — ns GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = GPMI clock period -0.075ns (half of maximum p-p jitter). NF12 is guaranteed by the design. Non-EDO mode. EDO mode, GPMI clock ≈ 100 MHz (AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 75 Electrical characteristics In EDO mode (Figure 36), NF16/NF17 are different from the definition in non-EDO mode (Figure 35). They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 7Dual Application Processor Reference Manual [IMX7DRM]). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 4.10.2 Source Synchronous mode AC timing (ONFI 2.x compatible) Figure 38 to Figure 40 show the write and read timing of Source Synchronous mode. .!.$?#%?" 1) 1) 1) 1$1'B&/( 1) 1) 1) 1$1'B$/( 1) 1) 1$1'B:(5(B% 1) 1$1'B&/. 1$1'B'46 1$1'B'46 2XWSXWHQDEOH 1) 1) 1) 1) 1$1'B'$7$>@ &0' $'' 1$1'B'$7$>@ 2XWSXWHQDEOH Figure 38. Source Synchronous mode command and address timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 76 NXP Semiconductors Electrical characteristics .!.$?#%?" 1) 1) 1) .!.$?#,% 1) 1) 1) 1) 1) .!.$?!,% 1) 1) 1$1'B:(5(B% 1) .!.$?#,+ 1) 1) .!.$?$13 .!.$?$13 2XWSXWHQDEOH 1) 1) .!.$?$1;= 1) 1) .!.$?$1;= 2XWSXWHQDEOH Figure 39. Source Synchronous mode data write timing diagram .!.$?#%?" 1) 1) 1) 1) .!.$?#,% 1$1'B$/( .!.$?7%2% 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) .!.$?#,+ .!.$?$13 .!.$?$13 /UTPUTENABLE .!.$?$!4!;= .!.$?$!4!;= /UTPUTENABLE Figure 40. Source Synchronous mode data read timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 77 Electrical characteristics .!.$?$13 E&ϯϬ .!.$?$!4!;= Ϭ E&ϯϬ ϭ E&ϯϭ Ϯ ϯ E&ϯϭ Figure 41. NAND_DQS/NAND_DQ Read Valid window Table 57. Source Synchronous mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. NF18 NAND_CE0_B access time tCE CE_DELAY × T - 0.79 [see note 2] ns NF19 NAND_CE0_B hold time tCH 0.5 × tCK - 0.63 [see note2] ns NF20 Command/address NAND_DATAxx setup time tCAS 0.5 × tCK - 0.05 ns NF21 Command/address NAND_DATAxx hold time tCAH 0.5 × tCK - 1.23 ns tCK — ns NF23 preamble delay tPRE PRE_DELAY × T - 0.29 [see note2] ns NF24 postamble delay tPOST POST_DELAY × T - 0.78 [see note2] ns NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 × tCK - 0.86 ns NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 × tCK - 0.37 ns NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see note2] ns NF22 clock period NF28 Data write setup 0.25 × tCK - 0.35 NF29 Data write hold 0.25 × tCK - 0.85 NF30 NAND_DQS/NAND_DQ read setup skew — 2.06 NF31 NAND_DQS/NAND_DQ read hold skew — 1.95 1 GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings. 2 T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter). For DDR Source Synchronous mode, Figure 41 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 7Dual Application Processor Reference Manual [IMX7DRM]). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 78 NXP Semiconductors Electrical characteristics 4.10.3 4.10.3.1 ONFI NV-DDR2 mode (ONFI 3.2 compatible) Command and address timing ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing. See Section 4.10.1, “Asynchronous mode AC timing (ONFI 1.0 compatible),” for details. 4.10.3.2 Read and write timing ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.10.4, “Toggle mode AC Timing,” for details. 4.10.4 4.10.4.1 Toggle mode AC Timing Command and address timing NOTE Toggle mode command and address timing is the same as ONFI 1.0 compatible Asynchronous mode AC timing. See Section 4.10.1, “Asynchronous mode AC timing (ONFI 1.0 compatible),” for details. 4.10.4.2 Read and write timing Figure 42. Toggle mode data write timing i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 79 Electrical characteristics DEV?CLK .!.$?#%X?" .& .!.$?#,% .!.$?!,% T#+ .!.$?7%?" .& T#+ .& .!.$?2%?" T#+ T#+ T#+ .!.$?$13 .!.$?$!4!;= Figure 43. Toggle mode data read timing Table 58. Toggle mode timing parameters1 ID Parameter Symbol Timing T = GPMI Clock Cycle Min. Unit Max. (AS + DS) × T - 0.12 [see note2s,3] NF1 NAND_CLE setup time tCLS NF2 NAND_CLE hold time tCLH DH × T - 0.72 [see note2] NF3 NAND_CE0_B setup time tCS (AS + DS) × T - 0.58 [see notes,2] NF4 NAND_CE0_B hold time tCH DH × T - 1 [see note2] NF5 NAND_WE_B pulse width tWP DS × T [see note2] NF6 NAND_ALE setup time tALS (AS + DS) × T - 0.49 [see notes,2] NF7 NAND_ALE hold time tALH DH × T - 0.42 [see note2] NF8 Command/address NAND_DATAxx setup time tCAS DS × T - 0.26 [see note2] NF9 Command/address NAND_DATAxx hold time tCAH DH × T - 1.37 [see note2] NF18 NAND_CEx_B access time tCE CE_DELAY × T [see notes4,2] — ns NF22 clock period tCK — — ns — ns — ns NF23 preamble delay tPRE NF24 postamble delay tPOST PRE_DELAY × T [see notes5,2] POST_DELAY × T +0.43 [see note2] i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 80 NXP Semiconductors Electrical characteristics Table 58. Toggle mode timing parameters1(continued) ID 1 2 3 4 5 6 7 Parameter Symbol Timing T = GPMI Clock Cycle Unit Min. Max. NF28 Data write setup tDS6 0.25 × tCK - 0.32 — ns NF29 Data write hold tDH6 0.25 × tCK - 0.79 — ns NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7 — 3.18 NF31 NAND_DQS/NAND_DQ read hold skew tQHS7 — 3.27 The GPMI toggle mode output timing can be controlled by the module’s internal registers HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings. AS minimum value can be 0, while DS/DH minimum value is 1. T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter). CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started with enough time of ALE/CLE assertion to low level. PRE_DELAY+1) ≥ (AS+DS) Shown in Figure 42. Shown in Figure 43. For DDR Toggle mode, Figure 41 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is provided by an internal DPLL. The delay value of this register can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 7Dual Application Processor Reference Manual [IMX7DRM]). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the board delay. 4.11 External peripheral interface parameters The following subsections provide information on external peripheral interfaces. 4.11.1 ECSPI timing parameters This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 81 Electrical characteristics 4.11.1.1 ECSPI Master mode timing Figure 44 depicts the timing of ECSPI in master mode. Table 59 lists the ECSPI master mode timing characteristics. ECSPIx_RDY_B ECSPIx_SS_B CS10 CS2 CS3 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS7 CS3 CS2 ECSPIx_MOSI CS8 CS9 ECSPIx_MISO Figure 44. ECSPI Master mode timing diagram Table 59. ECSPI Master mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPIx_SCLK Cycle Time–Write tclk 43 15 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 21.5 7 — ns CS3 ECSPIx_SCLK Rise or Fall1 tRISE/FALL — — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 — ns CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF) tPDmosi -1 1 ns CS8 ECSPIx_MISO Setup Time tSmiso 18 — ns CS9 ECSPIx_MISO Hold Time tHmiso 0 — ns tSDRY 5 — ns CS10 RDY to ECSPIx_SS_B Time2 1 2 See specific I/O AC parameters Section 4.7, “I/O AC parameters.” SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 82 NXP Semiconductors Electrical characteristics 4.11.1.2 ECSPI Slave mode timing Figure 45 depicts the timing of ECSPI in Slave mode. Table 60 lists the ECSPI Slave mode timing characteristics. ECSPIx_SS_B CS2 CS1 CS5 CS6 CS4 ECSPIx_SCLK CS2 CS9 ECSPIx_MISO CS7 CS8 ECSPIx_MOSI Figure 45. ECSPI Slave mode timing diagram Table 60. ECSPI Slave mode timing parameters ID Parameter Symbol Min Max Unit CS1 ECSPIx_SCLK Cycle Time–Read ECSPI_SCLK Cycle Time–Write tclk 15 43 — ns CS2 ECSPIx_SCLK High or Low Time–Read ECSPIx_SCLK High or Low Time–Write tSW 7 21.5 — ns CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period — ns CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5 — ns CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5 — ns CS7 ECSPIx_MOSI Setup Time tSmosi 4 — ns CS8 ECSPIx_MOSI Hold Time tHmosi 4 — ns CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF) tPDmiso 4 19 ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 83 Electrical characteristics Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC 4.11.2 timing This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (single data rate) timing, eMMC4.4/4.41 (dual data rate) timing and SDR104/50(SD3.0) timing. 4.11.2.1 SD/eMMC4.3 (single data rate) AC timing Figure 46 depicts the timing of SD/eMMC4.3, and Table 61 lists the SD/eMMC4.3 timing characteristics. SD4 SD2 SD1 SD5 SDx_CLK SD3 SD6 Output from uSDHC to card SDx_DATA[7:0] SD7 SD8 Input from card to uSDHC SDx_DATA[7:0] Figure 46. SD/eMMC4.3 Timing Table 61. SD/eMMC4.3 interface timing specification ID Parameter Symbols Min Max Unit Clock Frequency (Low Speed) fPP1 0 400 kHz Clock Frequency (SD/SDIO Full Speed/High Speed) fPP2 0 25/50 MHz 3 0 20/52 MHz Card Input Clock SD1 Clock Frequency (MMC Full Speed/High Speed) fPP Clock Frequency (Identification Mode) fOD 100 400 kHz SD2 Clock Low Time tWL 7 — ns SD3 Clock High Time tWH 7 — ns SD4 Clock Rise Time tTLH — 3 ns SD5 Clock Fall Time tTHL — 3 ns 3.6 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD6 uSDHC Output Delay tOD -6.6 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 84 NXP Semiconductors Electrical characteristics Table 61. SD/eMMC4.3 interface timing specification(continued) ID Parameter Symbols Min Max Unit uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) SD7 uSDHC Input Setup Time tISU 2.5 — ns SD8 uSDHC Input Hold Time4 tIH 1.5 — ns 1 In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V. In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In High-speed mode, clock frequency can be any value between 0–50 MHz. 3 In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In High-speed mode, clock frequency can be any value between 0–52 MHz. 4 To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns. 2 4.11.2.2 eMMC4.4/4.41 (dual data rate) AC timing Figure 47 depicts the timing of eMMC4.4/4.41. Table 62 lists the eMMC4.4/4.41 timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD). SD1 SDx_CLK SD2 SD2 Output from eSDHCv3 to card SDx_DATA[7:0] ...... SD3 SD4 Input from card to eSDHCv3 SDx_DATA[7:0] ...... Figure 47. eMMC4.4/4.41 timing Table 62. eMMC4.4/4.41 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 0 52 MHz SD1 Clock Frequency (SD3.0 DDR) fPP 0 50 MHz 6.9 ns uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK) SD2 uSDHC Output Delay tOD 2.7 uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK) i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 85 Electrical characteristics Table 62. eMMC4.4/4.41 interface timing specification(continued) ID Parameter Symbols Min Max Unit SD3 uSDHC Input Setup Time tISU 2.4 — ns SD4 uSDHC Input Hold Time tIH 1.3 — ns 4.11.2.3 HS400 AC timing—eMMC5.0 only Figure 48 depicts the timing of HS400. Table 63 lists the HS400 timing characteristics. Be aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7 parameters in Table 65 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for HS400 mode. Figure 48. HS400 timing Table 63. HS400 interface timing specifications ID Parameter Symbols Min Max Unit Card Input clock SD1 Clock Frequency fPP 0 200 Mhz SD2 Clock Low Time tCL 0.46 × tCLK 0.54 × tCLK ns SD3 Clock High Time tCH 0.46 × tCLK 0.54 × tCLK ns uSDHC Output/Card inputs DAT (Reference to SCK) SD4 Output Skew from Data of Edge of SCK tOSkew1 0.45 — ns SD5 Output Skew from Edge of SCK to Data tOSkew2 0.45 — ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 86 NXP Semiconductors Electrical characteristics Table 63. HS400 interface timing specifications(continued) ID Parameter Symbols Min Max Unit uSDHC input/Card Outputs DAT (Reference to Strobe) SD6 uSDHC input skew tRQ — 0.45 ns SD7 uSDHC hold skew tRQH — 0.45 ns 4.11.2.4 HS200 Mode Timing Figure 49 depicts the timing of HS200 mode, and Table 64 lists the HS200 timing characteristics. 6' 6' 6' 6&. 6'6' ELWRXWSXWIURPX6'+&WRH00& 6' 6' ELWLQSXWIURPH00&WRX6'+& 6' Figure 49. HS200 Mode Timing Table 64. HS200 Interface Timing Specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5.0 — ns SD2 Clock Low Time tCL 0.3*tCLK 0.7*tCLK ns SD2 Clock High Time tCH 0.3*tCLK 0.7*tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1 SD8 Card Output Data Window tODW 0.5*tCLK — ns 1 HS200 is for 8 bits while SDR104 is for 4 bits. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 87 Electrical characteristics 4.11.2.5 SDR50/SDR104 AC timing Figure 50 depicts the timing of SDR50/SDR104, and Table 65 lists the SDR50/SDR104 timing characteristics. SD1 SD2 SD3 SCK SD4/SD5 8-bit output from uSDHC to eMMC SD6 SD7 8-bit input from eMMC to uSDHC SD8 Figure 50. SDR50/SDR104 timing Table 65. SDR50/SDR104 interface timing specification ID Parameter Symbols Min Max Unit Card Input Clock SD1 Clock Frequency Period tCLK 5 — ns SD2 Clock Low Time tCL 0.46 × tCLK 0.54 × tCLK ns SD3 Clock High Time tCH 0.46 × tCLK 0.54 × tCLK ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD4 uSDHC Output Delay tOD –3 1 ns uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK) SD5 uSDHC Output Delay tOD –1.6 1 ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK) SD6 uSDHC Input Setup Time tISU 2.4 — ns SD7 uSDHC Input Hold Time tIH 1.4 — ns uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1 SD8 Card Output Data Window tODW 0.5*tCLK — ns 1 Data window in SDR100 mode is variable. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 88 NXP Semiconductors Electrical characteristics 4.11.2.6 Bus operation condition for 3.3 V and 1.8 V signaling Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50 mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in Table 29, "GPIO DC Parameters," on page 44. 4.11.3 Ethernet controller (ENET) AC electrical specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. 4.11.3.1 ENET MII mode timing This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal timings. 4.11.3.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER, and ENET_RX_CLK) The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_RX_CLK frequency. Figure 51 shows MII receive signal timings. Table 66 describes the timing parameters (M1–M4) shown in the figure. M3 ENET_RX_CLK (input) M4 ENET_RX_DATA3,2,1,0 (inputs) ENET_RX_EN ENET_RX_ER M1 M2 Figure 51. MII receive signal timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 89 Electrical characteristics Table 66. MII receive signal timing Characteristic1 ID Min. Max. Unit M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to ENET_RX_CLK setup 5 — ns M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER hold 5 — ns M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period 1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode. 4.11.3.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK) The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%. There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the ENET_TX_CLK frequency. Figure 52 shows MII transmit signal timings. Table 67 describes the timing parameters (M5–M8) shown in the figure. M7 ENET_TX_CLK (input) M5 M8 ENET_TX_DATA3,2,1,0 (outputs) ENET_TX_EN ENET_TX_ER M6 Figure 52. MII transmit signal timing diagram Table 67. MII transmit signal timing Characteristic1 ID Min. Max. Unit M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER invalid 5 — ns M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER valid — 20 ns M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period 1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 90 NXP Semiconductors Electrical characteristics 4.11.3.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL) Figure 53 shows MII asynchronous input timings. Table 68 describes the timing parameter (M9) shown in the figure. ENET_CRS, ENET_COL M9 Figure 53. MII async inputs timing diagram Table 68. MII asynchronous inputs signal timing ID M91 1 Characteristic ENET_CRS to ENET_COL minimum pulse width Min. Max. Unit 1.5 — ENET_TX_CLK period ENET_COL has the same timing in 10-Mbit 7-wire interface mode. 4.11.3.1.4 MII Serial management channel timing (ENET_MDIO and ENET_MDC) The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3 MII specification. However the ENET can function correctly with a maximum MDC frequency of 15 MHz. Figure 54 shows MII asynchronous input timings. Table 69 describes the timing parameters (M10–M15) shown in the figure. M14 M15 ENET_MDC (output) M10 ENET_MDIO (output) M11 ENET_MDIO (input) M12 M13 Figure 54. MII serial management channel timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 91 Electrical characteristics Table 69. MII serial management channel timing ID Characteristic Min. Max. Unit M10 ENET_MDC falling edge to ENET_MDIO output invalid (min. propagation delay) 0 — ns M11 ENET_MDC falling edge to ENET_MDIO output valid (max. propagation delay) — 5 ns M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 — ns M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 — ns M14 ENET_MDC pulse width high 40% 60% ENET_MDC period M15 ENET_MDC pulse width low 40% 60% ENET_MDC period 4.11.3.2 RMII mode timing In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER. Figure 55 shows RMII mode timings. Table 70 describes the timing parameters (M16–M21) shown in the figure. M16 M17 ENET_CLK (input) M18 ENET_TX_DATA (output) ENET_TX_EN M19 ENET_RX_EN (input) ENET_RX_DATA[1:0] ENET_RX_ER M20 M21 Figure 55. RMII mode signal timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 92 NXP Semiconductors Electrical characteristics Table 70. RMII signal timing ID Characteristic Min. Max. Unit M16 ENET_CLK pulse width high 35% 65% ENET_CLK period M17 ENET_CLK pulse width low 35% 65% ENET_CLK period M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 — ns M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid — 15 ns M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to ENET_CLK setup 4 — ns M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 — ns 4.11.3.3 Signal switching specifications The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver devices. Table 71. RGMII signal switching specifications1 Symbol Tcyc2 TskewT Description Clock cycle duration 3 Data to clock output skew at transmitter Min. Max. Unit 7.2 8.8 ns -500 500 ps TskewR3 Data to clock input skew at receiver 1 2.6 ns Duty_G4 Duty cycle for Gigabit 45 55 % Duty_T4 Duty cycle for 10/100T 40 60 % Tr/Tf Rise/fall time (20–80%) — 0.75 ns 1 The timings assume the following configuration: DDR_SEL = (11)b DSE (drive-strength) = (111)b 2 For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively. 3 For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value is unspecified. 4 Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned between. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 93 Electrical characteristics 2'-))?48#ATTRANSMITTER 4SKEW4 2'-))?48$NNTO 2'-))?48?#4, 48%. 48%22 4SKEW2 2'-))?48#ATRECEIVER Figure 56. RGMII transmit signal timing diagram original 2'-))?28#ATTRANSMITTER 4SKEW4 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 4SKEW2 2'-))?28#ATRECEIVER Figure 57. RGMII receive signal timing diagram original 2'-))?28#SOURCEOFDATA )NTERNALDELAY 4SETUP4 4HOLD4 4SETUP2 4HOLD2 2'-))?28$NNTO 2'-))?28?#4, 28$6 28%22 2'-))?28#ATRECEIVER Figure 58. RGMII receive signal timing diagram with internal delay 4.11.4 Flexible controller area network (flexcan) ac electrical specifications The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing the CAN protocol according to the CAN 2.0 B protocol specification. The processor has two CAN modules available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 94 NXP Semiconductors Electrical characteristics 4.11.5 I2C module timing parameters This section describes the timing parameters of the I2C module. Figure 59 depicts the timing of I2C module, and Table 72 lists the I2C module timing characteristics. IC11 IC10 I2Cx_SDA I2Cx_SCL IC2 IC10 START IC7 IC4 IC8 IC11 IC6 IC9 IC3 STOP START START IC5 IC1 Figure 59. I2C bus timing Table 72. I2C module timing parameters Standard Mode ID Fast Mode Parameter Unit Min Max Min Max IC1 I2Cx_SCL cycle time 10 — 2.5 — µs IC2 Hold time (repeated) START condition 4.0 — 0.6 — µs IC3 Set-up time for STOP condition 4.0 — 0.6 — µs IC4 Data hold time 01 3.452 01 0.92 µs IC5 HIGH Period of I2Cx_SCL Clock 4.0 — 0.6 — µs IC6 LOW Period of the I2Cx_SCL Clock 4.7 — 1.3 — µs IC7 Set-up time for a repeated START condition 4.7 — 0.6 — µs IC8 Data set-up time 250 — 1003 — ns IC9 Bus free time between a STOP and START condition 4.7 — 1.3 — µs IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals — 1000 20 + 0.1Cb4 300 ns IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals — 300 20 + 0.1Cb4 300 ns IC12 Capacitive load for each bus line (Cb) — 400 — 400 pF 1 A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling edge of I2Cx_SCL. 2 The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal. 3 A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7) of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal. If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2Cx_SCL line is released. 4 Cb = total capacitance of one bus line in pF. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 95 Electrical characteristics 4.11.6 LCD controller (LCDIF) timing parameters Figure 60 shows the LCDIF timing and Table yy lists the timing parameters. Figure 60. LCD timing Table 73. LCD timing parameters ID Parameter Symbol Min Max Unit L1 LCD pixel clock frequency tCLK(LCD) - 150 MHz L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 - ns L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 - ns L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns L6 LCD pixel clock high to control signals valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns L7 LCD pixel clock low to control signals valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns 4.11.7 4.11.7.1 CMOS sensor interface (CSI) timing parameters Gated clock mode timing Figure 61 and Figure 62 shows the gated clock mode timings for CSI, and Table 74 describes the timing parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 96 NXP Semiconductors Electrical characteristics (VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted. CSI_VSYNC P1 CSI_HSYNC P7 P2 P5 P6 CSI_PIXCLK P3 P4 CSI_DATA[15:00] Figure 61. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge CSI_VSYNC P1 CSI_HSYNC P7 P2 P6 P5 CSI_PIXCLK P3 P4 CSI_DATA[15:00] Figure 62. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge Table 74. CSI Gated Clock Mode Timing Parameters ID Parameter Symbol Min. Max. Units P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 — ns P2 CSI_HSYNC setup time tHsu 1 — ns P3 CSI DATA setup time tDsu 1 — ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 97 Electrical characteristics Table 74. CSI Gated Clock Mode Timing Parameters(continued) ID Parameter Symbol Min. Max. Units tDh 1 — ns P4 CSI DATA hold time P5 CSI pixel clock high time tCLKh 3.75 — ns P6 CSI pixel clock low time tCLKl 3.75 — ns P7 CSI pixel clock frequency fCLK — 148.5 MHz 4.11.7.2 Ungated clock mode timing Figure 63 shows the ungated clock mode timings of CSI, and Table 75 describes the timing parameters (P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are used, and the CSI_HSYNC signal is ignored. CSI_VSYNC P1 P6 P4 P5 CSI_PIXCLK P2 P3 CSI_DATA[15:00] Figure 63. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge Table 75. CSI Ungated Clock Mode Timing Parameters ID Parameter Symbol Min. Max. Units tVSYNC 33.5 — ns P1 CSI_VSYNC to pixel clock time P2 CSI DATA setup time tDsu 1 — ns P3 CSI DATA hold time tDh 1 — ns P4 CSI pixel clock high time tCLKh 3.75 — ns P5 CSI pixel clock low time tCLKl 3.75 — ns P6 CSI pixel clock frequency fCLK — 148.5 MHz The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as dumb or smart as follows: • Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync (HSYNC)) and output-only Bayer and statistics data. • Smart sensors support CCIR656 video decoder formats and perform additional processing of the image (for example, image compression, image pre-filtering, and various data output formats). i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 98 NXP Semiconductors Electrical characteristics The following subsections describe the CSI timing in gated and ungated clock modes. 4.11.8 MIPI DSI timing parameters This section describes MIPI D-PHY electrical specifications, which are designed to be compatible with the following: • MIPI CSI-2 version 1.0 and D-PHY specification Rev. 1.0 (for MIPI sensor port x2 lanes) • MIPI DSI Version 1.01 and D-PHY specification Rev. 1.0 (as well as DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes) 4.11.8.1 Electrical and Timing Information Table 76. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit Input DC Specifications - Apply to DSI_CLK_P/DSI_CLK_N and DSI_DATA_P/DSI_DATA_N inputs VI Input signal voltage range Transient voltage range is limited from -300 mV to 1600 mV -50 — 1350 mV VLEAK Input leakage current VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode -10 — 10 mA VGNDSH Ground Shift — -50 — 50 mV VOH(absmax) Maximum transient output voltage level — — — 1.45 V tvoh(absmax) Maximum transient time above VOH(absmax) — — — 20 ns HS Line Drivers DC Specifications |VOD| HS Transmit Differential output voltage magnitude 80 Ω<= RL< = 125 Ω 140 200 270 mV Δ|VOD| Change in Differential output voltage magnitude between logic states 80 Ω<= RL< = 125 Ω — — 10 mV VCMTX Steady-state common-mode output voltage. 80 Ω<= RL< = 125 Ω 150 200 250 mV ΔVCMTX(1,0) Changes in steady-state common-mode output voltage between logic states 80 Ω<= RL< = 125 Ω — — 5 mV VOHHS HS output high voltage 80 Ω<= RL< = 125 Ω — — 360 mV ZOS Single-ended output impedance. — 40 50 62.5 Ω i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 99 Electrical characteristics Table 76. Electrical and Timing Information(continued) Symbol ΔZOS Parameters Single-ended output impedance mismatch. Test Conditions Min Typ Max Unit — — — 10 % 50 mV LP Line Drivers DC Specifications VOL Output low-level SE voltage — -50 VOH Output high-level SE voltage — 1.1 1.2 1.3 V ZOLP Single-ended output impedance. — 110 — — Ω ΔZOLP(01-10) Single-ended output impedance mismatch driving opposite level — — — 20 % ΔZOLP(0-11) Single-ended output impedance mismatch driving same level — — — 5 % HS Line Receiver DC Specifications VIDTH Differential input high voltage threshold — — — 70 mV VIDTL Differential input low voltage threshold — -70 — — mV VIHHS Single ended input high voltage — — — 460 mV VILHS Single ended input low voltage — -40 — — mV VCMRXDC Input common mode voltage — 70 — 330 mV ZID Differential input impedance — 80 — 125 Ω LP Line Receiver DC Specifications VIL Input low voltage — — — 550 mV VIH Input high voltage — 920 — — mV VHYST Input hysteresis — 25 — — mV — 450 mV Contention Line Receiver DC Specifications VILF Input low fault threshold — 200 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 100 NXP Semiconductors Electrical characteristics 4.11.8.2 MIPI D-PHY signaling levels The signal levels are different for differential HS mode and single-ended LP mode. Figure 64 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals. LP VOL VOH,MAX VOH,MIN LP VIH VIH LP Threshold Region VIL Max VOD HS Vout Range VOHHS VCMTX,MAX HS Vcm Range Min VOD LP VIL VGNDSH,MA VCMTX,MIN VOLHS HS Differential Signaling LP VOL X GND VGNDSH,MIN LP Single-ended Signaling Figure 64. D-PHY Signaling Levels 4.11.8.3 MIPI HS line driver characteristics Ideal Single-Ended High Speed Signals VDN VCMTX = (VDP + VDN)/2 VOD(0) VOD(1) VDP Ideal Differential High Speed Signals VOD(1) 0V (Differential) VOD(0) VOD = VDP - VDN Figure 65. Ideal Single-ended and Resulting Differential HS Signals i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 101 Electrical characteristics 4.11.8.4 Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals ΔVOD (SE H S Signals) VD N VCM TX VD P ΔVOD/2 V OD (1) VOD(0) ΔV OD /2 Static ΔV CMT X (SE HS Signals) VD N VC MTX VOD(0) V DP DynamicΔVCMT X (SE HS Signals) VDN VCM TX VD P Figure 66. Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals 4.11.8.5 MIPI D-PHY switching characteristics Table 77. Electrical and Timing Information Symbol Parameters Test Conditions Min Typ Max Unit HS Line Drivers AC Specifications — Maximum serial data rate (forward direction) On DATAP/N outputs. 80 Ω <= RL <= 125 Ω 80 — 1500 Mbps FDDRCLK DDR CLK frequency On DATAP/N outputs. 40 — 750 MHz PDDRCLK DDR CLK period 80 Ω<= RL< = 125 Ω 1.33 — 25 ns tCDC DDR CLK duty cycle tCDC = tCPH / PDDRCLK — 50 — % tCPH DDR CLK high time — — 1 — UI tCPL DDR CLK low time — — 1 — UI DDR CLK / DATA Jitter — — 75 — ps pk–pk tSKEW[PN] Intra-Pair (Pulse) skew — — 0.075 — UI tSKEW[TX] Data to Clock Skew — 0.350 — 0.650 UI tr Differential output signal rise time 20% to 80%, RL = 50 Ω 150 — 0.3UI ps tf Differential output signal fall time 20% to 80%, RL = 50 Ω 150 — 0.3UI ps ΔVCMTX(HF) Common level variation above 450 MHz 80 Ω<= RL< = 125 Ω — — 15 mVrms ΔVCMTX(LF) Common level variation between 50 MHz and 450 MHz. 80 Ω<= RL< = 125 Ω — — 25 mVp — i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 102 NXP Semiconductors Electrical characteristics Table 77. Electrical and Timing Information(continued) Symbol Parameters Test Conditions Min Typ Max Unit 15% to 85%, CL<70 pF — — 25 ns 30% to 85%, CL<70 pF — — 35 ns 15% to 85%, CL<70 pF — — 120 mV/ns 0 — 70 pF LP Line Drivers AC Specifications trlp,tflp Single ended output rise/fall time treo δV/δtSR Signal slew rate CL Load capacitance — HS Line Receiver AC Specifications tSETUP[RX] Data to Clock Receiver Setup time — 0.15 — — UI tHOLD[RX] Clock to Data Receiver Hold time — 0.15 — — UI ΔVCMRX(HF) Common mode interference beyond 450 MHz — — — 200 mVpp ΔVCMRX(LF) Common mode interference between 50 MHz and 450 MHz. — -50 — 50 mVpp CCM Common mode termination — — — 60 pF — 300 Vps LP Line Receiver AC Specifications eSPIKE Input pulse rejection — TMIN Minimum pulse response — 50 — VINT Pk-to-Pk interference voltage — — — 400 mV fINT Interference frequency — 450 — — MHz ns Model Parameters used for Driver Load switching performance evaluation CPAD Equivalent Single ended I/O PAD capacitance. — — — 1 pF CPIN Equivalent Single ended Package + PCB capacitance. — — — 2 pF LS Equivalent wire bond series inductance — — — 1.5 nH RS Equivalent wire bond series resistance — — — 0.15 Ω RL Load resistance — 80 100 125 Ω i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 103 Electrical characteristics 4.11.8.6 High-speed clock timing #,+P #,+N $ATA"IT4IME5) 5) ).34 $ATA"IT4IME5) 5) ).34 $$2#LOCK0ERIOD5) ).34 5) ).34 Figure 67. DDR Clock Definition 4.11.8.7 Forward high-speed data transmission timing The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in Figure 68: 2EFERENCE4IME 4 3%450 4 (/,$ 5) ).34 43+%7 #,+P #,+N 5) ).34 4#,+P Figure 68. Data to Clock Timing Definitions 4.11.8.8 Reverse high-speed data transmission timing 44$ .2:$ATA #,+?. #,+?0 #LOCKTO$ATA 3KEW 5) 5) Figure 69. Reverse High-Speed Data Transmission Timing at Slave Side i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 104 NXP Semiconductors Electrical characteristics 4.11.8.9 Low-power receiver timing 2*TLPX 2*TLPX eSPIKE VIH VIL Input TMIN-RX TMIN-RX eSPIKE Output Input Glitch Rejection of Low-Power Receivers 4.11.9 PCIe PHY parameters The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0 standard. 4.11.9.1 PCIE_REXT reference resistor connection The impedance calibration process requires connection of reference resistor 4.7 kΩ. 1% precision resistor on PCIE_REXT pads to ground. It is used for termination impedance calibration. 4.11.10 Pulse width modulator (PWM) timing parameters This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin. Figure 70 depicts the timing of the PWM, and Table 78 lists the PWM timing parameters. 0 0 07-N?/54 Figure 70. PWM Timing Table 78. PWM output timing parameters ID Parameter Min Max Unit PWM Module Clock Frequency 0 ipg_clk MHz P1 PWM output pulse width high 15 ns P2 PWM output pulse width low 15 ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 105 Electrical characteristics 4.11.11 QUAD SPI (QSPI) timing parameters This section describes the electrical information for QSPI. All data is based on a negative edge data launch from the device and a positive edge data capture, as shown in the timing diagrams in this section. NOTE Measurements are with a load of 35 pF on output pins. I/P Slew = 1 ns Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details). 4.11.11.1 SDR mode Figure 71. QuadSPI input timing (SDR mode) Table 79. QuadSPI input timing (SDR mode) Value Symbol Parameter Unit Min Max TSUI Setup time for incoming data 12.4 - ns THI Hold time requirement for incoming data 4.5 - ns Figure 72. QuadSPI output timing (SDR mode) i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 106 NXP Semiconductors Electrical characteristics Table 80. QuadSPI output timing (SDR mode) Value Symbol Parameter Unit Min Max TDV Output Data Valid - 12.4 ns THO Output Data Hold 4.5 - ns 4.11.11.2 DDR mode Figure 73. QuadSPI Input timing (DDR mode) Table 81. QuadSPI Input timing (DDR mode) Value Symbol Parameter Unit Min Max TSUI Setup time for incoming data 14.5 - ns THI Hold time requirement for incoming data 4.5 - ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 107 Electrical characteristics Figure 74. QuadSPI output timing (DDR mode) Table 82. QuadSPI output timing (DDR mode) Value Symbol Parameter Unit Min Max TDV Output Data Valid - 6.4 ns THO Output Data Hold 0.7 - ns Available frequency in BAM for booting through QSPI0 with multiple configurations (loopback, without loopback, SDR and DDR modes). QSPI0 with loopback in DDR mode SCK frequency Options available in BAM code (fixed) in MHz. 18 QSPI0 with loopback in SDR mode 18 QSPI0 without loopback in DDR mode 18 QSPI0 without loopback in SDR mode 18, 60, 74 4.11.12 SCAN JTAG controller (SJC) timing parameters Figure 75 depicts the SJC test clock input timing. Figure 76 depicts the SJC boundary scan timing. Figure 77 depicts the SJC test access port. Signal parameters are listed in Table 83. SJ1 SJ2 JTAG_TCK (Input) VM VIH SJ2 VM VIL SJ3 SJ3 Figure 75. Test clock input timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 108 NXP Semiconductors Electrical characteristics JTAG_TCK (Input) VIH VIL SJ4 Data Inputs SJ5 Input Data Valid SJ6 Data Outputs Output Data Valid SJ7 Data Outputs SJ6 Data Outputs Output Data Valid Figure 76. Boundary scan (JTAG) timing diagram i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 109 Electrical characteristics JTAG_TCK (Input) VIH VIL SJ8 JTAG_TDI JTAG_TMS (Input) SJ9 Input Data Valid SJ10 JTAG_TDO (Output) Output Data Valid SJ11 JTAG_TDO (Output) SJ10 JTAG_TDO (Output) Output Data Valid Figure 77. Test access port timing diagram JTAG_TCK (Input) JTAG_TRST_B (Input) SJ13 SJ12 Figure 78. JTAG_TRST_B timing diagram Table 83. JTAG timing All Frequencies ID Parameter1,2 Unit Min Max 0.001 22 MHz 45 — ns 22.5 — ns SJ0 JTAG_TCK frequency of operation 1/(3•TDC)1 SJ1 JTAG_TCK cycle time in Crystal mode SJ2 JTAG_TCK clock pulse width measured at VM2 SJ3 JTAG_TCK rise and fall times — 3 ns SJ4 Boundary scan input data set-up time 5 — ns SJ5 Boundary scan input data hold time 24 — ns SJ6 JTAG_TCK low to output data valid — 40 ns SJ7 JTAG_TCK low to output high impedance — 40 ns SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 — ns i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 110 NXP Semiconductors Electrical characteristics Table 83. JTAG timing(continued) All Frequencies Parameter1,2 ID 1 2 Unit Min Max SJ9 JTAG_TMS, JTAG_TDI data hold time 25 — ns SJ10 JTAG_TCK low to JTAG_TDO data valid — 44 ns SJ11 JTAG_TCK low to JTAG_TDO high impedance — 44 ns SJ12 JTAG_TRST_B assert time 100 — ns SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 — ns TDC = target frequency of SJC VM = mid-point voltage 4.11.13 UART I/O configuration and timing parameters 4.11.13.1 UART RS-232 I/O configuration in different modes The i.MX 7Dual UART interfaces can serve both as DTE or DCE device. This can be configured by the DCEDTE control bit (default 0—DCE mode). Table 84 shows the UART I/O configuration based on the enabled mode. Table 84. UART I/O configuration vs. mode DTE Mode DCE Mode Port Direction Description Direction Description UARTx_RTS_B Output UARTx_RTS_B from DTE to DCE Input UARTx_RTS_B from DTE to DCE UARTx_CTS_B Input UARTx_CTS_B from DCE to DTE Output UARTx_CTS_B from DCE to DTE UARTx_TX_ DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE UARTx_RX _DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE 4.11.13.2 UART RS-232 Serial mode timing This section describes the electrical information of the UART module in the RS-232 mode. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 111 Electrical characteristics 4.11.13.2.1 UART transmitter Figure 79 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit format. Table 85 lists the UART RS-232 Serial mode transmit timing characteristics. UA1 Start Bit UARTx_TX_DATA (output) Possible Parity Bit UA1 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Par Bit STOP BIT Bit 7 Next Start Bit UA1 UA1 Figure 79. UART RS-232 Serial mode transmit timing diagram Table 85. RS-232 Serial mode transmit timing parameters ID Parameter UA1 1 2 Symbol Min Max Unit tTbit 1/Fbaud_rate1 - Tref_clk2 1/Fbaud_rate + Tref_clk — Transmit Bit Time Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider). 4.11.13.2.2 UART receiver Figure 80 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 86 lists Serial mode receive timing characteristics. UA2 UARTx_RX_DATA (output) Start Bit Possible Parity Bit UA2 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Par Bit STOP BIT Next Start Bit UA2 UA2 Figure 80. UART RS-232 Serial mode receive timing diagram Table 86. RS-232 Serial mode receive timing parameters ID Parameter Symbol Min Max Unit UA2 Receive Bit Time1 tRbit 1/Fbaud_rate2 - 1/(16 x Fbaud_rate) 1/Fbaud_rate + 1/(16 x Fbaud_rate) — 1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not exceed 3/(16 x Fbaud_rate). 2 Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16. 4.11.14 USB HSIC timing This section describes the electrical information of the USB HSIC port. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 112 NXP Semiconductors Electrical characteristics NOTE HSIC is DDR signal, following timing spec is for both rising and falling edge. 4.11.14.1 Transmit timing Tstrobe USB_H_STROBE Todelay Todelay USB_H_DATA Figure 81. USB HSIC transmit waveform Table 87. USB HSIC transmit parameters Name Parameter Min Max Unit 4.165 4.169 ns Tstrobe strobe period Todelay data output delay time 550 1350 ps strobe/data rising/falling time 0.7 2 V/ns Tslew Comment Measured at 50% point Averaged from 30% – 70% points 4.11.14.2 Receive timing Tstrobe USB_H_STROBE Thold USB_H_DATA Tsetup Figure 82. USB HSIC receive waveform Table 88. USB HSIC receive parameters1 Name 1 Parameter Min Max Unit 4.169 ns Comment Tstrobe strobe period 4.165 Thold data hold time 300 ps Measured at 50% point Tsetup data setup time 365 ps Measured at 50% point Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points The timings in the table are guaranteed when: —AC I/O voltage is between 0.9x to 1x of the I/O supply —DDR_SEL configuration bits of the I/O are set to (10)b i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 113 Electrical characteristics 4.11.15 USB PHY parameters This section describes the USB-OTG PHY parameters. The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to Host port): • USB ENGINEERING CHANGE NOTICE — Title: 5V Short Circuit Withstand Requirement Change — Applies to: Universal Serial Bus Specification, Revision 2.0 • Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000 • USB ENGINEERING CHANGE NOTICE — Title: Pull-up/Pull-down resistors — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: Suspend Current Limit Changes — Applies to: Universal Serial Bus Specification, Revision 2.0 • USB ENGINEERING CHANGE NOTICE — Title: USB 2.0 Phase Locked SOFs — Applies to: Universal Serial Bus Specification, Revision 2.0 • On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification — Revision 2.0, version 1.1a, July 27, 2010 • Battery Charging Specification (available from USB-IF) — Revision 1.2, December 7, 2010 4.11.15.1 USB_OTG*_REXT reference resistor connection The bias generation and impedance calibration process for the USB OTG PHYs requires connection of reference resistors 200 Ω 1% precision on each of USB_OTG1_REXT and USB_OTG2_REXT pads to ground. 4.11.15.2 USB_OTG_CHD_B USB battery charger detection external pullup resistor connection The usage and external resistor connection for the USB_OTG_CHD_B pin are described in Table 3, Table 7, and Section 4.8.3, “USB battery charger detection driver impedance.” i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 114 NXP Semiconductors Electrical characteristics 4.12 12-Bit A/D converter (ADC) Table 89. Recommended operating conditions for 12-bit ADC Characteristics Symbol Min Typ Max Unit AVDD18 1.7 1.8 1.9 V VDDA10 0.95 1 1.05 V TJ –25 — 105 C — — — 16 Channel ADCx_INx AGND — VREF V Main Clock Frequency FCLK 300K — 6M Hz Start of conversion clk frequency (FCLK/3) FSOC 50K — 1M Hz External Input Resistance of ADC2 RIEXT — 50 250 Ω Supply Voltage Operating Temp Analog Input Channel Analog Input Range 1 2 1 DO=111111111111 @AIN=AVDD18 & DO=000000000000 @AIN=AVSS18 (Input full-scale voltage = AVDD18) RIEXT = Output resistance of the ADC driver = Output resistance of signal generator + Series parasitic resistance between signal source and ADC input (for example, PCB and bonding wire resistance and ESD protection resistance) Table 90. DC Electrical characteristics Specification Symbol Min Typ Max Unit Conditions — — 12 12 Bits — Differential Non-Linearity DNL — ± 2.0 ± 2.0 LSB Integral Non-Linearity INL — ± 6.0 ± 6.0 LSB Top Offset Voltage EOT — ±10 ± 100 LSB Bottom Offset Voltage EOB — ±11 ± 100 LSB Resolution PD=Low FCLK=6MHz FSOC=1MHz FAIN=10kHz Ramp wave Table 91. AC Electrical characteristics Specification Main Clock Duty Ratio Analog Input Frequency CH #15-0 Normal Operation Current Consumption1 Symbol Min Typ Max Unit — 45 45 55 % FAIN DC 50k 100K Hz VDDA_ADCx_1P8 — 0.53 1.90 mA — 0.02 0.10 mA 2 VDDA_1P0_CAP2 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 115 Boot mode configuration Table 91. AC Electrical characteristics(continued) Specification Power Down Current2 Signal to Noise and Distortion Ratio Symbol Min Typ Max Unit IPD3 — 3.0 300 μΑ SNDR 54 60 — dB 1 Normal operation current consumption includes only the current from the ADC core. It does not include static current from the power pads. 2 Power-down current includes only the current from the ADC core. It does not include static current from the power pads. 3 IOP and IPD are measurable only on the ADC core's test chips. Because AVDD10 is shared with internal logic power, IOP and IPD in the test plan only measure current consumption @ AVDD18, VREF. 5 Boot mode configuration This section provides information on Boot mode configuration pins allocation and boot devices interfaces allocation. 5.1 Boot mode configuration pins Table 92 provides boot options, functionality, fuse values, and associated pins. Several input pins are also sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse. The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot, Fusemap, and eFuse” chapter in the i.MX 7Dual Application Processor Reference Manual (IMX7DRM). Table 92. Fuses and associated pins used for boot State during reset State after reset (POR_B (POR_B asserted) deasserted) Pin Direction at Reset eFuse name BOOT_MODE0 Input N/A Hi-Z Hi-Z Boot mode selection BOOT_MODE1 Input N/A Hi-Z Hi-Z Boot mode selection Details i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 116 NXP Semiconductors Boot mode configuration Table 92. Fuses and associated pins used for boot(continued) State during reset State after reset (POR_B (POR_B asserted) deasserted) Pin Direction at Reset eFuse name LCD1_DATA00 Input BT_CFG[0] 100K Pull Down Keeper LCD1_DATA01 Input BT_CFG[1] 100K Pull Down Keeper LCD1_DATA02 Input BT_CFG[2] 100K Pull Down Keeper LCD1_DATA03 Input BT_CFG[3] 100K Pull Down Keeper LCD1_DATA04 Input BT_CFG[4] 100K Pull Down Keeper LCD1_DATA05 Input BT_CFG[5] 100K Pull Down Keeper LCD1_DATA06 Input BT_CFG[6] 100K Pull Down Keeper LCD1_DATA07 Input BT_CFG[7] 100K Pull Down Keeper LCD1_DATA08 Input BT_CFG[8] 100K Pull Down Keeper LCD1_DATA09 Input BT_CFG[9] 100K Pull Down Keeper LCD1_DATA10 Input BT_CFG[10] 100K Pull Down Keeper LCD1_DATA11 Input BT_CFG[11] 100K Pull Down Keeper LCD1_DATA12 Input BT_CFG[12] 100K Pull Down Keeper LCD1_DATA13 Input BT_CFG[13] 100K Pull Down Keeper LCD1_DATA14 Input BT_CFG[14] 100K Pull Down Keeper LCD1_DATA15 Input BT_CFG[15] 100K Pull Down Keeper LCD1_DATA16 Input BT_CFG[16] 100K Pull Down Keeper LCD1_DATA17 Input BT_CFG[17] 100K Pull Down Keeper LCD1_DATA18 Input BT_CFG[18] 100K Pull Down Keeper LCD1_DATA19 Input BT_CFG[19] 100K Pull Down Keeper 5.2 Details Boot options, pin value overrides fuse settings for BT_FUSE_SEL=’0’. Signal configuration as fuse override input at power up. These are special I/O lines that control the boot configuration during product development. In production, the boot configuration can be controlled by fuses. Boot device interface allocation Table 93 lists the interfaces that can be used by the boot process in accordance with the specific Boot mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation, which are configured during boot when appropriate. Table 93. Interface allocation during boot Interface IP Instance QSPI QSPI SPI ECSPI-1 Allocated Pads During Boot Comment EPDC_D0, EPDC_D1, EPDC_D2, EPDC_D3, EPDC_D4, EPDC_D5, EPDC_D6, EPDC_D7, EPDC_D8, EPDC_D9, EPDC_D10, EPDC_D11, EPDC_D12, EPDC_D13, EPDC_D14, EPDC_D15 ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0, UART1_RXD, UART1_TXD, UART2_RXD The chip-select pin used depends on the fuse "CS select (SPI only)" i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 117 Boot mode configuration Table 93. Interface allocation during boot(continued) Interface IP Instance Allocated Pads During Boot Comment SPI ECSPI-2 ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0, ENET1_RX_CTL, ENET1_RXC, ENET1_TD0 The chip-select pin used depends on the fuse "CS select (SPI only)" SPI ECSPI-3 SAI2_TXFS, SAI2_TXC, SAI2_RXD, SAI2_TXD, SD1_DATA3, SD2_CD_B, SD2_WP The chip-select pin used depends on the fuse "CS select (SPI only)" SPI ECSPI-4 SD1_CD_B, SD1_WP, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_DATA0, SD1_DATA1 The chip-select pin used depends on the fuse "CS select (SPI only)" EIM EIM EPDC_SDCE2, EPDC_SDCE3, EPDC_GDCLK, EPDC_GDOE, EPDC_GDRL, EPDC_GDSP, EPDC_BDR0, LCD_DAT20, LCD_DAT21, LCD_DAT22, LCD_DAT23, EPDC_D8, EPDC_D9, EPDC_D10, EPDC_D12, EPDC_D14, EPDC_PWRSTAT Used for NOR, OneNAND boot Only CS0 is supported. Allocated pads may differ depending on mux mode. See the “System Boot, Fusemap, and eFuse” chapter of the i.MX 7Dual Application Processor Reference Manual (IMX7DRM) for details. NAND Flash GPMI SD3_CLK, SD3_CMD, SD3_DATA0, SD3_DATA1, SD3_DATA2, SD3_DATA3, SD3_DATA4, SD3_DATA5, SD3_DATA6, SD3_DATA7, SD3_STROBE, SD3_RESET_B, SAI1_TXC, SAI1_TXFS, SAI1_TXD 8 bit Only CS0 is supported SD/MMC USDHC-1 SD1_CD_B, SD1_RESET_B, SD1_CLK, SD1_CMD, SD1_DATA0, SD1_DATA1, SD1_DATA2, SD1_DATA3, GPIO1_IO08, ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO, ECSPI2_SS0 1, 4, or 8 bit SD/MMC USDHC-2 SD2_RESET_B, SD2_CLK, SD2_CMD, SD2_DATA0, SD2_DATA1, SD2_DATA2, SD2_DATA3, GPIO1_IO12, ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO, ECSPI1_SS0 1, 4, or 8 bit SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1, SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5, SD3_DAT6, SD3_DAT7, SD3_RESET_B 1, 4, or 8 bit USB USB-OTG PHY — i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 118 NXP Semiconductors Package information and contact assignments 6 Package information and contact assignments This section includes the contact assignment information and mechanical package drawing. 6.1 6.1.1 12 x 12 mm package information Case 1997-01, 12 x 12, 0.4 mm pitch, ball matrix The following figure shows the top, bottom, and side views of the 12×12 mm BGA package. Figure 83. 12 x 12 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 119 Package information and contact assignments 6.1.2 12 x 12 mm supplies contact assignments and functional contact assignments Table 94 shows supplies contact assignments for the 12 x 12 mm package. Table 94. i.MX 7Dual 12 x 12 mm supplies contact assignments Rail Ball Comments DRAM_VREF T20 DDR voltage reference input. Connect to a voltage source that is 50% of NVCC_DRAM DRAM_ZQPAD Y18 DDR output buffer driver calibration reference voltage input. Connect DRAM_ZQPAD to an external 240 Ω 1% resistor to Vss FUSE_FSOURCE V09 GND A01,A28,B05,B23,B26,C03,C05,C07,C10,C1 3,C14,C15,C23,C24,C25,C26,D08, D12,D17,D21,E03,E05,E24,E26,F08,F10,F12 ,F14,F15,F17,F21,H04,H06,H23,H25,L13,L16 ,M04,M06,M23,M25,N11,N18,T11,T18,U04,U 06,U23,U25,V13,V16,W03,W06,AA04,AA06, AA23,AA25,AC08,AC10,AC12,AC14,AC15,A C17,AC21,AD03,AD05,AD06,AD24,AD26,AE 06,AE07,AE08,AE09,AE17,AE21,AF03,AF05, AF08,AF09,AF10,AF11,AF13,AF14,AF15,AF2 4,AF26,AG10,AH01,AH28 GPANAIO AF02 MIPI_VREG_0P4V B19 NVCC_DRAM V27,V28,W21,W23,W26,Y20,AA19,AC19,AF 17,AF18,AF19,AG18,AH18 NVCC_DRAM_CKE V20 NVCC_ENET1 J18 Supply input for the ENET interfaces NVCC_EPDC1 P20 Supply for EPDC NVCC_EPDC2 N20 Supply for EPDC NVCC_GPIO1 Y09 Supply for GPIO1 NVCC_GPIO2 Y11 Supply for GPIO2 NVCC_I2C R09 Supply for I2C NVCC_LCD L20 Supply for LCD NVCC_SAI J13 Supply for SAI NVCC_SD1 J11 Supply for SD card NVCC_SD2 L09 Supply for SD card NVCC_SD3 N09 Supply for SD card NVCC_SPI P09 Supply for SPI Test signal. Should be left unconnected. Supply input for the DDR I/O interface i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 120 NXP Semiconductors Package information and contact assignments Table 94. i.MX 7Dual 12 x 12 mm supplies contact assignments(continued) Rail Ball Comments NVCC_UART T09 Supply for UART PCIE_VP AB13 Supply input for the PCIe PHY PCIE_VPH Y15 Supply input for the PCIe PHY PVCC_ENET_CAP G16 Secondary supply for ENET. Requires external capacitor PVCC_EPDC_LCD_CAP R20 Secondary supply for EPDC, LCD. Requires external capacitor PVCC_GPIO_CAP AB11 Secondary supply for GPIO. Requires external capacitor PVCC_I2C_SPI_UART_CAP W08 Secondary supply for I2C, SPI, UART. Requires external capacitor PVCC_SAI_SD_CAP J14 Secondary supply for SAI, SD. Requires external capacitor USB_OTG1_VBUS C09 VBUS input for USB_OTG1 USB_OTG2_VBUS C11 VBUS input for USB_OTG2 VDD_1P2_CAP AA10 Supply for HSIC VDD_ARM A20,B20,C16,C17,C18,C19,C20,C21,C22,F1 9,H19,J20,K21,K23,K26,L27,L28 Supply voltage for ARM VDD_LPSR_1P0_CAP AG06 Secondary supply for LPSR. Requires external capacitor VDD_LPSR_IN AG05 Supply to LPSR VDD_MIPI_1P0 J16 Supply for MIPI VDD_SNVS_1P8_CAP AG07 Secondary supply for SNVS. Requires external capacitor VDD_SNVS_IN Y13 Supply for SNVS VDD_SOC H10,J09,K03,K06,K08,L01,L02,L11,L18,N13, Supply for SOC N16,P03,P06,P23,P26,R26,T13,T16,V11,V18 ,R03,R06,R23 VDD_TEMPSENSOR_1P8 AH05 Supply for temp sensor VDD_USB_H_1P2 C12,G13 Supply input for the USB HSIC interface VDD_USB_OTG1_1P0_CAP E09 Secondary supply for OTG1. Requires external capacitor VDD_USB_OTG1_3P3_IN D09 Secondary supply for OTG1. Requires external capacitor VDD_USB_OTG2_1P0_CAP F09 Secondary supply for OTG2. Requires external capacitor VDD_USB_OTG2_3P3_IN Secondary supply for OTG2. Requires external capacitor D11 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 121 Package information and contact assignments Table 94. i.MX 7Dual 12 x 12 mm supplies contact assignments(continued) Rail Ball Comments VDD_XTAL_1P8 AH02 VDDA_1P0_CAP AH07 Secondary supply for 1.0V. Requires external capacitor VDDA_1P8_IN AF04,AG03,AG04 Supply for 1.8V VDDA_ADC1_1P8 AH04 Supply for ADC VDDA_MIPI_1P8 J15 Supply for MIPI VDDA_PHY_1P8 Y14 VDDD_1P0_CAP AC13,AE12,AF12 Secondary supply for 1.0V. Requires external capacitor Table 95 shows an alpha-sorted list of functional contact assignments for the 12 x 12 mm package. Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments Ball type1 Default Mode1 Default Function1 Ball Ball Name Power Group PD/PU AB07 ADC1_IN0 ADC1_VDDA_1P8 ADC1_IN0 AC07 ADC1_IN1 ADC1_VDDA_1P8 ADC1_IN1 AD07 ADC1_IN2 ADC1_VDDA_1P8 ADC1_IN2 AD09 ADC1_IN3 ADC1_VDDA_1P8 ADC1_IN3 Y01 BOOT_MODE0 NVCC_GPIO1 ALT0 BOOT_MODE0 100K PD Y02 BOOT_MODE1 NVCC_GPIO1 ALT0 BOOT_MODE1 100K PD AE04 CCM_CLK1_N VDDA_1P8 CCM_CLK1_N AE03 CCM_CLK1_P VDDA_1P8 CCM_CLK1_P AE02 CCM_CLK2 VDDA_1P8 CCM_CLK2 AC24 DRAM_ADDR00 NVCC_DRAM DDR DRAM_ADDR00 AC25 DRAM_ADDR01 NVCC_DRAM DDR DRAM_ADDR01 AC26 DRAM_ADDR02 NVCC_DRAM DDR DRAM_ADDR02 AB25 DRAM_ADDR03 NVCC_DRAM DDR DRAM_ADDR03 AB24 DRAM_ADDR04 NVCC_DRAM DDR DRAM_ADDR04 AE23 DRAM_ADDR05 NVCC_DRAM DDR DRAM_ADDR05 AF23 DRAM_ADDR06 NVCC_DRAM DDR DRAM_ADDR06 AE22 DRAM_ADDR07 NVCC_DRAM DDR DRAM_ADDR07 AD22 DRAM_ADDR08 NVCC_DRAM DDR DRAM_ADDR08 AC22 DRAM_ADDR09 NVCC_DRAM DDR DRAM_ADDR09 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 122 NXP Semiconductors Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Default Mode1 Default Function1 Ball Ball Name Power Group Ball type1 AD23 DRAM_ADDR10 NVCC_DRAM DDR DRAM_ADDR10 AG27 DRAM_ADDR11 NVCC_DRAM DDR DRAM_ADDR11 AE27 DRAM_ADDR12 NVCC_DRAM DDR DRAM_ADDR12 AG28 DRAM_ADDR13 NVCC_DRAM DDR DRAM_ADDR13 AE20 DRAM_ADDR14 NVCC_DRAM DDR DRAM_ADDR14 AG26 DRAM_ADDR15 NVCC_DRAM DDR DRAM_ADDR15 AG25 DRAM_CAS_B NVCC_DRAM DDR DRAM_CAS_B AE26 DRAM_CS0_B NVCC_DRAM DDR DRAM_CS0_B AC23 DRAM_CS1_B NVCC_DRAM DDR DRAM_CS1_B AH22 DRAM_DATA00 NVCC_DRAM DDR DRAM_DATA00 AG19 DRAM_DATA01 NVCC_DRAM DDR DRAM_DATA01 AG20 DRAM_DATA02 NVCC_DRAM DDR DRAM_DATA02 AF22 DRAM_DATA03 NVCC_DRAM DDR DRAM_DATA03 AF20 DRAM_DATA04 NVCC_DRAM DDR DRAM_DATA04 AG22 DRAM_DATA05 NVCC_DRAM DDR DRAM_DATA05 AF21 DRAM_DATA06 NVCC_DRAM DDR DRAM_DATA06 AH20 DRAM_DATA07 NVCC_DRAM DDR DRAM_DATA07 AC18 DRAM_DATA08 NVCC_DRAM DDR DRAM_DATA08 AB18 DRAM_DATA09 NVCC_DRAM DDR DRAM_DATA09 AD16 DRAM_DATA10 NVCC_DRAM DDR DRAM_DATA10 AC16 DRAM_DATA11 NVCC_DRAM DDR DRAM_DATA11 AD18 DRAM_DATA12 NVCC_DRAM DDR DRAM_DATA12 AE18 DRAM_DATA13 NVCC_DRAM DDR DRAM_DATA13 AB16 DRAM_DATA14 NVCC_DRAM DDR DRAM_DATA14 AE16 DRAM_DATA15 NVCC_DRAM DDR DRAM_DATA15 W27 DRAM_DATA16 NVCC_DRAM DDR DRAM_DATA16 Y27 DRAM_DATA17 NVCC_DRAM DDR DRAM_DATA17 Y26 DRAM_DATA18 NVCC_DRAM DDR DRAM_DATA18 Y28 DRAM_DATA19 NVCC_DRAM DDR DRAM_DATA19 AA26 DRAM_DATA20 NVCC_DRAM DDR DRAM_DATA20 AB26 DRAM_DATA21 NVCC_DRAM DDR DRAM_DATA21 AB27 DRAM_DATA22 NVCC_DRAM DDR DRAM_DATA22 PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 123 Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Default Mode1 Default Function1 Ball Ball Name Power Group Ball type1 AB28 DRAM_DATA23 NVCC_DRAM DDR DRAM_DATA23 V23 DRAM_DATA24 NVCC_DRAM DDR DRAM_DATA24 V22 DRAM_DATA25 NVCC_DRAM DDR DRAM_DATA25 T23 DRAM_DATA26 NVCC_DRAM DDR DRAM_DATA26 T22 DRAM_DATA27 NVCC_DRAM DDR DRAM_DATA27 V24 DRAM_DATA28 NVCC_DRAM DDR DRAM_DATA28 V25 DRAM_DATA29 NVCC_DRAM DDR DRAM_DATA29 T25 DRAM_DATA30 NVCC_DRAM DDR DRAM_DATA30 T24 DRAM_DATA31 NVCC_DRAM DDR DRAM_DATA31 AH24 DRAM_DQM0 NVCC_DRAM DDR DRAM_DQM0 AD20 DRAM_DQM1 NVCC_DRAM DDR DRAM_DQM1 AD28 DRAM_DQM2 NVCC_DRAM DDR DRAM_DQM2 Y25 DRAM_DQM3 NVCC_DRAM DDR DRAM_DQM3 AF16 DRAM_ODT0 NVCC_DRAM DDR DRAM_ODT0 AH25 DRAM_RAS_B NVCC_DRAM DDR DRAM_RAS_B V26 DRAM_RESET NVCC_DRAM_CKE DDR DRAM_RESET AE28 DRAM_SDBA0 NVCC_DRAM DDR DRAM_SDBA0 AB22 DRAM_SDBA1 NVCC_DRAM DDR DRAM_SDBA1 AF27 DRAM_SDBA2 NVCC_DRAM DDR DRAM_SDBA2 Y22 DRAM_SDCKE0 NVCC_DRAM_CKE DDR DRAM_SDCKE0 AB23 DRAM_SDCKE1 NVCC_DRAM_CKE DDR DRAM_SDCKE1 AF25 DRAM_SDCLK0_N NVCC_DRAM DDRCLK DRAM_SDCLK0_N AE25 DRAM_SDCLK0_P NVCC_DRAM DDRCLK DRAM_SDCLK0_P AG23 DRAM_SDQS0_N NVCC_DRAM DDRCLK DRAM_SDQS0_N AG24 DRAM_SDQS0_P NVCC_DRAM DDRCLK DRAM_SDQS0_P AC20 DRAM_SDQS1_N NVCC_DRAM DDRCLK DRAM_SDQS1_N AB20 DRAM_SDQS1_P NVCC_DRAM DDRCLK DRAM_SDQS1_P AD27 DRAM_SDQS2_N NVCC_DRAM DDRCLK DRAM_SDQS2_N AC27 DRAM_SDQS2_P NVCC_DRAM DDRCLK DRAM_SDQS2_P Y24 DRAM_SDQS3_N NVCC_DRAM DDRCLK DRAM_SDQS3_N Y23 DRAM_SDQS3_P NVCC_DRAM DDRCLK DRAM_SDQS3_P AH27 DRAM_SDWE_B NVCC_DRAM DDR DRAM_SDWE_B PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 124 NXP Semiconductors Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU M03 ECSPI1_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[18] 100K PD L03 ECSPI1_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[17] 100K PD K02 ECSPI1_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[16] 100K PD N03 ECSPI1_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[19] 100K PD P02 ECSPI2_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[22] 100K PD N02 ECSPI2_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[21] 100K PD N01 ECSPI2_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[20] 100K PD R02 ECSPI2_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[23] 100K PD G18 ENET1_COL NVCC_ENET1 GPIO ALT5 GPIO7_IO[15] F18 ENET1_CRS NVCC_ENET1 GPIO ALT5 GPIO7_IO[14] F07 ENET1_RD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[0] E07 ENET1_RD1 NVCC_ENET1 GPIO ALT5 GPIO7_IO[1] D07 ENET1_RD2 NVCC_ENET1 GPIO ALT5 GPIO_IO[2] D16 ENET1_RD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[3] C06 ENET1_RX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[13] E11 ENET1_RX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[4] F11 ENET1_RXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[5] E13 ENET1_TD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[6] D13 ENET1_TD1 NVCC_ENET1 GPIO ALT5 GPIO_IO[7] E16 ENET1_TD2 NVCC_ENET1 GPIO ALT5 GPIO7_IO[8] F16 ENET1_TD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[9] F13 ENET1_TX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[12] G11 ENET1_TX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[10] G09 ENET1_TXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[11] L23 EPDC_BDR0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[28] L22 EPDC_BDR1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[29] T27 EPDC_D00 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[0] U26 EPDC_D01 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[1] T26 EPDC_D02 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[10] R27 EPDC_D03 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[11] N23 EPDC_D04 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[12] T28 EPDC_D05 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[13] i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 125 Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 P27 EPDC_D06 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[14] N28 EPDC_D07 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[15] N27 EPDC_D08 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[2] N26 EPDC_D09 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[3] N25 EPDC_D10 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[4] N24 EPDC_D11 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[5] M26 EPDC_D12 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[6] L26 EPDC_D13 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[7] L25 EPDC_D14 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[8] N22 EPDC_D15 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[9] J23 EPDC_GDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[24] J22 EPDC_GDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[25] L24 EPDC_GDRL NVCC_EPDC2 GPIO ALT5 GPIO2_IO[26] K27 EPDC_GDSP NVCC_EPDC2 GPIO ALT5 GPIO2_IO[27] J27 EPDC_PWRCOM NVCC_EPDC2 GPIO ALT5 GPIO2_IO[30] J26 EPDC_PWRSTAT NVCC_EPDC2 GPIO ALT5 GPIO2_IO[31] J25 EPDC_SDCE0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[20] J24 EPDC_SDCE1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[21] G22 EPDC_SDCE2 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[22] G23 EPDC_SDCE3 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[23] G24 EPDC_SDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[16] J28 EPDC_SDLE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[17] G25 EPDC_SDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[18] F26 EPDC_SDSHR NVCC_EPDC2 GPIO ALT5 GPIO2_IO[19] AF02 GPANAIO VDDA_1P8 GPIO V04 GPIO1_IO00 NVCC_GPIO1 GPIO ALT0 GPIO1_IO00 100K PU V05 GPIO1_IO01 NVCC_GPIO1 GPIO ALT0 GPIO1_IO01 100K PD Y07 GPIO1_IO02 NVCC_GPIO1 GPIO ALT0 GPIO1_IO02 100K PD Y06 GPIO1_IO03 NVCC_GPIO1 GPIO ALT0 GPIO1_IO03 100K PD Y05 GPIO1_IO04 NVCC_GPIO1 GPIO ALT0 GPIO1_IO04 100K PD Y04 GPIO1_IO05 NVCC_GPIO1 GPIO ALT0 GPIO1_IO05 100K PD V06 GPIO1_IO06 NVCC_GPIO1 GPIO ALT0 GPIO1_IO06 100K PD PD/PU GPANAIO i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 126 NXP Semiconductors Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU V07 GPIO1_IO07 NVCC_GPIO1 GPIO ALT0 GPIO1_IO07 100K PD AB03 GPIO1_IO08 NVCC_GPIO2 GPIO ALT0 GPIO1_IO08 100K PD AB04 GPIO1_IO09 NVCC_GPIO2 GPIO ALT0 GPIO1_IO09 100K PD AB05 GPIO1_IO10 NVCC_GPIO2 GPIO ALT0 GPIO1_IO10 100K PD AB06 GPIO1_IO11 NVCC_GPIO2 GPIO ALT0 GPIO1_IO11 100K PD AC06 GPIO1_IO12 NVCC_GPIO2 GPIO ALT0 GPIO1_IO12 100K PD AC05 GPIO1_IO13 NVCC_GPIO2 GPIO ALT0 GPIO1_IO13 100K PD AC04 GPIO1_IO14 NVCC_GPIO2 GPIO ALT0 GPIO1_IO14 100K PD AC03 GPIO1_IO15 NVCC_GPIO2 GPIO ALT0 GPIO1_IO15 100K PD N04 I2C1_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[8] 100K PD N05 I2C1_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[9] 100K PD N06 I2C2_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[10] 100K PD N07 I2C2_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[11] 100K PD T06 I2C3_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[12] 100K PD T07 I2C3_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[13] 100K PD T05 I2C4_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[14] 100K PD T04 I2C4_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[15] 100K PD AB01 JTAG_MOD NVCC_GPIO2 GPIO ALT0 JTAG_MOD 100K PU AD01 JTAG_TCK NVCC_GPIO2 GPIO ALT0 JTAG_TCK 47K PU AC02 JTAG_TDI NVCC_GPIO2 GPIO ALT0 JTAG_TDI 47K PU AE01 JTAG_TDO NVCC_GPIO2 GPIO ALT0 JTAG_TDO 100K PU AD02 JTAG_TMS NVCC_GPIO2 GPIO ALT0 JTAG_TMS 47K PU AB02 JTAG_TRST_B NVCC_GPIO2 GPIO ALT0 JTAG_TRST_B 47K PU D20 LCD_CLK NVCC_LCD GPIO ALT5 GPIO3_IO[0] F22 LCD_DATA00 NVCC_LCD GPIO ALT5 GPIO3_IO[5] F23 LCD_DATA01 NVCC_LCD GPIO ALT5 GPIO3_IO[6] E23 LCD_DATA02 NVCC_LCD GPIO ALT5 GPIO3_IO[7] E22 LCD_DATA03 NVCC_LCD GPIO ALT5 GPIO3_IO[8] D22 LCD_DATA04 NVCC_LCD GPIO ALT5 GPIO3_IO[9] D23 LCD_DATA05 NVCC_LCD GPIO ALT5 GPIO3_IO[10] E18 LCD_DATA06 NVCC_LCD GPIO ALT5 GPIO3_IO[11] D18 LCD_DATA07 NVCC_LCD GPIO ALT5 GPIO3_IO[12] i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 127 Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 F20 LCD_DATA08 NVCC_LCD GPIO ALT5 GPIO3_IO[13] G20 LCD_DATA09 NVCC_LCD GPIO ALT5 GPIO3_IO[14] A27 LCD_DATA10 NVCC_LCD GPIO ALT5 GPIO3_IO[15] E27 LCD_DATA11 NVCC_LCD GPIO ALT5 GPIO3_IO[16] F27 LCD_DATA12 NVCC_LCD GPIO ALT5 GPIO3_IO[17] E28 LCD_DATA13 NVCC_LCD GPIO ALT5 GPIO3_IO[18] G27 LCD_DATA14 NVCC_LCD GPIO ALT5 GPIO3_IO[19] B28 LCD_DATA15 NVCC_LCD GPIO ALT5 GPIO3_IO[20] C27 LCD_DATA16 NVCC_LCD GPIO ALT5 GPIO3_IO[21] D26 LCD_DATA17 NVCC_LCD GPIO ALT5 GPIO3_IO[22] D27 LCD_DATA18 NVCC_LCD GPIO ALT5 GPIO3_IO[23] D28 LCD_DATA19 NVCC_LCD GPIO ALT5 GPIO3_IO[24] G26 LCD_DATA20 NVCC_LCD GPIO ALT5 GPIO3_IO[25] H26 LCD_DATA21 NVCC_LCD GPIO ALT5 GPIO3_IO[26] B27 LCD_DATA22 NVCC_LCD GPIO ALT5 GPIO3_IO[27] D25 LCD_DATA23 NVCC_LCD GPIO ALT5 GPIO3_IO[28] G28 LCD_ENABLE NVCC_LCD GPIO ALT5 GPIO3_IO[1] F25 LCD_HSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[2] E20 LCD_RESET NVCC_LCD GPIO ALT5 GPIO3_IO[4] F24 LCD_VSYNC NVCC_LCD ALT5 GPIO3_IO[3] B16 MIPI_CSI_CLK_N MIPI_VDDA_1P8 MIPI_CSI_CLK_N A16 MIPI_CSI_CLK_P MIPI_VDDA_1P8 MIPI_CSI_CLK_P B18 MIPI_CSI_D0_N MIPI_VDDA_1P8 MIPI_CSI_D0_N A18 MIPI_CSI_D0_P MIPI_VDDA_1P8 MIPI_CSI_D0_P B15 MIPI_CSI_D1_N MIPI_VDDA_1P8 MIPI_CSI_D1_N B14 MIPI_CSI_D1_P MIPI_VDDA_1P8 MIPI_CSI_D1_P B24 MIPI_DSI_CLK_N MIPI_VDDA_1P8 MIPI_DSI_CLK_N A24 MIPI_DSI_CLK_P MIPI_VDDA_1P8 MIPI_DSI_CLK_P B25 MIPI_DSI_D0_N MIPI_VDDA_1P8 MIPI_DSI_D0_N A25 MIPI_DSI_D0_P MIPI_VDDA_1P8 MIPI_DSI_D0_P A22 MIPI_DSI_D1_N MIPI_VDDA_1P8 MIPI_DSI_D1_N B22 MIPI_DSI_D1_P MIPI_VDDA_1P8 MIPI_DSI_D1_P PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 128 NXP Semiconductors Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball type1 Default Mode1 Default Function1 Ball Ball Name Power Group AD13 ONOFF VDD_SNVS_IN ONOFF AG13 PCIE_REFCLKIN_N PCIE_VPH PCIE_REFCLKIN_N AH13 PCIE_REFCLKIN_P PCIE_VPH PCIE_REFCLKIN_P AG11 PCIE_REFCLKOUT_N PCIE_VPH PCIE_REFCLKOUT_N AH11 PCIE_REFCLKOUT_P PCIE_VPH PCIE_REFCLKOUT_P Y16 PCIE_REXT PCIE_VPH PCIE_REXT AG16 PCIE_RX_N PCIE_VPH_RX PCIE_RX_N AH16 PCIE_RX_P PCIE_VPH_RX PCIE_RX_P AG14 PCIE_TX_N PCIE_VPH_TX PCIE_TX_N AG15 PCIE_TX_P PCIE_VPH_TX PCIE_TX_P AD11 CCM_PMIC_STBY_REQ VDD_SNVS_IN Y03 POR_B NVCC_GPIO1 AG09 RTC_XTALI VDD_SNVS_1P8_CAP AH09 RTC_XTALO VDD_SNVS_1P8_CAP GPIO D03 SAI1_MCLK NVCC_SAI GPIO ALT5 GPIO6_IO[18] G04 SAI1_RXC NVCC_SAI GPIO ALT5 GPIO6_IO[17] F03 SAI1_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[12] C04 SAI1_RXFS NVCC_SAI GPIO ALT5 GPIO6_IO[16] F04 SAI1_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[13] G05 SAI1_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[15] F05 SAI1_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[14] E06 SAI2_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[21] D04 SAI2_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[20] D06 SAI2_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[22] F06 SAI2_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[19] A05 SD1_CD_B NVCC_SD1 GPIO ALT5 GPIO5_IO[0] B03 SD1_CLK NVCC_SD1 GPIO ALT5 GPIO5_IO[3] A02 SD1_CMD NVCC_SD1 GPIO ALT5 GPIO5_IO[4] B04 SD1_DATA0 NVCC_SD1 GPIO ALT5 GPIO5_IO[5] A04 SD1_DATA1 NVCC_SD1 GPIO ALT5 GPIO5_IO[6] B02 SD1_DATA2 NVCC_SD1 GPIO ALT5 GPIO5_IO[7] B01 SD1_DATA3 NVCC_SD1 GPIO ALT5 GPIO5_IO[8] GPIO PD/PU CCM_PMIC_STBY_REQ ALT0 POR_B 100K PU RTC_XTALI RTC_XTALO i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 129 Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 C02 SD1_RESET_B NVCC_SD1 GPIO ALT5 GPIO5_IO[2] D02 SD1_WP NVCC_SD1 GPIO ALT5 GPIO5_IO[1] E01 SD2_CD_B NVCC_SD2 GPIO ALT5 GPIO5_IO[9] G01 SD2_CLK NVCC_SD2 GPIO ALT5 GPIO5_IO[12] G02 SD2_CMD NVCC_SD2 GPIO ALT5 GPIO5_IO[13] F02 SD2_DATA0 NVCC_SD2 GPIO ALT5 GPIO5_IO[14] E02 SD2_DATA1 NVCC_SD2 GPIO ALT5 GPIO5_IO[15] H03 SD2_DATA2 NVCC_SD2 GPIO ALT5 GPIO5_IO[16] G03 SD2_DATA3 NVCC_SD2 GPIO ALT5 GPIO5_IO[17] J03 SD2_RESET_B NVCC_SD2 GPIO ALT5 GPIO5_IO[11] D01 SD2_WP NVCC_SD2 GPIO ALT5 GPIO5_IO[10] J06 SD3_CLK NVCC_SD3 GPIO ALT5 GPIO6_IO[0] L04 SD3_CMD NVCC_SD3 GPIO ALT5 GPIO6_IO[1] G06 SD3_DATA0 NVCC_SD3 GPIO ALT5 GPIO6_IO[2] G07 SD3_DATA1 NVCC_SD3 GPIO ALT5 GPIO6_IO[3] L07 SD3_DATA2 NVCC_SD3 GPIO ALT5 GPIO6_IO[4] L06 SD3_DATA3 NVCC_SD3 GPIO ALT5 GPIO6_IO[5] L05 SD3_DATA4 NVCC_SD3 GPIO ALT5 GPIO6_IO[6] J07 SD3_DATA5 NVCC_SD3 GPIO ALT5 GPIO6_IO[7] J05 SD3_DATA6 NVCC_SD3 GPIO ALT5 GPIO6_IO[8] J04 SD3_DATA7 NVCC_SD3 GPIO ALT5 GPIO6_IO[9] J02 SD3_RESET_B NVCC_SD3 GPIO ALT5 GPIO6_IO[11] J01 SD3_STROBE NVCC_SD3 ALT5 GPIO6_IO[10] AE13 SNVS_PMIC_ON_REQ VDD_SNVS_IN Analog SNVS_PMIC_ON_REQ AE11 SNVS_TAMPER0 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER0 AC11 SNVS_TAMPER1 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER1 AC09 SNVS_TAMPER2 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER2 AB09 SNVS_TAMPER9 VDD_SNVS_1P8_CAP PD/PU SNVS_TAMPER9 AF06 TEMPSENSOR_RESERVE VDD_TEMPSENSOR_1P8 AF07 TEMPSENSOR_REXT VDD_TEMPSENSOR_1P8 GPIO TEMPSENSOR_REXT AA03 TEST_MODE NVCC_GPIO1 GPIO ALT0 TEST_MODE T01 UART1_RXD NVCC_UART GPIO ALT5 GPIO4_IO[0] i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 130 NXP Semiconductors Package information and contact assignments Table 95. i.MX 7Dual 12 x 12 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 V01 UART1_TXD NVCC_UART GPIO ALT5 GPIO4_IO[1] T02 UART2_RXD NVCC_UART GPIO ALT5 GPIO4_IO[2] T03 UART2_TXD NVCC_UART GPIO ALT5 GPIO4_IO[3] V03 UART3_CTS NVCC_UART GPIO ALT5 GPIO4_IO[7] W02 UART3_RTS NVCC_UART GPIO ALT5 GPIO4_IO[6] V02 UART3_RXD NVCC_UART GPIO ALT5 GPIO4_IO[4] U03 UART3_TXD NVCC_UART ALT5 GPIO4_IO[5] A13 USB_H_DATA USB_H_VDD_1P2 USB_H_DATA B13 USB_H_STROBE USB_H_VDD_1P2 USB_H_STROBE B06 USB_OTG1_CHD_B USB_OTG1_VDDA_3P3 USB_OTG1_CHD_B B07 USB_OTG1_DN USB_OTG1_VDDA_3P3 USB_OTG1_DN A07 USB_OTG1_DP USB_OTG1_VDDA_3P3 USB_OTG1_DP B09 USB_OTG1_ID USB_OTG1_VDDA_3P3 USB_OTG1_ID C08 USB_OTG1_REXT USB_OTG1_VDDA_3P3 USB_OTG1_REXT B11 USB_OTG2_DN USB_OTG2_VDDA_3P3 USB_OTG2_DN A11 USB_OTG2_DP USB_OTG2_VDDA_3P3 USB_OTG2_DP B10 USB_OTG2_ID USB_OTG2_VDDA_3P3 USB_OTG2_ID A09 USB_OTG2_REXT USB_OTG2_VDDA_3P3 USB_OTG2_REXT AG02 XTALI VDDA_1P8 XTALI AG01 XTALO VDDA_1P8 XTALO 1 PD/PU The state immediately after RESET and before ROM firmware or software has executed. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 131 G 132 VSS USB_OTG1_REXT SAI2_TXD ENET1_RDATA2 VSS SAI2_RXD ENET1_RDATA1 SAI2_TXFS ENET1_RDATA0 SD3_DATA0 SD3_DATA1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 VDD_ARM MIPI_DSI_D1_N VDD_ARM VDD_ARM VDD_ARM LCD1_CLK VSS LCD1_RESET 20 LCD1_DATA10 VSS VSS LCD1_DATA22 LCD1_DATA15 VSS LCD1_DATA16 LCD1_DATA17 LCD1_DATA18 LCD1_DATA19 VSS LCD1_DATA11 LCD1_DATA13 LCD1_HSYNC EPDC1_SDSHR LCD1_DATA12 EPDC1_SDOE LCD1_DATA20 LCD1_DATA14 LCD1_ENABLE 24 25 26 27 28 MIPI_DSI_D0_P LCD1_VSYNC EPDC1_SDCLK 23 MIPI_DSI_D0_N VSS LCD1_DATA01 22 25 VSS LCD1_DATA02 E 24 LCD1_DATA23 VSS LCD1_DATA05 D EPDC1_SDCE3 23 MIPI_DSI_CLK_N MIPI_DSI_CLK_P VSS VDD_ARM 22 VSS MIPI_DSI_D1_P B LCD1_DATA04 21 A LCD1_DATA03 21 LCD1_DATA00 20 VSS LCD1_DATA08 19 EPDC1_SDCE2 LCD1_DATA09 MIPI_VREG_0P4V VDD_ARM MIPI_CSI_D0_P 18 VDD_ARM MIPI_CSI_D0_N VDD_ARM LCD1_DATA07 LCD1_DATA06 17 ENET1_CRS VDD_ARM VSS MIPI_CSI_CLK_N MIPI_CSI_CLK_P VDD_ARM ENET1_RDATA3 ENET1_TDATA2 16 VSS ENET1_TDATA3 15 ENET1_COL PVCC_ENET_CAP MIPI_CSI_D1_N VSS 14 VSS MIPI_CSI_D1_P VSS 13 VSS USB_H_DATA USB_H_STROBE VSS ENET1_TDATA1 ENET1_TDATA0 12 ENET1_TX_CLK USB_OTG2_DP USB_OTG2_DN VDD_USB_H_1P2 VDD_USB_OTG2_3P3_IN USB_OTG2_VBUS VSS ENET1_RX_CTL 11 VSS ENET1_RXC 10 VDD_USB_H_1P2 ENET1_TX_CTL USB_OTG2_ID 9 VSS 8 VSS USB_OTG2_REXT USB_OTG1_ID 7 VDD_USB_OTG2_1P0_CAP VDD_USB_OTG1_1P0_CAP VDD_USB_OTG1_3P3_IN USB_OTG1_VBUS 6 USB_OTG1_DP 5 USB_OTG1_DN 4 ENET1_TXC VSS VSS SAI1_TXD 3 VSS SD1_CD_B SD1_DATA0 SAI1_RXFS SAI2_TXC VSS SAI1_TXC SAI1_TXFS SAI1_RXC 6.1.3 ENET1_RX_CLK USB_OTG1_CHD_B SD1_DATA1 SD1_CLK SD1_CMD SD1_DATA2 VSS SD1_DATA3 SD1_RESET_B 1 SD1_WP F SAI1_MCLK E VSS C SD2_DATA1 VSS B SAI1_RXD A SD2_DATA0 SD2_WP 2 SD2_CMD D SD2_CD_B 1 SD2_DATA3 SD2_CLK Package information and contact assignments i.MX 7Dual 12 x 12 mm 0.4 mm Pitch Ball Map The following table shows the i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map. Table 96. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map 26 27 28 C F G i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors T VDD_SOC NVCC_SPI VDD_SOC NVCC_I2C 4 5 NXP Semiconductors 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 EPDC1_DATA07 EPDC1_DATA06 EPDC1_DATA08 VDD_ARM VDD_ARM VSS VSS EPDC1_SDLE EPDC1_GDSP EPDC1_PWRCOM EPDC1_PWRSTAT LCD1_DATA21 EPDC1_SDCE0 EPDC1_SDCE1 EPDC1_GDCLK 27 EPDC1_DATA05 EPDC1_DATA14 EPDC1_DATA09 EPDC1_DATA12 EPDC1_DATA13 VDD_ARM VSS VDD_ARM 26 EPDC1_DATA03 VDD_SOC VDD_SOC EPDC1_DATA10 EPDC1_GDRL EPDC1_BDR0 25 EPDC1_DATA00 DRAM_DATA30 VSS 24 EPDC1_DATA01 EPDC1_DATA02 VSS EPDC1_DATA11 EPDC1_DATA04 23 DRAM_DATA31 VDD_SOC 22 VDD_SOC EPDC1_GDOE 21 DRAM_DATA26 EPDC1_BDR1 20 EPDC1_DATA15 19 DRAM_DATA27 VDD_ARM VDD_ARM VDD_ARM 18 NVCC_LCD NVCC_ENET1 17 DRAM_VREF PVCC_EPDC_LCD_CAP NVCC_EPDC1 NVCC_EPDC2 VDD_SOC VDD_MIPI_1P0 16 VSS VSS 15 VSS VDD_SOC 14 VDDA_MIPI_1P8 13 PVCC_SAI_SD_CAP NVCC_SAI 12 VDD_SOC VSS VDD_SOC VSS 11 VDD_SOC NVCC_SD1 VDD_SOC SD3_DATA5 SD3_CLK 10 VDD_SOC VDD_SOC VDD_SOC VDD_SOC 9 VSS NVCC_SD2 SD3_DATA2 SD3_DATA3 VSS SD3_DATA6 SD3_DATA7 8 VSS NVCC_SD3 VSS SD3_CMD SD3_DATA4 7 NVCC_UART I2C2_SDA I2C2_SCL VSS SD2_RESET_B VDD_SOC 6 I2C3_SDA I2C3_SCL I2C1_SCL SD2_DATA2 SD3_RESET_B ECSPI1_SCLK 5 VSS VSS 3 2 4 I2C1_SDA M 3 I2C4_SCL I2C4_SDA VDD_SOC H ECSPI1_MISO ECSPI1_MOSI 2 ECSPI1_SS0 ECSPI2_MISO ECSPI2_MOSI VSS 1 VDD_SOC U VDD_SOC R ECSPI2_SS0 P UART2_TXD K UART2_RXD SD3_STROBE 1 UART3_TXD N VDD_SOC L ECSPI2_SCLK J UART1_RXD Package information and contact assignments Table 96. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued) 28 H J K L M N P R T U 28 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 133 AB 134 VSS VSS 7 8 9 GPIO1_IO00 GPIO1_IO01 GPIO1_IO06 GPIO1_IO07 DRAM_RESET NVCC_DRAM NVCC_DRAM DRAM_DATA16 DRAM_DATA21 DRAM_DATA20 DRAM_DATA18 DRAM_DATA17 DRAM_ADDR03 DRAM_ADDR01 DRAM_ADDR02 VSS DRAM_ADDR07 DRAM_ADDR05 20 21 22 23 19 DRAM_SDQS2_N DRAM_SDQS2_P DRAM_DATA22 DRAM_DATA23 DRAM_DQM2 DRAM_CS0_B DRAM_ADDR12 DRAM_SDBA0 24 AD DRAM_SDCLK0_P VSS DRAM_DATA19 DRAM_DQM3 DRAM_SDQS3_N 22 23 24 25 26 27 28 DRAM_DATA25 DRAM_DATA24 DRAM_DATA28 DRAM_DATA29 NVCC_DRAM 21 DRAM_SDQS3_P DRAM_SDCKE0 NVCC_DRAM_CKE VDD_SOC 20 VSS NVCC_DRAM DRAM_ZQPAD 19 DRAM_SDQS1_N DRAM_SDQS1_P DRAM_DATA09 VSS 18 NVCC_DRAM DRAM_DATA08 VSS PCIE_REXT 17 VSS DRAM_ADDR04 DRAM_ADDR00 DRAM_ADDR10 VSS 18 DRAM_DATA14 16 NVCC_DRAM DRAM_SDCKE1 DRAM_CS1_B DRAM_ADDR08 DRAM_ADDR14 17 15 DRAM_DATA11 15 VSS DRAM_SDBA1 DRAM_ADDR09 DRAM_DQM1 DRAM_DATA13 NVCC_DRAM DRAM_DATA12 VSS 16 14 PCIE_VPH 14 VSS 13 VDDA_PHY_1P8 12 VSS NVCC_DRAM DRAM_DATA10 DRAM_DATA15 13 VSS 12 VDD_SNVS_IN 11 PCIE_VP 11 VDDD_1P0_CAP ONOFF SNVS_PMIC_ON_REQ VDD_SOC FUSE_FSOURCE VSS 10 VDDD_1P0_CAP NVCC_GPIO2 PVCC_I2C_SPI_UART_CAP VSS 10 PMIC_STBY_REQ SNVS_TAMPER01 PVCC_GPIO_CAP VDD_1P2_CAP NVCC_GPIO1 GPIO1_IO02 GPIO1_IO03 9 VSS SNVS_TAMPER02 SNVS_TAMPER09 VSS 8 SNVS_TAMPER00 ADC1_IN3 ADC1_IN0 ADC1_IN1 ADC1_IN2 VSS 6 VSS GPIO1_IO11 GPIO1_IO12 VSS 5 VSS GPIO1_IO04 GPIO1_IO05 GPIO1_IO10 VSS GPIO1_IO09 4 GPIO1_IO13 CCM_CLK1_N 3 GPIO1_IO14 UART3_CTS 2 VSS UART3_RXD UART1_TXD VSS 1 UART3_RTS AE POR_B AC BOOT_MODE1 AA TEST_MODE W GPIO1_IO08 7 JTAG_TRST_B 6 JTAG_TDI 5 GPIO1_IO15 4 VSS BOOT_MODE0 3 JTAG_TMS JTAG_MOD Y 2 CCM_CLK2 JTAG_TCK V 1 CCM_CLK1_P AD JTAG_TDO Package information and contact assignments Table 96. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued) V W Y AA AE 25 26 27 28 AB AC i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors GPANAIO VSS AG XTALO XTALI VDDA_1P8_IN AH VDD_XTAL_1P8 AF VSS 1 2 VSS 4 5 NXP Semiconductors 6 VSS VSS DRAM_ODT0 NVCC_DRAM NVCC_DRAM DRAM_DATA04 DRAM_DATA03 DRAM_ADDR06 PCIE_TX_N PCIE_TX_P PCIE_RX_N NVCC_DRAM DRAM_DATA01 DRAM_DATA02 DRAM_DATA05 DRAM_SDQS0_N PCIE_RX_P NVCC_DRAM DRAM_DATA07 DRAM_DATA00 20 21 22 23 24 25 26 27 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 DRAM_SDBA2 19 VSS 18 DRAM_ADDR15 17 DRAM_SDCLK0_N 16 DRAM_CAS_B 15 DRAM_RAS_B 14 VSS 13 DRAM_SDQS0_P 12 DRAM_DQM0 11 DRAM_DATA06 VSS PCIE_REFCLKIN_N PCIE_REFCLKIN_P 10 NVCC_DRAM VSS PCIE_REFCLKOUT_N PCIE_REFCLKOUT_P 9 VDDD_1P0_CAP VSS VSS 8 VSS VSS 7 TEMPSENSOR_REXT 24 25 DRAM_ADDR11 DRAM_ADDR13 VSS 26 AG DRAM_SDWE_B 6 RTC_XTALI 5 RTC_XTALO 4 VDD_SNVS_1P8_CAP 3 VDDA_1P0_CAP 2 VDD_LPSR_1P0_CAP TEMPSENSOR_RESERVE VDDA_1P8_IN VDDA_1P8_IN VDD_LPSR_IN 3 VDDA_ADC1_1P8 1 VDD_TEMPSENSOR_1P8 Package information and contact assignments Table 96. i.MX 7Dual 12 x 12 mm 0.4 mm pitch ball map(continued) 28 AF AH 27 28 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 135 Package information and contact assignments 6.2 6.2.1 19 x 19 mm package information Case “Y”, 19 x 19 mm, 0.75 mm pitch, ball matrix Figure 84 shows the top, bottom, and side views of the 19×19 mm BGA package. Figure 84. 19 x 19 mm BGA, Case x Package Top, Bottom, and Side Views i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 136 NXP Semiconductors Package information and contact assignments 6.2.2 19 x 19 mm supplies contact assignments and functional contact assignments Table 97 shows supplies contact assignments for the 19 x 19 mm package. Table 97. i.MX 7Dual 19 x 19 mm supplies contact assignments Rail Pins Comments ADC2_VDDA_1P8 AB03 DRAM_VREF AC13 DRAM_ZQPAD AB13 FUSE_FSOURCE0 V08 GND A01,A03,A06,A09,A13,A17,A21,A25,B03,B06 Ground ,B09,B13,B17,B21,C09,C13,C15,C16,C18,C1 9,D01,D02,D04,D07,D10,D22,F07,F08,F11,F 13,G07,G04,G09,G11,G13,G15,G17,G19,G2 2,H01,H02,J07,J19,K04,K10,K12,K14,K16,K2 2,L07,L11,L13,L15,L19,M10,M12,M14,M16,M 24,M25,N04,N07,N11,N13,N15,N19,P10,P12, P14,P16,R07,R11,R13,R15,R19,R20,R21,R2 3,T04,T10,T12,T14,T16,T20,U07,U11,U19,U2 0,U23,V20,W01,W02,W04,W07,W09,W11,W1 3,W15,W17,W19,W20,W23,Y06,Y13,Y14,Y15 ,Y16,Y17,Y18,Y19,AA01,AA02,AA06,AA08,A A15,AA23,AB04,AB05,AB07,AB09,AB12,AC0 6,AC09,AC12,AC15,AC17,AC19,AC21,AC23, AD02,AD07,AD09,AD12,AE01,AE05,AE07,A E09,AE12,AE24,AE25 GPANIO V04 MIPI_VREG_0P4V H18 NVCC_DRAM T21,U21,V21,W21,Y21,AA16,AA17,AA18,AA 19,AA20,AA21 NVCC_DRAM_CKE Y20 NVCC_ENET1 H16 Supply for ENET interface NVCC_EPDC1 M18 Supply for EPDC interface NVCC_EPDC2 L17 Supply for EPDC interface NVCC_GPIO1 P08 Supply for GPIO1 interface NVCC_GPIO2 T08 Supply for GPIO2 interface NVCC_I2C M08 Supply for I2C interface NVCC_LCD K18 Supply for LCD interface NVCC_SAI F12 Supply for SAI interface NVCC_SD1 E07 Supply for SD card interface DDR output buffer driver calibration reference voltage input. Connect DRAM_ZQPAD to an external 240 Ω 1% resistor to Vss Test signal. Should be left unconnected. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 137 Package information and contact assignments Table 97. i.MX 7Dual 19 x 19 mm supplies contact assignments(continued) Rail Pins Comments NVCC_SD2 H08 Supply for SD card interface NVCC_SD3 K08 Supply for SD card interface NVCC_SPI L09 Supply for SPI interface NVCC_UART N09 Supply for UART interface PCIE_VP AA10 Supply for PCIe' interface PCIE_VP_RX AA12 Supply for PCIe PHY PCIE_VP_TX AA11 Supply for PCIe PHY PCIE_VPH Y10 PCIE_VPH_RX Y12 PCIE_VPH_TX Y11 PVCC_ENET_CAP H14 Secondary supply for ENET (internal regulator output). Requires external capacitors PVCC_EPDC_LCD_CAP N17 Secondary supply for EPDC_LCD (internal regulator output). Requires external capacitors PVCC_GPIO_CAP V10 Secondary supply for GPIO (internal regulator output). Requires external capacitors PVCC_I2C_SPI_UART_CAP R09 Secondary supply for I2C_SPI_UART (internal regulator output). Requires external capacitors PVCC_SAI_SD_CAP J09 Secondary supply for SAI_SD (internal regulator output). Requires external capacitors USB_OTG1_VBUS C08 USB_OTG1_VDDA_3P3_IN F10 USB_OTG2_VBUS C10 USB_OTG2_VDDA_3P3_IN F09 VDD_1P2_CAP U09 Supply for HSIC VDD_ARM C17,C20,D17,D20,F22,F23,J22,J23 Supply for ARM VDD_LPSR_1P0_CAP AC05 Secondary supply for LPSR (internal regulator output). Requires external capacitors VDD_LPSR_IN W06 Supply for LPSR VDD_SNVS_1P8_CAP AE08 Secondary supply for SNVS (internal regulator output). Requires external capacitors VDD_SNVS_IN AD08 Primary supply for the SNVS regulator VDD_SOC C14,D14,F03,F04,F18,F19,J03,J04,M03,M04, Supply for SOC P18,R03,R04,R17,T18,U13,U15,U17,V12,V1 4,V16,V18 VDD_TEMPSENSOR_1P8 AC04 Supply for VDDe PHY i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 138 NXP Semiconductors Package information and contact assignments Table 97. i.MX 7Dual 19 x 19 mm supplies contact assignments(continued) Rail Pins Comments VDD_USB_OTG1_1P0_CAP H10 Secondary supply for USB OTG (internal regulator output). Requires external capacitors VDD_USB_OTG2_1P0_CAP J11 Secondary supply for USB OTG (internal regulator output). Requires external capacitors VDD_XTAL_1P8 V05 VDDA_1P0_CAP V03 VDDA_1P8_IN V06,W05 VDDA_ADC1_1P8 AC03 VDDA_PHY_1P8 Y09 VDDD_1P0_CAP AA09 Secondary supply for 1P0 (internal regulator output). Requires external capacitors Supply for ADC Secondary supply for 1P0 (internal regulator output). Requires external capacitors Table 98 shows an alpha-sorted list of functional contact assignments for the 19 x 19 mm package. Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments Ball type1 Default Mode1 Default Function1 Ball Ball Name Power Group PD/PU AD01 ADC1_IN0 ADC1_VDDA_1P8 ADC1_IN0 AD03 ADC1_IN1 ADC1_VDDA_1P8 ADC1_IN1 AE02 ADC1_IN2 ADC1_VDDA_1P8 ADC1_IN2 AE03 ADC1_IN3 ADC1_VDDA_1P8 ADC1_IN3 AC01 ADC2_IN0 ADC2_VDDA_1P8 ADC2_IN0 AC02 ADC2_IN1 ADC2_VDDA_1P8 ADC2_IN1 AB01 ADC2_IN2 ADC2_VDDA_1P8 ADC2_IN2 AB02 ADC2_IN3 ADC2_VDDA_1P8 ADC2_IN3 P04 BOOT_MODE0 NVCC_GPIO1 GPIO ALT0 BOOT_MODE0 100K PD P05 BOOT_MODE1 NVCC_GPIO1 GPIO ALT0 BOOT_MODE1 100K PD Y01 CCM_CLK1_N VDDA_1P8 CCM_CLK1_N Y02 CCM_CLK1_P VDDA_1P8 CCM_CLK1_P W03 CCM_CLK2 VDDA_1P8 CCM_CLK2 AC07 CCM_PMIC_STBY_REQ VDD_SNVS_IN CCM_PMIC_STBY_REQ AB19 DRAM_ADDR00 NVCC_DRAM DDR DRAM_ADDR00 AB16 DRAM_ADDR01 NVCC_DRAM DDR DRAM_ADDR01 AC18 DRAM_ADDR02 NVCC_DRAM DDR DRAM_ADDR02 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 139 Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 AC20 DRAM_ADDR03 NVCC_DRAM DDR DRAM_ADDR03 AB21 DRAM_ADDR04 NVCC_DRAM DDR DRAM_ADDR04 Y23 DRAM_ADDR05 NVCC_DRAM DDR DRAM_ADDR05 V22 DRAM_ADDR06 NVCC_DRAM DDR DRAM_ADDR06 Y22 DRAM_ADDR07 NVCC_DRAM DDR DRAM_ADDR07 W22 DRAM_ADDR08 NVCC_DRAM DDR DRAM_ADDR08 V23 DRAM_ADDR09 NVCC_DRAM DDR DRAM_ADDR09 T23 DRAM_ADDR10 DDR DRAM_ADDR10 U22 DRAM_ADDR11 NVCC_DRAM DDR DRAM_ADDR11 T22 DRAM_ADDR12 NVCC_DRAM DDR DRAM_ADDR12 P23 DRAM_ADDR13 NVCC_DRAM DDR DRAM_ADDR13 AB18 DRAM_ADDR14 NVCC_DRAM DDR DRAM_ADDR14 AB20 DRAM_ADDR15 NVCC_DRAM DDR DRAM_ADDR15 AC14 DRAM_CAS_B NVCC_DRAM DDR DRAM_CAS_B AB23 DRAM_CS0_B NVCC_DRAM DDR DRAM_CS0_B AA22 DRAM_CS1_B NVCC_DRAM DDR DRAM_CS1_B AD22 DRAM_DATA00 NVCC_DRAM DDR DRAM_DATA00 AD23 DRAM_DATA01 NVCC_DRAM DDR DRAM_DATA01 AE20 DRAM_DATA02 NVCC_DRAM DDR DRAM_DATA02 AE23 DRAM_DATA03 NVCC_DRAM DDR DRAM_DATA03 AE22 DRAM_DATA04 NVCC_DRAM DDR DRAM_DATA04 AD19 DRAM_DATA05 NVCC_DRAM DDR DRAM_DATA05 AD18 DRAM_DATA06 NVCC_DRAM DDR DRAM_DATA06 AE19 DRAM_DATA07 NVCC_DRAM DDR DRAM_DATA07 AE14 DRAM_DATA08 NVCC_DRAM DDR DRAM_DATA08 AE18 DRAM_DATA09 NVCC_DRAM DDR DRAM_DATA09 AE17 DRAM_DATA10 NVCC_DRAM DDR DRAM_DATA10 AD16 DRAM_DATA11 NVCC_DRAM DDR DRAM_DATA11 AE16 DRAM_DATA12 NVCC_DRAM DDR DRAM_DATA12 AD14 DRAM_DATA13 NVCC_DRAM DDR DRAM_DATA13 AD13 DRAM_DATA14 NVCC_DRAM DDR DRAM_DATA14 AE13 DRAM_DATA15 NVCC_DRAM DDR DRAM_DATA15 PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 140 NXP Semiconductors Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 AA25 DRAM_DATA16 NVCC_DRAM DDR DRAM_DATA16 W24 DRAM_DATA17 NVCC_DRAM DDR DRAM_DATA17 V25 DRAM_DATA18 NVCC_DRAM DDR DRAM_DATA18 W25 DRAM_DATA19 NVCC_DRAM DDR DRAM_DATA19 AC25 DRAM_DATA20 NVCC_DRAM DDR DRAM_DATA20 AB25 DRAM_DATA21 NVCC_DRAM DDR DRAM_DATA21 AB24 DRAM_DATA22 NVCC_DRAM DDR DRAM_DATA22 AC24 DRAM_DATA23 NVCC_DRAM DDR DRAM_DATA23 R25 DRAM_DATA24 NVCC_DRAM DDR DRAM_DATA24 N24 DRAM_DATA25 NVCC_DRAM DDR DRAM_DATA25 P25 DRAM_DATA26 NVCC_DRAM DDR DRAM_DATA26 N25 DRAM_DATA27 NVCC_DRAM DDR DRAM_DATA27 U25 DRAM_DATA28 NVCC_DRAM DDR DRAM_DATA28 R24 DRAM_DATA29 NVCC_DRAM DDR DRAM_DATA29 U24 DRAM_DATA30 NVCC_DRAM DDR DRAM_DATA30 V24 DRAM_DATA31 NVCC_DRAM DDR DRAM_DATA31 AD20 DRAM_DQM0 NVCC_DRAM DDR DRAM_DQM0 AD17 DRAM_DQM1 NVCC_DRAM DDR DRAM_DQM1 AA24 DRAM_DQM2 NVCC_DRAM DDR DRAM_DQM2 P24 DRAM_DQM3 NVCC_DRAM DDR DRAM_DQM3 AC16 DRAM_ODT0 NVCC_DRAM DDR DRAM_ODT0 AA14 DRAM_ODT1 NVCC_DRAM DDR DRAM_ODT1 AB15 DRAM_RAS_B NVCC_DRAM DDR DRAM_RAS_B AC22 DRAM_RESET NVCC_DRAM_CKE DDR DRAM_RESET R22 DRAM_SDBA0 NVCC_DRAM DDR DRAM_SDBA0 P22 DRAM_SDBA1 NVCC_DRAM DDR DRAM_SDBA1 N23 DRAM_SDBA2 NVCC_DRAM DDR DRAM_SDBA2 AB17 DRAM_SDCKE0 NVCC_DRAM_CKE DDR DRAM_SDCKE0 AB22 DRAM_SDCKE1 NVCC_DRAM_CKE DDR DRAM_SDCKE1 AD25 DRAM_SDCLK0_N NVCC_DRAM DDRCLK DRAM_SDCLK0_N AD24 DRAM_SDCLK0_P NVCC_DRAM DDRCLK DRAM_SDCLK0_P AD21 DRAM_SDQS0_N NVCC_DRAM DDRCLK DRAM_SDQS0_N PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 141 Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 AE21 DRAM_SDQS0_P NVCC_DRAM DDRCLK DRAM_SDQS0_P AE15 DRAM_SDQS1_N NVCC_DRAM DDRCLK DRAM_SDQS1_N AD15 DRAM_SDQS1_P NVCC_DRAM DDRCLK DRAM_SDQS1_P Y25 DRAM_SDQS2_N NVCC_DRAM DDRCLK DRAM_SDQS2_N Y24 DRAM_SDQS2_P NVCC_DRAM DDRCLK DRAM_SDQS2_P T25 DRAM_SDQS3_N NVCC_DRAM DDRCLK DRAM_SDQS3_N T24 DRAM_SDQS3_P NVCC_DRAM DDRCLK DRAM_SDQS3_P AB14 DRAM_SDWE_B NVCC_DRAM DDR DRAM_SDWE_B H04 ECSPI1_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[18] 100K PD G05 ECSPI1_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[17] 100K PD H03 ECSPI1_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[16] 100K PD H05 ECSPI1_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[19] 100K PD H06 ECSPI2_MISO NVCC_SPI GPIO ALT5 GPIO4_IO[22] 100K PD G06 ECSPI2_MOSI NVCC_SPI GPIO ALT5 GPIO4_IO[21] 100K PD J05 ECSPI2_SCLK NVCC_SPI GPIO ALT5 GPIO4_IO[20] 100K PD J06 ECSPI2_SS0 NVCC_SPI GPIO ALT5 GPIO4_IO[23] 100K PD D19 ENET1_COL NVCC_ENET1 GPIO ALT5 GPIO7_IO[15] 100K PD E19 ENET1_CRS NVCC_ENET1 GPIO ALT5 GPIO7_IO[14] 100K PD E14 ENET1_RD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[0] 100K PD F14 ENET1_RD1 NVCC_ENET1 GPIO ALT5 GPIO7_IO[1] 100K PD D13 ENET1_RD2 NVCC_ENET1 GPIO ALT5 GPIO_IO[2] 100K PD E13 ENET1_RD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[3] 100K PD D15 ENET1_RX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[13] 100K PD E15 ENET1_RX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[4] 100K PD F15 ENET1_RXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[5] 100K PD F17 ENET1_TD0 NVCC_ENET1 GPIO ALT5 GPIO7_IO[6] 100K PD E17 ENET1_TD1 NVCC_ENET1 GPIO ALT5 GPIO_IO[7] 100K PD E18 ENET1_TD2 NVCC_ENET1 GPIO ALT5 GPIO7_IO[8] 100K PD D18 ENET1_TD3 NVCC_ENET1 GPIO ALT5 GPIO7_IO[9] 100K PD D16 ENET1_TX_CLK NVCC_ENET1 GPIO ALT5 GPIO7_IO[12] 100K PD E16 ENET1_TX_CTL NVCC_ENET1 GPIO ALT5 GPIO7_IO[10] 100K PD F16 ENET1_TXC NVCC_ENET1 GPIO ALT5 GPIO7_IO[11] 100K PD PD/PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 142 NXP Semiconductors Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU K24 EPDC_BDR0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[28] 100K PD K23 EPDC_BDR1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[29] 100K PD P20 EPDC_D00 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[0] 100K PD P21 EPDC_D01 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[1] 100K PD N20 EPDC_D02 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[10] 100K PD N21 EPDC_D03 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[11] 100K PD N22 EPDC_D04 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[12] 100K PD M20 EPDC_D05 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[13] 100K PD M21 EPDC_D06 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[14] 100K PD M22 EPDC_D07 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[15] 100K PD M23 EPDC_D08 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[2] 100K PD L25 EPDC_D09 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[3] 100K PD L24 EPDC_D10 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[4] 100K PD L23 EPDC_D11 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[5] 100K PD L22 EPDC_D12 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[6] 100K PD L21 EPDC_D13 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[7] 100K PD L20 EPDC_D14 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[8] 100K PD K25 EPDC_D15 NVCC_EPDC1 GPIO ALT5 GPIO2_IO[9] 100K PD J25 EPDC_GDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[24] 100K PD J24 EPDC_GDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[25] 100K PD K21 EPDC_GDRL NVCC_EPDC2 GPIO ALT5 GPIO2_IO[26] 100K PD H25 EPDC_GDSP NVCC_EPDC2 GPIO ALT5 GPIO2_IO[27] 100K PD H24 EPDC_PWRCOM NVCC_EPDC2 GPIO ALT5 GPIO2_IO[30] 100K PD K20 EPDC_PWRSTAT NVCC_EPDC2 GPIO ALT5 GPIO2_IO[31] 100K PD G25 EPDC_SDCE0 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[20] 100K PD G24 EPDC_SDCE1 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[21] 100K PD H23 EPDC_SDCE2 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[22] 100K PD H22 EPDC_SDCE3 NVCC_EPDC2 GPIO ALT5 GPIO2_IO[23] 100K PD J21 EPDC_SDCLK NVCC_EPDC2 GPIO ALT5 GPIO2_IO[16] 100K PD J20 EPDC_SDLE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[17] 100K PD H21 EPDC_SDOE NVCC_EPDC2 GPIO ALT5 GPIO2_IO[18] 100K PD H20 EPDC_SDSHR NVCC_EPDC2 GPIO ALT5 GPIO2_IO[19] 100K PD i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 143 Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU N01 GPIO1_IO00 NVCC_GPIO1 GPIO ALT0 GPIO1_IO00 100K PU N02 GPIO1_IO01 NVCC_GPIO1 GPIO ALT0 GPIO1_IO01 100K PD N03 GPIO1_IO02 NVCC_GPIO1 GPIO ALT0 GPIO1_IO02 100K PD N05 GPIO1_IO03 NVCC_GPIO1 GPIO ALT0 GPIO1_IO03 100K PD N06 GPIO1_IO04 NVCC_GPIO1 GPIO ALT0 GPIO1_IO04 100K PD P01 GPIO1_IO05 NVCC_GPIO1 GPIO ALT0 GPIO1_IO05 100K PD P02 GPIO1_IO06 NVCC_GPIO1 GPIO ALT0 GPIO1_IO06 100K PD P03 GPIO1_IO07 NVCC_GPIO1 GPIO ALT0 GPIO1_IO07 100K PD R01 GPIO1_IO08 NVCC_GPIO2 GPIO ALT0 GPIO1_IO08 100K PD R02 GPIO1_IO09 NVCC_GPIO2 GPIO ALT0 GPIO1_IO09 100K PD R05 GPIO1_IO10 NVCC_GPIO2 GPIO ALT0 GPIO1_IO10 100K PD T01 GPIO1_IO11 NVCC_GPIO2 GPIO ALT0 GPIO1_IO11 100K PD T02 GPIO1_IO12 NVCC_GPIO2 GPIO ALT0 GPIO1_IO12 100K PD T03 GPIO1_IO13 NVCC_GPIO2 GPIO ALT0 GPIO1_IO13 100K PD T05 GPIO1_IO14 NVCC_GPIO2 GPIO ALT0 GPIO1_IO14 100K PD T06 GPIO1_IO15 NVCC_GPIO2 GPIO ALT0 GPIO1_IO15 100K PD J02 I2C1_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[8] 100K PD K01 I2C1_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[9] 100K PD K02 I2C2_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[10] 100K PD K03 I2C2_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[11] 100K PD K05 I2C3_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[12] 100K PD K06 I2C3_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[13] 100K PD L01 I2C4_SCL NVCC_I2C GPIO ALT5 GPIO4_IO[14] 100K PD L02 I2C4_SDA NVCC_I2C GPIO ALT5 GPIO4_IO[15] 100K PD U01 JTAG_MOD NVCC_GPIO2 GPIO ALT0 JTAG_MOD 100K PU U05 JTAG_TCK NVCC_GPIO2 GPIO ALT0 JTAG_TCK 47K PU U03 JTAG_TDI NVCC_GPIO2 GPIO ALT0 JTAG_TDI 47K PU U06 JTAG_TDO NVCC_GPIO2 GPIO ALT0 JTAG_TDO 100K PU U04 JTAG_TMS NVCC_GPIO2 GPIO ALT0 JTAG_TMS 47K PU U02 JTAG_TRST_B NVCC_GPIO2 GPIO ALT0 JTAG_TRST_B 47K PU E20 LCD_CLK NVCC_LCD GPIO ALT5 GPIO3_IO[0] 100K PD D21 LCD_DATA00 NVCC_LCD GPIO ALT5 GPIO3_IO[5] 100K PD i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 144 NXP Semiconductors Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU A22 LCD_DATA01 NVCC_LCD GPIO ALT5 GPIO3_IO[6] 100K PD B22 LCD_DATA02 NVCC_LCD GPIO ALT5 GPIO3_IO[7] 100K PD A23 LCD_DATA03 NVCC_LCD GPIO ALT5 GPIO3_IO[8] 100K PD C22 LCD_DATA04 NVCC_LCD GPIO ALT5 GPIO3_IO[9] 100K PD B23 LCD_DATA05 NVCC_LCD GPIO ALT5 GPIO3_IO[10] 100K PD A24 LCD_DATA06 NVCC_LCD GPIO ALT5 GPIO3_IO[11] 100K PD F20 LCD_DATA07 NVCC_LCD GPIO ALT5 GPIO3_IO[12] 100K PD E21 LCD_DATA08 NVCC_LCD GPIO ALT5 GPIO3_IO[13] 100K PD C23 LCD_DATA09 NVCC_LCD GPIO ALT5 GPIO3_IO[14] 100K PD B24 LCD_DATA10 NVCC_LCD GPIO ALT5 GPIO3_IO[15] 100K PD G20 LCD_DATA11 NVCC_LCD GPIO ALT5 GPIO3_IO[16] 100K PD F21 LCD_DATA12 NVCC_LCD GPIO ALT5 GPIO3_IO[17] 100K PD E22 LCD_DATA13 NVCC_LCD GPIO ALT5 GPIO3_IO[18] 100K PD D23 LCD_DATA14 NVCC_LCD GPIO ALT5 GPIO3_IO[19] 100K PD C24 LCD_DATA15 NVCC_LCD GPIO ALT5 GPIO3_IO[20] 100K PD B25 LCD_DATA16 NVCC_LCD GPIO ALT5 GPIO3_IO[21] 100K PD G21 LCD_DATA17 NVCC_LCD GPIO ALT5 GPIO3_IO[22] 100K PD E23 LCD_DATA18 NVCC_LCD GPIO ALT5 GPIO3_IO[23] 100K PD D24 LCD_DATA19 NVCC_LCD GPIO ALT5 GPIO3_IO[24] 100K PD C25 LCD_DATA20 NVCC_LCD GPIO ALT5 GPIO3_IO[25] 100K PD E24 LCD_DATA21 NVCC_LCD GPIO ALT5 GPIO3_IO[26] 100K PD D25 LCD_DATA22 NVCC_LCD GPIO ALT5 GPIO3_IO[27] 100K PD G23 LCD_DATA23 NVCC_LCD GPIO ALT5 GPIO3_IO[28] 100K PD F25 LCD_ENABLE NVCC_LCD GPIO ALT5 GPIO3_IO[1] 100K PD E25 LCD_HSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[2] 100K PD C21 LCD_RESET NVCC_LCD GPIO ALT5 GPIO3_IO[4] 100K PD F24 LCD_VSYNC NVCC_LCD GPIO ALT5 GPIO3_IO[3] 100K PD A15 MIPI_CSI_CLK_N MIPI_VDDA_1P8 MIPI_CSI_CLK_N B15 MIPI_CSI_CLK_P MIPI_VDDA_1P8 MIPI_CSI_CLK_P A16 MIPI_CSI_D0_N MIPI_VDDA_1P8 MIPI_CSI_D0_N B16 MIPI_CSI_D0_P MIPI_VDDA_1P8 MIPI_CSI_D0_P A14 MIPI_CSI_D1_N MIPI_VDDA_1P8 MIPI_CSI_D1_N i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 145 Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball type1 Default Mode1 Default Function1 Ball Ball Name Power Group B14 MIPI_CSI_D1_P MIPI_VDDA_1P8 MIPI_CSI_D1_P A19 MIPI_DSI_CLK_N MIPI_VDDA_1P8 MIPI_DSI_CLK_N B19 MIPI_DSI_CLK_P MIPI_VDDA_1P8 MIPI_DSI_CLK_P A20 MIPI_DSI_D0_N MIPI_VDDA_1P8 MIPI_DSI_D0_N B20 MIPI_DSI_D0_P MIPI_VDDA_1P8 MIPI_DSI_D0_P A18 MIPI_DSI_D1_N MIPI_VDDA_1P8 MIPI_DSI_D1_N B18 MIPI_DSI_D1_P MIPI_VDDA_1P8 MIPI_DSI_D1_P J13 MIPI_VDDA_1P8 MIPI_VDDA_1P8 MIPI_VDDA_1P8 J15 MIPI_VDDD_1P0 MIPI_VDDD_1P0 MIPI_VDDD_1P0 J17 MIPI_VDDD_1P0 MIPI_VDDD_1P0 MIPI_VDDD_1P0 AC08 ONOFF VDD_SNVS_IN ONOFF AE10 PCIE_REFCLKIN_N PCIE_VPH PCIE_REFCLKIN_N AD10 PCIE_REFCLKIN_P PCIE_VPH PCIE_REFCLKIN_P AC10 PCIE_REFCLKOUT_N PCIE_VPH PCIE_REFCLKOUT_N AB10 PCIE_REFCLKOUT_P PCIE_VPH PCIE_REFCLKOUT_P AA13 PCIE_REXT PCIE_VPH PCIE_REXT AE11 PCIE_RX_N PCIE_VPH_RX PCIE_RX_N AD11 PCIE_RX_P PCIE_VPH_RX PCIE_RX_P AC11 PCIE_TX_N PCIE_VPH_TX PCIE_TX_N AB11 PCIE_TX_P PCIE_VPH_TX PCIE_TX_P AA10 PCIE_VP PCIE_VP PCIE_VP AA12 PCIE_VP_RX PCIE_VP_RX PCIE_VP_RX AA11 PCIE_VP_TX PCIE_VP_TX PCIE_VP_TX Y10 PCIE_VPH PCIE_VPH PCIE_VPH Y12 PCIE_VPH_RX PCIE_VPH_RX PCIE_VPH_RX Y11 PCIE_VPH_TX PCIE_VPH_TX PCIE_VPH_TX R06 POR_B NVCC_GPIO1 AE06 RTC_XTALI VDD_SNVS_1P8_CAP RTC_XTALI AD06 RTC_XTALO VDD_SNVS_1P8_CAP RTC_XTALO E10 SAI1_MCLK NVCC_SAI GPIO ALT5 GPIO6_IO[18] 100K PD D12 SAI1_RXC NVCC_SAI GPIO ALT5 GPIO6_IO[17] 100K PD E12 SAI1_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[12] 100K PD GPIO ALT0 POR_B PD/PU 100K PU i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 146 NXP Semiconductors Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU C12 SAI1_RXFS NVCC_SAI GPIO ALT5 GPIO6_IO[16] 100K PD C11 SAI1_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[13] 100K PD E11 SAI1_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[15] 100K PD D11 SAI1_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[14] 100K PD E09 SAI2_RXD NVCC_SAI GPIO ALT5 GPIO6_IO[21] 100K PD D08 SAI2_TXC NVCC_SAI GPIO ALT5 GPIO6_IO[20] 100K PD E08 SAI2_TXD NVCC_SAI GPIO ALT5 GPIO6_IO[22] 100K PD D09 SAI2_TXFS NVCC_SAI GPIO ALT5 GPIO6_IO[19] 100K PD C06 SD1_CD_B NVCC_SD1 GPIO ALT5 GPIO5_IO[0] 100K PD B05 SD1_CLK NVCC_SD1 GPIO ALT5 GPIO5_IO[3] 100K PD C05 SD1_CMD NVCC_SD1 GPIO ALT5 GPIO5_IO[4] 100K PD A05 SD1_DATA0 NVCC_SD1 GPIO ALT5 GPIO5_IO[5] 100K PD D06 SD1_DATA1 NVCC_SD1 GPIO ALT5 GPIO5_IO[6] 100K PD A04 SD1_DATA2 NVCC_SD1 GPIO ALT5 GPIO5_IO[7] 100K PD D05 SD1_DATA3 NVCC_SD1 GPIO ALT5 GPIO5_IO[8] 100K PD B04 SD1_RESET_B NVCC_SD1 GPIO ALT5 GPIO5_IO[2] 100K PD C04 SD1_WP NVCC_SD1 GPIO ALT5 GPIO5_IO[1] 100K PD D03 SD2_CD_B NVCC_SD2 GPIO ALT5 GPIO5_IO[9] 100K PD E03 SD2_CLK NVCC_SD2 GPIO ALT5 GPIO5_IO[12] 100K PD F06 SD2_CMD NVCC_SD2 GPIO ALT5 GPIO5_IO[13] 100K PD E04 SD2_DATA0 NVCC_SD2 GPIO ALT5 GPIO5_IO[14] 100K PD E05 SD2_DATA1 NVCC_SD2 GPIO ALT5 GPIO5_IO[15] 100K PD F05 SD2_DATA2 NVCC_SD2 GPIO ALT5 GPIO5_IO[16] 100K PD E06 SD2_DATA3 NVCC_SD2 GPIO ALT5 GPIO5_IO[17] 100K PD G03 SD2_RESET_B NVCC_SD2 GPIO ALT5 GPIO5_IO[11] 100K PD C03 SD2_WP NVCC_SD2 GPIO ALT5 GPIO5_IO[10] 100K PD C01 SD3_CLK NVCC_SD3 GPIO ALT5 GPIO6_IO[0] 100K PD E01 SD3_CMD NVCC_SD3 GPIO ALT5 GPIO6_IO[1] 100K PD B02 SD3_DATA0 NVCC_SD3 GPIO ALT5 GPIO6_IO[2] 100K PD A02 SD3_DATA1 NVCC_SD3 GPIO ALT5 GPIO6_IO[3] 100K PD G02 SD3_DATA2 NVCC_SD3 GPIO ALT5 GPIO6_IO[4] 100K PD F01 SD3_DATA3 NVCC_SD3 GPIO ALT5 GPIO6_IO[5] 100K PD i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 147 Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) Ball Ball Name Power Group Ball type1 Default Mode1 Default Function1 PD/PU F02 SD3_DATA4 NVCC_SD3 GPIO ALT5 GPIO6_IO[6] 100K PD E02 SD3_DATA5 NVCC_SD3 GPIO ALT5 GPIO6_IO[7] 100K PD C02 SD3_DATA6 NVCC_SD3 GPIO ALT5 GPIO6_IO[8] 100K PD B01 SD3_DATA7 NVCC_SD3 GPIO ALT5 GPIO6_IO[9] 100K PD G01 SD3_RESET_B NVCC_SD3 GPIO ALT5 GPIO6_IO[11] 100K PD J01 SD3_STROBE NVCC_SD3 GPIO ALT5 GPIO6_IO[10] 100K PD AB08 SNVS_PMIC_ON_REQ VDD_SNVS_IN AA07 SNVS_TAMPER0 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER0 Y08 SNVS_TAMPER1 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER1 AB06 SNVS_TAMPER2 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER2 Y07 SNVS_TAMPER3 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER3 AA05 SNVS_TAMPER4 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER4 Y05 SNVS_TAMPER5 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER5 AA04 SNVS_TAMPER6 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER6 Y04 SNVS_TAMPER7 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER7 AA03 SNVS_TAMPER8 VDDD_SNVS_1P8_CAP Analog SNVS_TAMPER8 Y03 SNVS_TAMPER9 VDD_SNVS_1P8_CAP Analog SNVS_TAMPER9 AE04 TEMPSENSOR_REXT VDD_TEMPSENSOR_1P8 SNVS_PMIC_ON_REQ TEMPSENSOR_REXT AD04 TEMPSENSOR_TEST_OUT VDD_TEMPSENSOR_1P8 TEMPSENSOR_TEST_OUT P06 TEST_MODE NVCC_GPIO1 GPIO ALT0 TEST_MODE 100K PD L03 UART1_RXD NVCC_UART GPIO ALT5 GPIO4_IO[0] 100K PD L04 UART1_TXD NVCC_UART GPIO ALT5 GPIO4_IO[1] 100K PD L05 UART2_RXD NVCC_UART GPIO ALT5 GPIO4_IO[2] 100K PD L06 UART2_TXD NVCC_UART GPIO ALT5 GPIO4_IO[3] 100K PD M06 UART3_CTS NVCC_UART GPIO ALT5 GPIO4_IO[7] 100K PD M05 UART3_RTS NVCC_UART GPIO ALT5 GPIO4_IO[6] 100K PD M01 UART3_RXD NVCC_UART GPIO ALT5 GPIO4_IO[4] 100K PD M02 UART3_TXD NVCC_UART GPIO ALT5 GPIO4_IO[5] 100K PD A12 USB_H_DATA USB_H_VDD_1P2 USB_H_DATA B12 USB_H_STROBE USB_H_VDD_1P2 USB_H_STROBE C07 USB_OTG1_CHD_B USB_OTG1_VDDA_3P3 USB_OTG1_CHD_B A08 USB_OTG1_DN USB_OTG1_VDDA_3P3 USB_OTG1_DN i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 148 NXP Semiconductors Package information and contact assignments Table 98. i.MX 7Dual 19 x 19 mm functional contact assignments(continued) 1 Ball type1 Default Mode1 Default Function1 Ball Ball Name Power Group PD/PU B08 USB_OTG1_DP USB_OTG1_VDDA_3P3 USB_OTG1_DP B07 USB_OTG1_ID USB_OTG1_VDDA_3P3 USB_OTG1_ID A07 USB_OTG1_REXT USB_OTG1_VDDA_3P3 USB_OTG1_REXT A10 USB_OTG2_DN USB_OTG2_VDDA_3P3 USB_OTG2_DN B10 USB_OTG2_DP USB_OTG2_VDDA_3P3 USB_OTG2_DP B11 USB_OTG2_ID USB_OTG2_VDDA_3P3 USB_OTG2_ID A11 USB_OTG2_REXT USB_OTG2_VDDA_3P3 USB_OTG2_REXT V01 XTALI VDDA_1P8 XTALI V02 XTALO VDDA_1P8 XTALO The state immediately after RESET and before ROM firmware or software has executed. Case “Y”, i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map 6.2.3 The following table shows the i.MX 7Dual 19 × 19 mm, 0.75 mm pitch ball map. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 A VSS SD3_DATA1 VSS SD1_DATA2 SD1_DATA0 VSS USB_OTG1_REXT USB_OTG1_DN VSS USB_OTG2_DN USB_OTG2_REXT USB_H_DATA VSS MIPI_CSI_D1_N MIPI_CSI_CLK_N MIPI_CSI_D0_N VSS MIPI_DSI_D1_N MIPI_DSI_CLK_N MIPI_DSI_D0_N VSS LCD1_DATA01 LCD1_DATA03 LCD1_DATA06 VSS A B SD3_DATA7 SD3_DATA0 VSS SD1_RESET_B SD1_CLK VSS USB_OTG1_ID USB_OTG1_DP VSS USB_OTG2_DP USB_OTG2_ID USB_H_STROBE VSS MIPI_CSI_D1_P MIPI_CSI_CLK_P MIPI_CSI_D0_P VSS MIPI_DSI_D1_P MIPI_DSI_CLK_P MIPI_DSI_D0_P VSS LCD1_DATA02 LCD1_DATA05 LCD1_DATA10 LCD1_DATA16 B C SD3_CLK SD3_DATA6 SD2_WP SD1_WP SD1_CMD SD1_CD_B USB_OTG1_CHD_B USB_OTG1_VBUS VSS USB_OTG2_VBUS SAI1_TXC SAI1_RXFS VSS VDD_SOC VSS VSS VDD_ARM VSS VSS VDD_ARM LCD1_RESET LCD1_DATA04 LCD1_DATA09 LCD1_DATA15 LCD1_DATA20 Table 99. i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 149 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 D VSS VSS SD2_CD_B VSS SD1_DATA3 SD1_DATA1 VSS SAI2_TXC SAI2_TXFS VSS SAI1_TXFS SAI1_RXC ENET1_RDATA2 VDD_SOC ENET1_RX_CLK ENET1_TX_CLK VDD_ARM ENET1_TDATA3 ENET1_COL E SD3_CMD SD3_DATA5 SD2_CLK SD2_DATA0 SD2_DATA1 SD2_DATA3 NVCC_SD1 SAI2_TXD SAI2_RXD SAI1_MCLK SAI1_TXD SAI1_RXD ENET1_RDATA3 ENET1_RDATA0 ENET1_RX_CTL ENET1_TX_CTL ENET1_TDATA1 ENET1_TDATA2 ENET1_CRS F SD3_DATA3 SD3_DATA4 VDD_SOC VDD_SOC SD2_DATA2 SD2_CMD VSS VSS VDD_USB_OTG2_3P3_IN VDD_USB_OTG1_3P3_IN VSS NVCC_SAI VSS ENET1_RDATA1 ENET1_RXC ENET1_TXC ENET1_TDATA0 VDD_SOC VDD_SOC G SD3_RESET_B SD3_DATA2 SD2_RESET_B VSS ECSPI1_MOSI ECSPI2_MOSI VSS VSS H VSS VSS ECSPI1_SCLK ECSPI1_MISO ECSPI1_SS0 ECSPI2_MISO J SD3_STROBE I2C1_SCL VDD_SOC VDD_SOC ECSPI2_SCLK ECSPI2_SS0 K I2C2_SCL I2C2_SDA VSS I2C3_SCL I2C3_SDA 1 2 3 4 5 6 150 7 8 9 10 11 12 13 14 15 16 17 18 VDD_ARM LCD1_DATA00 VSS LCD1_DATA14 LCD1_DATA19 LCD1_DATA22 LCD1_CLK LCD1_DATA08 LCD1_DATA13 LCD1_DATA18 LCD1_DATA21 LCD1_HSYNC LCD1_DATA07 LCD1_DATA12 VDD_ARM VDD_ARM LCD1_VSYNC LCD1_ENABLE LCD1_DATA17 VSS LCD1_DATA23 EPDC1_SDCE1 EPDC1_SDCE0 G EPDC1_SDOE EPDC1_SDCE3 EPDC1_SDCE2 EPDC1_PWRCOM EPDC1_GDSP H EPDC1_SDCLK VDD_ARM VDD_ARM EPDC1_GDOE EPDC1_GDCLK J EPDC1_GDRL VSS EPDC1_BDR1 EPDC1_BDR0 EPDC1_DATA15 VSS VSS VSS LCD1_DATA11 MIPI_VREG_0P4V NVCC_ENET1 PVCC_ENET_CAP VDD_USB_H_1P2 VSS F EPDC1_SDSHR VSS VDD_MIPI_1P0 VDD_MIPI_1P0 VDDA_MIPI_1P8 VDD_USB_OTG2_1P0_CAP VDD_USB_OTG1_1P0_CAP E EPDC1_SDLE 19 D EPDC1_PWRSTAT NVCC_LCD VSS VSS VSS VSS PVCC_SAI_SD_CAP VSS 4 NVCC_SD2 3 NVCC_SD3 2 VSS 1 I2C1_SDA Package information and contact assignments Table 99. i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map (continued) K 20 21 22 23 24 25 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors L I2C4_SCL I2C4_SDA UART1_RXD UART1_TXD UART2_RXD UART2_TXD VSS M UART3_RXD UART3_TXD VDD_SOC VDD_SOC UART3_RTS UART3_CTS N GPIO1_IO00 GPIO1_IO01 GPIO1_IO02 VSS GPIO1_IO03 GPIO1_IO04 P GPIO1_IO05 GPIO1_IO06 GPIO1_IO07 BOOT_MODE0 BOOT_MODE1 TEST_MODE R GPIO1_IO08 GPIO1_IO09 VDD_SOC VDD_SOC GPIO1_IO10 POR_B T GPIO1_IO11 GPIO1_IO12 GPIO1_IO13 VSS GPIO1_IO14 GPIO1_IO15 U JTAG_TRST_B JTAG_TDI JTAG_TMS JTAG_TCK JTAG_TDO VSS 1 2 3 4 5 6 7 NXP Semiconductors 8 9 10 11 12 13 14 15 16 17 EPDC1_DATA14 EPDC1_DATA13 EPDC1_DATA12 EPDC1_DATA11 EPDC1_DATA10 EPDC1_DATA09 EPDC1_DATA05 EPDC1_DATA06 EPDC1_DATA07 EPDC1_DATA08 VSS VSS EPDC1_DATA02 EPDC1_DATA03 EPDC1_DATA04 DRAM_SDBA2 DRAM_DATA25 DRAM_DATA27 N EPDC1_DATA00 EPDC1_DATA01 DRAM_SDBA1 DRAM_ADDR13 DRAM_DQM3 DRAM_DATA26 P VSS DRAM_SDBA0 VSS DRAM_DATA29 DRAM_DATA24 R NVCC_DRAM DRAM_ADDR12 DRAM_ADDR10 DRAM_SDQS3_P DRAM_SDQS3_N T NVCC_DRAM DRAM_ADDR11 VSS DRAM_DATA30 DRAM_DATA28 19 20 21 22 23 24 25 VSS M VSS 18 L VSS VSS 18 VSS VSS NVCC_EPDC1 NVCC_EPDC2 17 VSS VDD_SOC PVCC_EPDC_LCD_CAP 16 VDD_SOC VDD_SOC VSS VSS 15 VDD_SOC VSS VSS 14 VSS VSS VSS VSS 13 VDD_SOC VSS VSS 12 VSS VSS VSS VSS 11 VDD_SOC VSS VSS 10 VSS VSS VSS 9 VSS VSS NVCC_UART 8 VSS PVCC_I2C_SPI_UART_CAP NVCC_SPI 7 VDD_1P2_CAP 6 NVCC_I2C 5 NVCC_GPIO1 4 NVCC_GPIO2 3 VSS 2 VSS 1 JTAG_MOD Package information and contact assignments Table 99. i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map (continued) U 19 20 21 22 23 24 25 i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 151 3 4 5 6 V XTALI XTALO VDDA_1P0_CAP GPANAIO VDD_XTAL_1P8 VDDA_1P8_IN W VSS VSS CCM_CLK2 VSS VDDA_1P8_IN VDD_LPSR_IN VSS VSS Y CCM_CLK1_N CCM_CLK1_P SNVS_TAMPER09 SNVS_TAMPER07 SNVS_TAMPER05 VSS SNVS_TAMPER03 SNVS_TAMPER01 VDDA_PHY_1P8 PCIE_VPH PCIE_VPH_TX PCIE_VPH_RX VSS VSS VSS VSS VSS VSS VSS NVCC_DRAM_CKE AA VSS VSS SNVS_TAMPER08 SNVS_TAMPER06 SNVS_TAMPER04 VSS SNVS_TAMPER00 VSS VDDD_1P0_CAP PCIE_VP PCIE_VP_TX PCIE_VP_RX PCIE_REXT DRAM_ODT1 VSS NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM NVCC_DRAM AB ADC2_IN2 ADC2_IN3 VDDA_ADC2_1P8 VSS VSS SNVS_TAMPER02 VSS SNVS_PMIC_ON_REQ VSS PCIE_REFCLKOUT_P PCIE_TX_P VSS DRAM_ZQPAD DRAM_SDWE_B DRAM_RAS_B DRAM_ADDR01 DRAM_SDCKE0 DRAM_ADDR14 DRAM_ADDR00 DRAM_ADDR15 DRAM_ADDR04 DRAM_SDCKE1 AC ADC2_IN0 ADC2_IN1 VDDA_ADC1_1P8 VDD_TEMPSENSOR_1P8 VDD_LPSR_1P0_CAP VSS PMIC_STBY_REQ ONOFF VSS PCIE_REFCLKOUT_N PCIE_TX_N VSS DRAM_VREF DRAM_CAS_B VSS DRAM_ODT0 VSS DRAM_ADDR02 VSS DRAM_ADDR03 VSS DRAM_RESET VSS AD VSS ADC1_IN1 TEMPSENSOR_RESERVE VSS RTC_XTALO VSS VDD_SNVS_IN VSS PCIE_REFCLKIN_P PCIE_RX_P VSS DRAM_DATA14 DRAM_DATA13 DRAM_SDQS1_P DRAM_DATA11 DRAM_DQM1 DRAM_DATA06 DRAM_DATA05 DRAM_DQM0 DRAM_SDQS0_N DRAM_DATA00 DRAM_DATA01 DRAM_SDCLK0_P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 152 16 17 18 20 21 22 23 24 25 VSS NVCC_DRAM DRAM_ADDR06 DRAM_ADDR09 DRAM_DATA31 DRAM_DATA18 V NVCC_DRAM DRAM_ADDR08 VSS DRAM_DATA17 DRAM_DATA19 W NVCC_DRAM DRAM_ADDR07 DRAM_ADDR05 DRAM_SDQS2_P DRAM_SDQS2_N Y DRAM_CS1_B VSS DRAM_DQM2 DRAM_DATA16 AA DRAM_CS0_B DRAM_DATA22 DRAM_DATA21 AB DRAM_DATA23 DRAM_DATA20 AC DRAM_SDCLK0_N 19 VSS VDD_SOC 15 VSS 14 VDD_SOC 13 VSS 12 VDD_SOC 11 VSS 10 VDD_SOC 9 VSS 8 PVCC_GPIO_CAP 7 VSS 2 FUSE_FSOURCE 1 ADC1_IN0 Package information and contact assignments Table 99. i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map (continued) AD i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors Package information and contact assignments 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ADC1_IN2 ADC1_IN3 TEMPSENSOR_REXT VSS RTC_XTALI VSS VDD_SNVS_1P8_CAP VSS PCIE_REFCLKIN_N PCIE_RX_N VSS DRAM_DATA15 DRAM_DATA08 DRAM_SDQS1_N DRAM_DATA12 DRAM_DATA10 DRAM_DATA09 DRAM_DATA07 DRAM_DATA02 DRAM_SDQS0_P DRAM_DATA04 DRAM_DATA03 VSS VSS AE 1 VSS Table 99. i.MX 7Dual 19 × 19 mm 0.75 mm pitch ball map (continued) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 AE i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 NXP Semiconductors 153 Revision history 7 Revision history Table 100 provides a revision history for this data sheet. Table 100. Revision history Rev. Number Rev. 2 Date Substantive Change(s) 6/2016 Updated the qualification tier of part numbers in Table 1, “Orderable parts,” in order to best represent the stress test performed at the factory. This update allows a better explanation on the quality level expected with the respective temperature ranges. i.MX 7Dual Family of Applications Processors Datasheet, Rev. 2, 06/2016 154 NXP Semiconductors How to Reach Us: Information in this document is provided solely to enable system and software Home Page: nxp.com implementers to use NXP products. There are no express or implied copyright licenses Web Support: nxp.com/support information in this document. NXP reserves the right to make changes without further granted hereunder to design or fabricate any integrated circuits based on the notice to any products herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals” must be validated for each customer application by customer‚Äôs technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions. NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and the Energy Efficient Solutions logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. Neon is a trademark of ARM Limited or its subsidiaries in the EU and/or elsewhere. All rights reserved. © 2016 NXP B.V. Document Number: IMX7DCEC Rev. 2 06/2016