AT73C246 6 Supply Channel PMU with Audio Codec - Preliminary

Features
• AUDIO CODEC
•
•
•
•
•
•
•
– 100dB Dynamic Range Stereo Audio DAC - 8 to 96 kHz sampling frequency
– 96dB Dynamic Range Stereo Audio ADC - 8 to 96 kHz sampling frequency
– 16 / 32 Ohms headset amplifier with capless operation
• SNR: 97 dB A-Weighted
• THD: -60 dB (16Ohms / 20mW / 3.3V supply)
• Maximum output power: 55mW (16Ohms / 3.3V supply)
– Stereo line inputs, stereo auxiliary inputs
– Stereo microphone inputs with bias generator for electret device
– Low power Analog Bypass mode (Line / Aux in to Headset Out)
– Low power Analog sidetone mode (Microphone in to Headset Out)
– Automatic Audio path control with smooth fade in / fade out operation
– I2S port
• Master / Slave Operation
• I2S / Left / Right justified modes
• 16 / 18 / 20 / 24 bit operation
6x SUPPLY CHANNEL VOLTAGE REGULATORS
– DCDC0:
• 1.85V - 600mA. 0.8 to 3.6V / 50mV step.
• 2 MHz switching buck regulator
• Fast load transient response - PWM / PFM modes.
• Efficiency up to 92%
– DCDC1:
• 1.2V - 600mA. 0.8 to 3.6V / 50mV step.
• 2 MHz switching buck regulator
• Fast load transient response - PWM / PFM modes.
• Efficiency up to 90%
– LDO2: 1V - 300mA. 0.8 to 1.35V / 50mV step - Fast transient response
– LDO3: 3.3V - 200mA. 2.7 to 3.6V / 50mV step - Fast transient response
– LDO4: 3.3V - 200mA. 2.7 to 3.6V / 50mV step - Audio codec supply
– LDO5: 2.5V - 10mA - Backup battery charger and RTC supply
LOW CONSUMPTION POWER MANAGER
– 2.5V - 5.5V VIN Operation
– 20uA typical consumption OFF mode
– VIN monitor, CPU supplies monitor
– Die temperatue and over-current protections
– Reset and Interrupt generation
– Automatic Voltage Ramping on supply channels for DVS applications
– Standby mode with selectable supplies OFF
RTC
– Ultra Low power crystal oscillator (<1uA typ.)
– Wake up function with programmable alarm or selectable inputs
10-b / 300kS/s ADC with 4 external / 6 int\ernal selectable inputs
Two-Wire Interface for PMU and Audio controls
Available in 7.5 x 7.5 x 0.9 mm 64-pin QFN Package
Applications: Multimedia, Audio + Supply solution for MPU+DDR2 designs.
Power
Management
and Analog
Companions
(PMAAC)
AT73C246
6 Supply
Channel PMU
With Audio
Codec
11050A–PMAAC–07-Apr-10
1. Description
The AT73C246 is an integrated high performance Power Management and Audio IC. It is specifically designed for advanced technology application processors with complex and low voltage
supplies targeting audio applications from low to high end. This System-on-Chip allows significant savings in both cost and board area over previous discrete solutions.
Directly operated from a 2.9V to 5.5V input voltage, the PMU generates a set of 4 regulated
power supplies and an associated delayed reset signal. These 4 voltages are built up with 2 high
efficiency DCDC buck converters and 2 low noise LDOs. Featuring ultra fast transient responses
and integrating automatic voltage scaling function, these supplies perfectly fit with modern low
voltage MCU cores and memory supplies (DDR, Flash, ...). An additional 200mA LDO under
software control is provided for auxiliary application functions. The high performances of this
LDO (high PSRR, low noise, fast transient response) makes it ideal for analog front-ends (Audio,
RF...) as well digital peripherals.
Aside from the PMU, the AT73C246 integrates a complete state-of-the art low power audio
codec with headphone amplifier. On the input side, a stereo microphone preamplifier with differential or single ended connection (MICDIFF / MIC) and 2 selectable stereo inputs (LINE / AUX)
are directed to a 96dB Dynamic Range stereo audio ADC through an input mixer. On the output
side a 100dB dynamic range stereo audio DAC drives, through an output mixer, a 60 mW stereo
headphone amplifier which comes along with a VCM buffer. This VCM buffer allows to save two
large on-board coupling capacitors for area constrained applications. Additionally two fully analog paths called bypass and sidetone from line / aux and microphone inputs to headphone
outputs allow to reduce the audio power consumption to minimum when needed.
The PMU is complemented with a low power RTC system including a recharging LDO, a crystal
oscillator and a programmable alarm that is fully integrated in the PMU digital core. Thus, the
RTC function is able to wake up the PMU, i.e the regulated power supplies, at a programmed
instant.
Also, a 10-bit ADC equipped with a 10:1 analog multiplexer is provided to the application to perform voltage measurements.
Finally, to reduce power consumption to minimum, the PMU features a flexible STANDBY mode
where the MCU is placed in reset state with selectable supplies ON, OFF or in low-power mode.
Power consumption in OFF mode is typically 20uA.
2
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
2. Block Diagram
Figure 2-1.
AT73C246 functional block diagram
37
36
VIN4
VDD4
28
LINL
27
LINR
30
AUXL
29
AUXR
MICL
31
33
MICLN
57
SW0
58
Max: 600mA
VFB0
56
(CORE + MEM)
GND0
59
VIN1
53
1.2V
SW1
54
Max: 600mA
VFB1
52
(CORE)
GND1
55
LDO2
1V
Max: 300mA
(CORE)
VIN2
51
AUDIO IN
+ ADC
MICR
MICRN
18
35
AVDD
12
VMID
17
VIN0
1.8V
BUCK0
BUCK1
34
32
LDO4
3.3V
Max: 200mA
(CODEC)
MICBIAS
LDO3
3.3V
Max: 200mA
(I/O)
AUDIO
AGND
LDO5
2.5V
Max: 10mA
(BACKUP)
DIGITAL
HPR
HPL
44
43
42
41
40
MCLK
VDD3
VBACKUP
VINSYS
HPDET
16
15
VIN3
BIAS
AUDIO
CODEC
13
14
VDD2
AUDIO OUT
LDO6
1.8V / 10mA
(Internal
functions)
CORE
+DAC
HPVCM
VDDC
REXT
PMU
BIAS
LRFS
BCLK
DAI
VBG
GNDSYS
PORT
WAKEUP0
61
1
7
8
10
9
11
20
ITB
19
WAKEUP2
62
60
39
RSTB
WAKEUP1
XIN
38
AUDIO
DAO
63
64
49
50
PMU STATE
XOUT
MACHINES
CLK32K
VBACKUP
RTC +
OSC
HRST
WAKEUP3
23
24
25
VPAD
45
DGND
65
2
LED
PWREN
DIE TEMP
SENSOR
Internal voltages
3
ANA0
4
5
ANA1
6
ANA3
ANA2
DCDC
4MHz RC
OSCILLATOR
ANALOG
10b SAR
MUX
ADC
SYSTEM
32KHz RC
OSCILLATOR
TWI
TWCK
TWD
22
21
NC
NC
NC
26
47
48
NC
46
3
11050A–PMAAC–07-Apr-10
3. Package and Pinout
Figure 3-1.
AT73C246 QFN64 package pinout - Top view
MCLK32
VDD2
VIN2
VFB1
VIN1
SW1
GND1
VFB0
VIN0
SW0
GND0
HRST
PWREN
WAKEUP0
XIN
XOUT
64
VBACKUP
49
48
1
NC
ANA0
NC
ANA1
VPAD
ANA2
MCLK
ANA3
LRFS
VINSYS
BCLK
VDDC
DAI
VBG
DAO
REXT
VDD3
GNDSYS
VIN3
VMID
VIN4
HPDET
VDD4
HPR
MICBIAS
HPVCM
HPL
MICL
16
17
33
32
MICR
MICRN
MICLN
AUXL
AUXR
LINL
LINR
NC
WAKEUP3
WAKEUP2
WAKEUP1
TWCK
TWD
RSTB
ITB
AVDD
AGND
4
NC
LED
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
4. Pin Description
Table 4-1.
Pin Description
Pin Name
I/O
Pin Number
Type
VBACKUP
Output
1
Analog
RTC supply
LED
Output
2
Digital
Output for blinking led. Leave not
connected if a LED is not wired.
ANA0
Input
3
Analog
Measurement input 0
ANA1
Input
4
Analog
Measurement Input 1
ANA2
Input
5
Analog
Measurement Input 2
ANA3
Input
6
Analog
Measurement Input 3
VINSYS
Input
7
Power
PMU core supply
VDDC
Output
8
Analog
PMU / Audio digital supply. Internal use
only. No resistive load.
VBG
Output
9
Analog
PMU Voltage reference
REXT
Output
10
Analog
Resistor connection for PMU bias
current
GND
11
Analog
PMU ground
Output
12
Analog
Audio Codec Mid-Supply reference
Input
13
Analog
Headset detector
HPR
Output
14
Analog
Headset output right
HPVCM
Output
15
Analog
Headset virtual ground output
HPL
Output
16
Analog
Headset output left
AGND
GND
17
Analog
Audio Codec ground
AVDD
Input
18
Power
Audio Codec supply input
ITB
Output
19
Digital
Interrupt request - Active low - Opendrain
RSTB
Output
20
Digital
CPU reset - Active low - Open drain
TWD
Input/Output
21
Digital
Two Wire Interface - Data
TWCK
Input
22
Digital
Two Wire Interface - Clock
WAKEUP1
Input
23
Digital
Wake up 1 Input - VPAD level - 100k
Pull down
WAKEUP2
Input
24
Digital
Wake up 2 Input - VPAD level - 100k
Pull down
WAKEUP3
Input
25
Digital
Wake up 3 input - VPAD level - 100k
Pull down
-
26
-
LINR
Input
27
Analog
Audio Line input right
LINL
Input
28
Analog
Audio Line input left
AUXR
Input
29
Analog
Audio auxiliary input right
AUXL
Input
30
Analog
Audio auxiliary input left
GNDSYS
VMID
HPDET
NC
Function
Connect to DGND
5
11050A–PMAAC–07-Apr-10
Table 4-1.
Pin Name
Pin Description
I/O
Pin Number
Type
MICLN
Input
31
Analog
Audio negative microphone input left
MICRN
Input
32
Analog
Audio negative microphone input right
MICR
Input
33
Analog
Audio positive microphone input right
MICL
Input
34
Analog
Audio positive microphone input left
MICBIAS
Output
35
Analog
Voltage bias for electret microphone
VDD4
Output
36
Power
LDO4 output - 3.3V typ
VIN4
Input
37
Analog
LDO4 input
VIN3
Input
38
Power
LDO3 input
VDD3
Output
39
Analog
LDO3 output - 3.3V typ
DAO
Output
40
Digital
Digital audio port data output
DAI
Input
41
Digital
Digital audio port data input
BCLK
Input/Output
42
Digital
Digital audio port bit clock
LRFS
Input/Output
43
Digital
Digital audio port left/right clock
MCLK
Input
44
Digital
Audio codec master clock input
VPAD
Input
45
Power
PMU I/O ring supply
NC
-
46
-
Leave open
NC
-
47
-
Connect to DGND
NC
-
48
-
Connect to DGND
MCLK32
Output
49
Digital
RTC clock output - VPAD level
VDD2
Output
50
Analog
LDO2 output
VIN2
Input
51
Power
LDO2 input
VFB1
Input
52
Analog
DCDC1 Voltage feedback input
VIN1
Input
53
Power
DCDC1 power stage supply
SW1
Output
54
Analog
DCDC1 power stage output
GND1
Ground
55
Analog
DCDC1 power stage ground
VFB0
Input
56
Analog
DCDC0 Voltage feedback input
VIN0
Input
57
Analog
DCDC0 power stage supply
SW0
Output
58
Analog
DCDC0 power stage output
GND0
Ground
59
Analog
DCDC0 power stage ground
HRST
Input
60
Digital
Hard reset - VBACKUP level - 100k Pull
down
PWREN
Input
61
Digital
Power on/off - VBACKUP level - 100k
Pull down
WAKEUP0
Input
62
Digital
Wake up 0 input - VBACKUP level 100k Pull down
6
Function
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 4-1.
Pin Description
Pin Name
I/O
Pin Number
Type
Input
63
Analog
RTC crystal oscillator input
XOUT
Output
64
Analog
RTC crystal oscillator output
DGND
Ground
65
Analog
PMU digital ground + Thermal pad.
XIN
Function
7
11050A–PMAAC–07-Apr-10
5. Application Block Diagram
Figure 5-1.
AT73C246 Application Block Diagram
VIN4
VIN
C42
10µF
37
36
VDD4
LDO4
3.3V
Max: 200mA
(CODEC)
C41
10µF
LINEJACK
100
R30
J1
C40
1nF
R29
100K
C38
1nF
R28
100K
R31 100
100
AUXJACK
R26
J2
C36
1nF
R25
100K
C34
1nF
R24
100K
R27 100
3.3µF
C39
BUCK0
28
1.8V
LINR
3.3µF
C35
AUXL
30
3.3µF
C33
AUXR
29
R23
2K
MIC_R
J4
1µF
C29
MICLN
31
1µF
C27
MICR
33
R19
2K
(CORE + MEM)
GND0
53
VIN1
54
SW1
1µF
C25
MICRN
32
VDD4
AVDD
MICBIAS
C23
1µF
VMID
AGND
18
35
12
17
HPR
HPL
J5
HPVCM
(CORE)
GND1
51
VIN2
50
38
CORE
LDO6
1.8V / 10mA
(Internal
functions)
+DAC
VDD2
VIN
C7
10µF
39
VDD3
R1
2K
1
C9
2.2µF
7
AUDIO OUT
VDD0
VIN3
C8
10µF
LDO5
2.5V
Max: 10mA
(BACKUP)
C4
22µF
C5
2.2µF
BIAS
13
14
16
15
VFB1
55
VIN
VDD1
VBACKUP
+
HPDET
52
AUDIO
DIGITAL
C3
10µF
L2
Max: 600mA
LDO3
3.3V
Max: 200mA
(I/O)
AUDIO
CODEC
HEADSET 32ohms
C2
22µF
C6
10µF
C26
1nF
VIN
VDD0
2.2µH
LDO2
1V
Max: 300mA
(CORE)
C28
1nF
R18
2K
VFB0
+ ADC
C30
1nF
C1
10µF
L1
59
1.2V
34
SW0
56
BUCK1
MICL
VIN0
58
Max: 600mA
AUDIO IN
C32
1nF
R22
2K
57
2.2µH
27
3.3µF
C37
1µF
C31
MIC_L
J3
LINL
Backup
Battery
VINSYS
VINSYS
C10
2.2µF
8
BAT1
VDDC
C11
2.2µF
LINEOUT
R14
100
J6
100
R15
C22
3.3µF
C21
3.3µF
PMU
R13
100K
BIAS
R12
100K
MCLK
LRFS
I²S
to MCU
BCLK
DAI
DAO
C19
12p
XIN
X1
C20
12p
VBACKUP
XOUT
S3
CLK32K
PORT
63
64
49
WAKEUP0
62
HRST
60
100K
VBACKUP
R9
100
ANA_1
R10
100
ANA_2
R11
100
ANA_3
C15
22nF
C16
22nF
C17
22nF
3
ANA1
4
ANA2
5
ANA3
6
RSTB
C12
22nF
VDD0/VDD3
R3
4.7K
19
ITB
23
WAKEUP1
24
100K
25
RTC +
WAKEUP2
VDD0/VDD3
R4
4.7K
C14
10nF
45
From MCU
WAKEUP3
100K
OSC
61
ANA0
20
MACHINES
100K
R8
100
GNDSYS
PMU STATE
PUSHBUTTON
ANA_0
R2
560k
1%
VBG
11
100K
100K
PWREN
REXT
C13
10nF
PUSHBUTTON
S1
VBACKUP
AUDIO
PUSHBUTTON
S2
VBACKUP
44
43
42
41
40
10
9
VIN
R5
470
VDD0/VDD3
VPAD
2
65
DGND
46
NC
LED
D1
DIE TEMP
SENSOR
ANALOG
10b SAR
INPUTS
ADC
DCDC
4MHz RC
OSCILLATOR
SYSTEM
32KHz RC
OSCILLATOR
TWI
C18
22nF
22
TWCK
26
21
TWD
47
48
VDD0/VDD3
R6
4.7K
VDD0/VDD3
TWD
R7
4.7K
To MCU TWI
TWCK
8
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 5-1.
Typical Application Components Design
Schematic Reference
Value
Description
R1, R18, R19, R22, R23
2kΩ
5% / 0.063W
R2
560kΩ
1% / 0.063W
R3, R4, R6,R7
4.7kΩ
5% / 0.063W
R5
470Ω
5% / 0.063W
R8, R9, R10, R11, R14, R15,
R26, R27, R30, R31
100Ω
5% / 0.063W
R12, R13, R24, R25, R28,
R29
100kΩ
5% / 0.063W
C1, C3, C6, C7, C8, C10,
C41, C42
10µF
X5R / 6.3V
TDK: C1608X5R0J106MT
MURATA: GRM188R60J106ME47
C2, C4
22µF
X5R / 6.3V
TDK: C2012X5R0J226M
MURATA: GRM21BR60J226ME39
C5, C9, C11
2.2µF
X5R / 6.3V
C23, C25, C27, C29, C31
1µF
X5R / 6.3V
C13, C14
10nF
X5R / 6.3V
C15, C16, C17, C18, C12
22nF
X5R / 6.3V
C19, C20
12pF
C0G / 25V
C21, C22, C33, C35, C37,
C39
3.3µF
X5R / 6.3V
C26, C28, C30, C32, C34,
C36, C38, C40
1nF
X5R
L1, L2
2.2µH
COILCRAFT: LPS3314-222
9
11050A–PMAAC–07-Apr-10
10
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
6. Absolute Maximum Ratings
Table 6-1.
Absolute Maximum Ratings
Operating Temperature (Industrial).................-40 C to + 85⋅C(1)
*NOTICE:
Storage Temperature......................................-55°C to + 150°C
Power Supply Input on VINSYS, VIN{0,1,3,4}, VPAD .. -0.3V to + 5.5V
Power Supply Input on VIN2, AVDD ...................... -0.3V to + 3.6V
Digital I/O Input Voltage...................................... -0.3V to + 5.5V
Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at these or other conditions beyond those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
All Other Pins.......................................................-0.3V to + 5.5V
ESD (all pins).........................................2 KV HBM / 100V MM(2)
Notes:
1. Refer to Power Dissipation Rating section
2. According to specifications MIL-883-Method 3015.7 (HBM - Human Body Model) / JESD22 A115 (MM - Machine Model)
7. Recommended Operating Conditions
Table 7-1.
Recommended Operating Conditions
Parameter
Condition
Operating Ambiant Temperature
(1)
Min
Max
Units
-40
85
°C
Power Supply Input
VINSYS
2.5
5.5
V
Power Supply Input
VIN{0,1,3,4}
2.9
5.5
V
Power Supply Input
VIN2
1.65
3.6
V
Power Supply Input
AVDD
2.7
3.6
V
Power Supply Input
VPAD
1.75
5.5
V
Note:
1. Refer to Power Dissipation Rating section
8. Power Dissipation Ratings
Table 8-1.
Recommended Operating Conditions
Parameter
Condition
Junction Temperature (Tj)
RTHjA(1)
Maximum On-chip Power Dissipation
Note:
Min
Typ
-40
Max
Units
125
°C
Package thermal junction to ambient
resistance
30
35
°C / W
Ambient temperature = 70°C
1.8
1.6
W
Ambient temperature = 85°C
1.3
1.1
W
1. According to specification JESD51-5
11
11050A–PMAAC–07-Apr-10
9. PMU Electrical Characteristics
9.1
Current Consumption Versus Modes
Table 9-1.
Current Consumption Versus Modes
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VINSYS, VIN{0,1,3,4} present.
2.9
3.6
5.5
V
POWERDOWN Mode.
All LDOs and DCDC converters
OFF. Audio OFF. RTC running.
-
20
40
µA
RUN Mode.
All LDOs and DCDC converters
running in PWM. Audio OFF. RTC
running.
-
7
15
mA
STANDBY Mode.
Default setup: DCDC0 ON in lowpower mode. LDO3 ON. All other
functions OFF.
-
310
500
µA
All Modes.
RTC running. Total current
entering pin VBACKUP
1
5
µA
IDD_VIN
IDD_RTC
9.2
Supply Monitor Thresholds
The following table applies to functional state diagrams of Figure 11-1 “AT73C246 Power Manager Functional State Diagram” on page 25 and Figure 11-2 “AT73C246 Start-up and Shutdown
State Diagram” on page 26.
Table 9-2.
Supply Monitor Thresholds
Symbol
Parameter
VIN > 3.1V
Min
Typ
Max
Units
PMU Input 3.1V Rising Threshold
3.070
3.1
3.130
V
VIN < 2.9V
PMU Input 2.9V Falling Threshold
2.870
2.9
2.930
V
VIN > 2.7V
PMU Input 2.7V Rising Threshold
2.70
2.75
2.85
V
VIN < 2.7V
PMU Input 2.7V Falling Threshold
2.60
2.65
2.70
V
VBKP > 1.8V
VBACKUP Input Rising Threshold
1.80
1.85
1.90
V
VBKP < 1.8V
VBACKUP Input Falling Threshold
1.70
1.75
1.80
V
12
Comments
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
9.3
Digital I/Os DC Characteristics
Table 9-3.
VPAD Referred Digital I/Os
Symbol
Parameter
VPAD
Min
Typ
Max
Units
Operating Supply Voltage
1.75
3.6
5.5
V
VIL
Input Low-Level Voltage
-0.3
-
0.3 x
VPAD
V
VIH
Input High-Level Voltage
0.7 x
VPAD
-
VPAD +
0.3
V
VOH
Output High-Level Voltage
IO max.
0.75 x
VPAD
-
-
V
VOL
Output Low-Level Voltage
IO max
-
-
0.25 x
VPAD
V
IO
Output Current
-
-
8
mA
RP
Pull-Up or Pull-Down Resistance
70
100
145
kΩ
Notes:
Comments
When applicable.
1. VPAD referred pins ITB, RSTB: open drain outputs. Only VOL and IO parameters are applicable.
2. VPAD referred pins WAKEUP1, WAKEUP2, WAKEUP3, MCLK, DAI, TWCK: CMOS inputs. Only VIH and VIL parameters are
applicable.
3. VPAD referred pins MCLK32K, DAO: CMOS outputs. Only VOL, VOH and IO parameters are applicable.
4. VPAD referred pin TWD: CMOS input and open drain output. Only VIL, VIH, VOL, IO parameters are applicable.
5. VPAD referred pins LRFS, BCLK: CMOS BiDir. All parameters applicable
Table 9-4.
VBACKUP Referred Digital I/Os
Symbol
Parameter
VBACKUP
Min
Typ
Max
Units
Operating Supply Voltage
1.75
2.5
2.65
V
VIL
Input Low-Level Voltage
-0.3
-
0.3 x
VBACKUP
V
VIH
Input High-Level Voltage
0.7 x
VBACKUP
-
VBACKUP
+ 0.3
V
VOH
Output High-Level Voltage
IO max.
0.75 x
VBACKUP
-
-
V
VOL
Output Low-Level Voltage
IO max
-
-
0.25 x
VBACKUP
V
IO
Output Current
-
-
8
mA
RP
Pull-Up or Pull-Down resistance
70
100
145
kΩ
Note:
Comments
When applicable.
VBACKUP referred pins PWREN, HRST, WAKEUP0: CMOS inputs. Only VIL and VIH parameters are applicable.
13
11050A–PMAAC–07-Apr-10
9.4
DCDC0 and DCDC1
Unless otherwise specified: External components L=2.2μH, COUT=22μF and CIN=10μF. VIN{0,1} > VDD{0,1} + 500mV.
TJ = [-40°C ; +125°C].
Table 9-5.
DCDC0 and DCDC1 Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VIN0, VIN1 and VINSYS
2.9
3.6
5.5
V
OFF
-
-
1
µA
PFM operation.
VDD0 = 1.85V, VDD1 = 1.2V
-
40
80
µA
PWM operation.
VDD0 = 1.85V, VDD1 = 1.2V
-
3
6.5
mA
PFM operation.
-
-
50
mA
PWM operation.
-
-
600
mA
PWM operation.
1.8
2
2.2
MHz
VDD0
-
1.85
-
V
VDD1
-
1.2
-
V
3.6
V
Supply Current(1)
IDD
IO
Output Current
fSW
Switching Frequency
VDD0
Default Output Voltage(2)
VDD1
VDD_RANGE
Programmable Output Voltage
Range
PFM or PWM operation.
VDD_STEP
Output Voltage Steps
PFM or PWM operation.
NSTEP
Number of Output Steps
In case of direct output voltage
programming. Automatic ramping
not active.
TSTEP
Step time
With automatic ramping.
260
PFM; TJ = 25°C ; IO = 0 mA
-1.5
2.5
-2
3
-1.5
1.5
-2
2
DC Output Voltage Accuracy
VDD_ACC
PFM; TJ = [-40;125°C] ; IO = 0 mA
PWM; TJ = 25°C ; IO = 0 mA
PWM; TJ = [-40;125°C] ; IO = 0 mA
VDD_RIPPLE
IINRUSH
14
280
PWM operation.
2
Static Load Regulation
PWM operation. IO ranging from 0
to IOMAX
2
PWM. IO: 0 to IOMAX ; 1μs rise time
-40
PWM. IO: IOMAX to 0 ; 1μs fall time
40
Dynamic Load Regulation
Eff
50
Ripple Voltage
ΔVDD_IL
ΔVDD_VIN
0.8
Static Line Regulation
Efficiency
Inrush Current(1)
VIN0 and VINSYS from 2.9 to 5.5V
VDD0 = 1.85V, VDD1 = 1.2V
mV
4
step /
100µs
300
µs
%
mV
5
mV
mV
5
mV
PWM. IOMAX load. VDD0= 1.85V.
Relative to VIN0 input supply.
85
%
PWM. IOMAX load. VDD1= 1.2V.
Relative to VIN1 input supply.
78
%
Current from VIN(0,1) and VINSYS
from 0 to 100% VDD{0,1}
VDD0 = 1.85V, VDD1 = 1.2V
30
200
mA
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 9-5.
DCDC0 and DCDC1 Electrical Characteristics
Symbol
Parameter
Comments
OCP
Over-Current Protection
Output current.
TSTART
Start-up Time
From OFF to PWM operation.
VDD(0,1) rising to 95% of final value.
TPWM
PFM to PWM Settling Time
No output load.
PWRFDET
Power Fail Detector Threshold
Accuracy
Overload of the programmed
threshold by 10mV / 5us min(3).
-1
COUT
Total Capacitive Load
At VFB{0,1} pins.
8
Notes:
Min
Typ
Max
Units
1
1.4
1.8
A
5
ms
10
-
µs
+1
%.VDD
36
µF
1. Current consumption without load. One DCDC converter ON, the other one OFF.
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.
3. Threshold levels are programmed in register PMU_RST_LVL (0x04)
15
11050A–PMAAC–07-Apr-10
9.5
LDO2
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].
Table 9-6.
LDO2 Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VIN2
1.65
1.8
3.6
V
IDD
Supply Current(1)
OFF
-
-
1
µA
ON
-
-
250
µA
IO
Output Current
VIN2 > VDD2 + 500mV.
-
-
300
mA
VDD2
Default Output Voltage(2)
-
1
-
V
VDD_RANGE
Programmable Output Voltage
Range
1.35
V
VDD_STEP
Output Voltage Steps
TSTEP
Step time
VDD_ACC
DC Output Voltage Accuracy
Static Load Regulation
ΔVDD_IL
Dynamic Load Regulation
0.8
50
With automatic ramping.
VIN2 > VDD2 + 500mV
TJ = 25°C ; IO = 0 mA
VIN2 > VDD2 + 500mV
TJ = [-40°C ; 125°C] ; IO = 0 mA
600
1
-1.5
1.5
VIN2 > VDD2 + 500mV
IO: 0 to IOMAX ; 1μs rise time
-50
VIN2 > VDD2 + 500mV
IO: IOMAX to 0 ; 1μs fall time
50
Drop Out Voltage(4)
IINRUSH
Inrush Current
Current from VIN2 from 0 to 95% of
final value.
TSTART
Start-up Time
VDD2 OFF and rising to 95% of
final value. IO = 0 mA
PWRFDET
Power Fail Detector Threshold
Accuracy
Overload of the programmed
threshold by 10mV / 5us min(3).
1
%.VDD2
mV
IO = 0 mA
VIN2 from 1.65 to 3.6V
VDROPOUT
µs
%
0.05
Static Line Regulation
630
-1
VIN2 > VDD2 + 500mV
IO ranging from 0 to IOMAX
ΔVDD_VIN
Notes:
570
mV
5
mV
IO = 200mA
300
mV
IO = 300mA
450
mV
500
mA
1
ms
+1
%.VDD2
200
-1
-
1. Current consumption in VIN2 without load.
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.
3. Threshold level is programmed in register PMU_RST_LVL (0x04)
4. VDROPOUT= VIN2 - VDD2 when VDD2 = 98% of VDD2 obtained with VIN2 > VDD2 + 500mV
16
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
9.6
LDO3
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].
Table 9-7.
LDO3 Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VIN3
2.9
3.6
5.5
V
IDD
Supply Current(1)
OFF
-
-
1
µA
ON
-
-
350
µA
IO
Output Current
VIN3 > VDD3 + 300mV.
-
-
200
mA
VDD3
Default Output Voltage(2)
-
3.3
-
V
VDD_RANGE
Programmable Output Voltage
Range
3.6
V
VDD_STEP
Output Voltage Steps
TSTEP
Step time
VDD_ACC
DC Output Voltage Accuracy
Static Load Regulation
ΔVDD_IL
Dynamic Load Regulation
ΔVDD_VIN
Static Line Regulation
VDROPOUT
Drop Out Voltage(4)
PSRR
Power Supply Rejection Ratio
2.7
50
With automatic ramping.
VIN3 > VDD3 + 300mV
TJ = 25°C ; IO = 0 mA
VIN3 > VDD3 + 300mV
TJ = [-40°C ; 125°C] ; IO = 0 mA
600
630
-1
1
-1.5
1.5
µs
%
VIN3 > VDD3 + 300mV
IO ranging from 0 to IOMAX
0.05
VIN3 > VDD3 + 300mV
IO: 0 to IOMAX ; 1μs rise time
-40
VIN3 > VDD3 + 300mV
IO: IOMAX to 0 ; 1μs fall time
40
0.5
%.VDD3
mV
VIN3 > VDD3 + 300mV. IO = 0 mA
VIN3 from 2.9 to 5.5V
5
mV
IO = 10mA
50
mV
IO = 200mA
250
mV
VIN3 > VDD3 + 300mV
IO = 1mA. DC to 3kHz.
60
VIN3 > VDD3 + 300mV
IO = 10mA. DC to 3kHz.
50
200
IINRUSH
Inrush Current
Current from VIN3 from 0 to 95%
of final value.
TSTART
Start-up Time
VDD3 OFF and rising to 95% of
final value. IO = 0 mA
PWRFDET
Power Fail Detector Threshold
Accuracy
Overload of the programmed
threshold by 10mV / 5us min(3).
Notes:
570
mV
dB
-1
-
500
mA
1
ms
+1
%.VDD3
1. Current consumption in VIN3 without load.
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.
3. Threshold level is programmed in register PMU_RST_LVL (0x04)
4. VDROPOUT= VIN3 - VDD3 when VDD3 = 98% of VDD3 obtained with VIN3 > VDD3 + 300mV
17
11050A–PMAAC–07-Apr-10
9.7
LDO4
Unless otherwise specified: External components COUT=10µF, CIN=10μF, TJ = [-40°C ; +125°C].
Table 9-8.
LDO4 Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VIN4
2.9
3.6
5.5
V
IDD
Supply Current(1)
OFF
-
-
1
µA
ON
-
-
350
µA
IO
Output Current
VIN4 > VDD4 + 300mV.
-
-
200
mA
VDD4
Default Output Voltage(2)
-
3.3
-
V
VDD_RANGE
Programmable Output Voltage
Range
3.6
V
VDD_STEP
Output Voltage Steps
TSTEP
Step time
VDD_ACC
DC Output Voltage Accuracy
Static Load Regulation
ΔVDD_IL
Dynamic Load Regulation
ΔVDD_VIN
Static Line Regulation
VDROPOUT
Drop Out Voltage(3)
PSRR
Power Supply Rejection Ratio
2.7
50
With automatic ramping.
VIN4 > VDD4 + 300mV
TJ = 25°C ; IO = 0 mA
VIN4 > VDD4 + 300mV
TJ = [-40°C ; 125°C] ; IO = 0 mA
600
630
-1
1
-1.5
1.5
µs
%
VIN4 > VDD4 + 300mV
IO ranging from 0 to IOMAX
0.05
VIN4 > VDD4 + 300mV
IO: 0 to IOMAX ; 1μs rise time
-40
VIN4 > VDD4 + 300mV
IO: IOMAX to 0 ; 1μs fall time
40
0.5
%.VDD4
mV
VIN4 > VDD4 + 300mV. IO = 0 mA
VIN4 from 2.9 to 5.5V
5
mV
IO = 10mA
50
mV
IO = 200mA
250
mV
VIN4 > VDD4 + 300mV
IO = 1mA. DC to 3kHz.
60
VIN4 > VDD4 + 300mV
IO = 10mA. DC to 3kHz.
50
200
IINRUSH
Inrush Current
Current from VIN4 from 0 to 95%
of final value.
TSTART
Start-up Time
VDD4 OFF and rising to 95% of
final value. IO = 0 mA
Notes:
570
mV
dB
500
mA
1
ms
1. Current consumption in VIN4 without load.
2. Default output voltage are set during manufacturing. Please contact Atmel for other default settings.
3. VDROPOUT= VIN4 - VDD4 when VDD4 = 98% of VDD4 obtained with VIN4 > VDD4 + 300mV
18
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
9.8
LDO5
Unless otherwise specified: External components COUT=2.2µF, CIN=10μF, TJ = [-40°C ; +125°C].
Table 9-9.
LDO5 Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VINSYS
2.7
3.6
5.5
V
IDD
Supply Current(1)
OFF
-
-
1
µA
ON
-
-
7
µA
IO
Output Current
-
-
10
mA
VBACKUP
Output Voltage Accuracy
2.42
2.5
2.58
V
ΔVDD_VIN
Static Line Regulation
VINSYS from 2.7 to 5.5V
3
10
mV
ΔVDD_VIN
Static Line Regulation
VINSYS =3.6V, IO from 0 to IOMAX
10
15
mV
IINRUSH
Inrush Current
Current from VINSYS from 0 to
TSTART(MAX). VBACKUP = 2.5V
180
350
mA
TSTART
Start-up Time
VBACKUP OFF and rising to 95% of
final value.
1
ms
Note:
1. Current consumption in VINSYS without plugged backup battery
19
11050A–PMAAC–07-Apr-10
9.9
Measurement Bridge and 10-bit ADC
Table 9-10.
Symbol
Measurement Bridge and 10-bit ADC Electrical Characteristics
Parameter
(1)
Comments
Min
Typ
Max
Units
VINSYS
2.9
3.6
5.5
V
OFF
-
-
1
µA
ON
-
-
2
mA
1.75
1.8
1.85
V
VIN
Operating Supply Voltage
IDD
Supply Current
VREF
Reference Voltage
Internally connected to
VDDC pin.
INL
Integral Non Linearity
End Point Method
-2
-
+2
LSB
DNL
Differential Non Linearity
End Point Method
-1
-
+1
LSB
Offset
Offset Error
-2
+2
LSB
GAIN
Gain Error
-2
+2
LSB
FS
Sampling Rate
TACQ
Track and Hold Acquisition Time
VMEAS
Measured Input Voltage Range
ATTMEAS
RIN_NOM
RIN_TEMP
CIN
Notes:
Measured Input Scaling Factor
ANA{0,1,2,3} Input resistance
RIN deviation with temperature
300
kS/s
500
ns
External inputs ANA{0,1,2,3}
0.4
VINSYS
V
VDD{0,1,2,3,4} inputs
0.4
4
V
VINSYS input
0.4
5.5
V
External inputs ANA{0,1,2,3}
-1%
0.25
+1%
V/V
VDD{0,1,2,3,4,5} inputs
-1%
0.4
+1%
V/V
VINSYS input
-1%
0.25
+1%
V/V
96
120
144
kΩ
Tj = 25C
TJ [-40 ; +25]. Relative to
RIN_NOM
TJ [25 ; 125]. Relative to
RIN_NOM
+ 20
%
-16
ANA{0,1,2,3} Input capacitance
15
pF
1. The 10-bit ADC is supplied from the regulated VDDC voltage (1.8V) which is generated from VINSYS.
2. Please refer to Atmel Data Converter Terminology literature
20
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
9.10
RTC Crystal Oscillator
Table 9-11.
RTC Crystal Oscillator Electrical Characteristics
Symbol
Parameter
Comments
Min
Typ
Max
Units
VIN
Operating Supply Voltage
VBACKUP
1.75
2.5
2.65
V
Freq
Frequency
with crystal
-
32.768
-
kHz
Duty
Duty Cycle
40
50
60
%
IDD
Supply Current(1)
OFF
-
-
5
nA
ON
-
-
1.5
µA
TON
Startup Time
CL= 12pF
-
1000
1500
ms
VXIN
Level Sinus Wave on XIN
250
300
mVpp
VXOUT
Vpp On XOUT
300
mVpp
RF
Internal Resistor
between xin and xout
10
MΩ
Drift
Accuracy
@25°C, +/- 20ppm
Esr
Equivalent Series Resistance Rs
Crystal @ 32.768kHz
CM
Motional Capacitance
Crystal @ 32.768kHz
CSHUNT
Shunt Capacitance
CLOAD
Load Capacitance
1.5
mn/month
100
kΩ
0.6
3
fF
Crystal @ 32.768kHz
0.6
2
pF
Crystal @ 32.768kHz
6
12.5
pF
50
Note:
1. Current consumption in VBACKUP with crystal. In case of crystal not present on-board, back-up batteries or supercapacitors,
must be avoided.
9.11
Die Temperature Sensor
Table 9-12.
Die Temperature Sensor Electrical Characteristics
Symbol
Parameter
TSHUTDOWN
TRESTART
Comments
Min
Typ
Max
Units
130°C Shutdown Threshold
135
145
155
°C
110°C Restart Threshold
105
115
125
°C
21
11050A–PMAAC–07-Apr-10
10. Audio Codec Electrical Characteristics
Unless otherwise specified: AVDD = 3.3V, TA = 25C, MCLK = 12.288MHz, FS = 48kHz. Master mode and 24-bit operation
on I2S port. All gains set to 0dB, audio effects are off. Noise measurements are made in the [20Hz-20kHz] band using the
A-Weighting filter. Distortion measurements are made from the 2nd to the 5th harmonic products of a 997Hz input sinewave.
Input sources have an internal impedance of 50 Ohms. Audio Path without mixing capability.
Table 10-1.
Audio Codec Bias
Symbol
Parameter
AVDD
Operating Supply Voltage
IDD
Supply Current
VMID
Mid-Supply Reference Voltage
TMID_ON
Time to charge VMID capacitor
TMID_OFF
Min
Typ
Max
Units
2.7
3.3
3.6
V
OFF
20
µA
STANDBY
1
mA
+1%
V
From 0 to 95% of final value
350
ms/μF
Time to discharge VMID capacitor
From 0 to 95% of final value
700
ms/μF
VMICBIAS
Microphone Bias Reference
Voltage
No load.
RMICBIAS
Microphone Bias Reference
Voltage Internal Resistance
Table 10-2.
Comments
-1%
AVDD /
2
AVDD
V
1.5
1.9
2.3
kΩ
Min
Typ
Max
Units
Line Record Path: Line or Auxiliary Input to ADC Output
Symbol
Parameter
Comments
VFS
Full Scale Input Voltage(1)
Corresponds to 0dBFs digital
output signal.
SNR
Signal-to-Noise Ratio(2)
DR
Dynamic Range(3)
THD
Total Harmonic Distortion
AVDD /
3.3
VRMS
AVDD = 3.3V
85
96
-
dB
AVDD = 2.7V
82
93
-
dB
AVDD = 3.3V
85
96
-
dB
AVDD = 2.7V
82
93
-
dB
-
-80
-74
dB
80
90
-
dB
-34
0
12
dB
-
1
-
dB
Mute Attenuation(6)
80
-
-
dB
RIN
Input Resistance
5.9
7
8.1
kΩ
CIN
Input Capacitance
-
-
10
pF
Min
Typ
Max
Units
XTALK
Left / Right Channel separation
-1dBFS digital output
(5)
Programmable Gain Range
GLINE
Gain Step Size
Table 10-3.
Microphone Record Path: Microphone Input to ADC Output
Symbol
Parameter
Comments
VFS
Full Scale Input Voltage(1)
Corresponds to 0dBFs digital
output signal.
SNR
Signal-to-Noise Ratio(2)
22
AVDD /
3.3
VRMS
AVDD = 3.3V
85
96
-
dB
AVDD = 2.7V
82
93
-
dB
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 10-3.
Microphone Record Path: Microphone Input to ADC Output
Symbol
Parameter
DR
Dynamic Range(3)
THD
Total Harmonic Distortion
XTALK
GLINE
Comments
Min
Typ
Max
Units
AVDD = 3.3V
85
96
-
dB
AVDD = 2.7V
82
93
-
dB
-
-84
-74
dB
Left / Right Channel separation(5)
80
90
-
dB
Programmable Gain Range
0
-
46
dB
Gain Step Size
-
1
-
dB
80
-
-
dB
8.4
12
15.6
kΩ
-
-
10
pF
Min
Typ
Max
Units
-1dBFS digital output
(6)
Mute Attenuation
RIN
Input Resistance
CIN
Input Capacitance
Table 10-4.
0dB gain
Playback Path: DAC Input to Headphone Output
Symbol
Parameter
Comments
VFS
Full Scale Output Voltage(1)
0dBFs digital input signal.
SNR
Signal-to-Noise Ratio(2)
DR
Dynamic Range(3)
THD
Total Harmonic Distortion
PO
Output Power
XTALK
Left / Right Channel Separation(5)
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
AVDD = 3.3V
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
0dBFs input - 10kΩ load
-
-88
-80
dB
20mW output - 32Ω load
-
-65
-60
dB
20mW output - 16Ω load
-
-60
-55
dB
32Ω load - THD < -40dB or 1%
30
mW
16Ω load - THD < -40dB or 1%
50
mW
10kΩ AC coupled load
90
dB
16Ω DC coupled load
60
dB
Gain Step Size
Mute Attenuation(6)
Table 10-5.
VRMS
AVDD = 3.3V
Programmable Gain Range
GHS
AVDD /
3.3
-77
-
+6
dB
-
1
-
dB
80
-
-
dB
Min
Typ
Max
Units
Analog Bypass Path: Line / Auxiliary Input to Headphone Output
Symbol
Parameter
VFS
Full Scale Output Voltage(1)
SNR
Signal-to-Noise Ratio(2)
DR
Dynamic Range(3)
Comments
AVDD /
3.3
VRMS
AVDD = 3.3V
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
AVDD = 3.3V
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
23
11050A–PMAAC–07-Apr-10
Table 10-5.
Symbol
Analog Bypass Path: Line / Auxiliary Input to Headphone Output
Parameter
THD
Comments
Total Harmonic Distortion
PO
Output Power
XTALK
Left / Right Channel Separation(5)
Typ
Max
Units
0dBFs input - 10kΩ load
-
-88
-80
dB
20mW output - 32Ω load
-
-65
-60
dB
20mW output - 16Ω load
-
-60
-55
dB
32Ω load - THD < -40dB or 1%
30
mW
16Ω load - THD < -40dB or 1%
50
mW
10kΩ AC coupled load
90
dB
16Ω DC coupled load
60
dB
Bypass Gain
GBYP
(6)
Mute Attenuation
Table 10-6.
Parameter
VFS
Full Scale Output Voltage(1)
SNR
Signal-to-Noise Ratio(2)
DR
Dynamic Range(3)
THD
Total Harmonic Distortion
PO
Output Power
XTALK
Left / Right Channel Separation(5)
GSIDETONE
-1
0
+1
dB
80
-
-
dB
Min
Typ
Max
Units
Analog Sidetone Path: Microphone Input to Headphone Output
Symbol
Notes:
Min
Comments
AVDD /
3.3
VRMS
AVDD = 3.3V
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
AVDD = 3.3V
92
97
-
dB
AVDD = 2.7V
89
94
-
dB
0dBFs input - 10kΩ load
-
-88
-80
dB
20mW output - 32Ω load
-
-65
-60
dB
20mW output - 16Ω load
-
-60
-55
dB
32Ω load - THD < -40dB or 1%
30
mW
16Ω load - THD < -40dB or 1%
50
mW
10kΩ AC coupled load
90
dB
16Ω DC coupled load
60
dB
Programmable Gain Range
-30
-
0
dB
Gain Steps
2.5
3
3.5
dB
Mute Attenuation(6)
80
-
-
dB
1. Full Scale: A linear extrapolation to 0dBFS of the measured level at -10dBFS.
2. Signal-to-Noise Ratio: The ratio of the RMS value of a 997Hz full scale sine wave to the RMS value of output noise with no
signal applied. Device is not muted.
3. Dynamic Range: According to AES17-1991 (Audio Engineering Society) and EIAJ CP-307 (Electronic Industries Association of Japan), an extrapolation to 0dBFS input signal of the THD+N ratio measurement at -60dBFS. As an example, if
THD+N @ -60dBFS = -36dB, then DR = 96dB.
4. Total Harmonic Distortion + Noise Ratio: The ratio of the RMS sum of the noise and the distortion components to the RMS
value of the signal.
5. XTALK: Attenuation measurement from one channel to the other one. Measurement is performed by stimulated one channel
with a 997Hz / -10dBFS sinewave and leaving the other channel unstimulated.
6. Mute Attenuation: Attenuation measurement of a -10dBFS / 997Hz input signal when concerned gain is set to mute.
24
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11. PMU Functional Description
11.1
Power Manager State Diagram
Figure 11-1. AT73C246 Power Manager Functional State Diagram
POWERDOWN
(all supplies OFF)
RSTB = 0
POWER-OFF or POWER-FAIL
EVENT
STANDBY-OUT or POWER-FAIL
EVENT
HRST_POWERDOWN
EVENT
POWER-ON EVENT &
Vin > 3.1V
STANDBY
EVENT
RUN
(all supplies ON)
RSTB = 1
STANDBY
(selected supplies ON)
RSTB = 0
WAKEUP
EVENT
HRST
EVENT
HRST
EVENT
HRST
EVENT
HRST_RUN
EVENT
HRST
(all supplies OFF)
RSTB = 0
TWI Reset
AT73C246 is placed in POWERDOWN state at VINSYS rising following the PMU startup state
diagram described in Figure 11-2 on page 26. From this POWERDOWN state, normal CPU supplies startup is achieved through validation of one of the POWER-ON events. From this state,
the PMU may be placed in STANDBY state (e.g.: during CPU sleep periods) upon software
request (STANDBY event). PMU wake-up is achieved if one of the WAKEUP events is detected.
The PMU returns to the POWERDOWN state as soon as a POWER-OFF event is detected. A
special HRST (Hard-Reset) state is provided to ensure complete stop and restart of the CPU
supplies in case of a software crash. Moreover, die temperature and VDD{0,1,2,3} supplies are
supervised and may generate a POWER-FAIL event in case of out-of-specification detection.
25
11050A–PMAAC–07-Apr-10
11.2
PMU Startup and Shutdown State Diagram
Figure 11-2. AT73C246 Start-up and Shutdown State Diagram
Vin > 2V
VINSYS < 2.7V
or
VDDC_KO
Start : VINSYS Monitor &
VDDC = 1.8V.
PMU_RSTN = 0
AUDIO_RSTN = 0
VINSYS > 2.7V &
VDDC_OK
PMU_RSTN = 1
AUDIO_RSTN = 1
1
1
READ
CONFIG
VBACKUP < 1.8V
VBACKUP > 1.8V
RTC_RSTN = 0
START
LDO5
(BACKUP)
OFF
LDO5
(BACKUP)
1
START
LDO5
(BACKUP)
VBACKUP > 1.8V
VBACKUP > 1.8V
RTC_RSTN = 1
VINSYS < 2.7V
POWER
DOWN
The start-up of the AT73C246 follows the flow diagram of Figure 11-2 and aims at placing the
power manager in the POWERDOWN state.
When VINSYS rises above 2V:
• An internal VINSYS monitor starts and holds the internal PMU_RSTN and AUDIO_RSTN
signals to 0, thus forcing a complete reset of AT73C246. The PMU digital core supply voltage
26
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
(VDDC = 1.8V) is started. During this PMU reset, the ‘LED’ pin is driven to VINSYS (LED is
OFF).
• When VDDC is ready and VINSYS > 2.7V, the internal reset signals previously mentioned are
released, thus enabling the PMU digital core functions.
• Before starting the LDO5 (RTC supply), VBACKUP voltage is monitored and if it is lower than
1.8V, the RTC function is resetted. In case of VBACKUP > 1.8V, no reset is issued on the RTC
function.
• At this step, the power manager is placed in POWERDOWN state.
11.3
11.3.1
Power Manager Conditional Transitions
POWER-ON EVENTS
POWER-ON EVENTS are validated if all these listed conditions are true:
• VINSYS > 3.1V
• AT73C246 internal junction temperature Tj < 110°C
• PWREN pin is high for more than 100ms (see Table 11-1 on page 28).
Note:
11.3.2
PWREN pin, with internal 100k pull-down resistor, is active high (VBACKUP level). It is possible to
hard wire the PWREN pin to VBACKUP to always activate RUN state when VINSYS > 3.1V. Consequently, using the software POWER-OFF EVENT (described in Section 11.3.2) will lead to going
back to the RUN state just after the POWERDOWN STATE.
POWER-OFF EVENTS
POWER-OFF EVENTS are validated if one of these listed conditions is true:
• VINSYS < 2.9V.
• PWREN pin goes from low to high state and high state is held for more than 5s (see Table
11-1 on page 28).
• Software request: bit 0 (OFF) of register 0x00 (PMU_MODES) is written to 1.
11.3.3
POWER-FAIL EVENTS
POWER-FAIL EVENTS are validated if one of these listed conditions is true:
• AT73C246 internal junction temperature Tj > 130°C
• Any internal power fail detection signal coming from any CPU power supply (VDD0, VDD1,
VDD2, VDD3) goes from low to high level.
Note:
11.3.4
In case of PWREN pin hard wired high (VBACKUP level), the POWER-FAIL EVENTS will lead to the
POWERDOWN state without possibility to go to the RUN state. The power manager will be able to
reach the RUN state only after an HRST event. This prevents the power manager from oscillating
between RUN and POWERDOWN states in case of permanent failure on CPU supplies.
STANDBY EVENT
STANDBY EVENT is validated if the following condition is true:
• Software request: bit 1 (STANDBY) of register 0x00 (PMU_MODES) is written to 1.
11.3.5
STANDBY-OUT EVENT
STANDBY-OUT EVENT is validated if the following condition is true:
• VINSYS < 2.9V.
27
11050A–PMAAC–07-Apr-10
11.3.6
WAKEUP EVENTS
WAKEUP EVENTS are validated if one of the listed condition is true:
• WAKEUP0 pin goes from low to high state and WAKEUP0 bit is set to ‘1’ (see Table 11-1) in
register 0x01 (PMU_WAKEUP_EVENTS).
• WAKEUP1 pin goes from low to high state and WAKEUP1 bit is set to ‘1’ (see Table 11-1) in
register 0x01 (PMU_WAKEUP_EVENTS).
• WAKEUP2 pin goes from low to high state and WAKEUP2 bit is set to ‘1’ (see Table 11-1) in
register 0x01 (PMU_WAKEUP_EVENTS).
• WAKEUP3 pin goes from low to high state and WAKEUP3 bit is set to ‘1’ (see Table 11-1) in
register 0x01 (PMU_WAKEUP_EVENTS).
• PWREN pin goes from low to high state and high state is held for more than 10ms (see Table
11-1) and PWREN bit is set to ‘1’ in register 0x01 (PMU_WAKEUP_EVENTS).
• An RTC alarm occurs and RTC bit is set to ‘1’ in register 0x01 (PMU_WAKEUP_EVENTS).
Notes:
1. WAKEUP0 and PWREN pins must be driven with VBACKUP level, WAKEUP{1,2,3} pins must be
driven with VPAD level.
2. If any WAKEUP EVENT is triggered while AT73C246 is going from RUN to STANDBY state,
STANDBY state is then first reached before WAKEUP EVENT is taken into account.
11.3.7
HRST EVENT
HRST EVENT is validated if the following condition is true:
• HRST pin goes from low to high state and high state is held for more than 1s (see Table 111).
11.3.8
HRST RUN EVENTS
HRST RUN EVENTS are validated if all these listed conditions are true:
• HRST pin is at low level for more than 10ms (see Table 11-1).
• VINSYS > 3.1V
• AT73C246 internal junction temperature Tj < 110°C
Note:
11.3.9
In case of 110°C < Tj < 130°C, HRST state is maintained. The self cooling down of the die will lead
to Tj < 110°C, thus exit of HRST state.
HRST POWERDOWN EVENTS
HRST POWERDOWN EVENTS are validated if all of these listed conditions are true:
• HRST pin is at low level for more than 10ms.
• VINSYS < 3.1V or AT73C246 internal junction temperature Tj >130°C
Table 11-1.
EVENTS Timing Table
Pin
Parameter
Comments
Min
Typ
Max
Units
PWREN
Pin at VBACKUP Level. Debouncing Time.
Pin used as POWER-ON event
95
100
105
ms
PWREN
Pin at VBACKUP Level. Debouncing Time.
Pin used as POWER-OFF event
4.75
5
5.25
sec
PWREN
Pin at VBACKUP Level. Debouncing Time.
Pin used as WAKEUP event
9.5
10
10.5
ms
HRST
Pin at VBACKUP Level. Debouncing Time.
Pin used as HRST event
0.95
1
1.05
sec
HRST
Pin at GND Level. Debouncing Time.
9.5
10
10.5
ms
28
Pin used as HRST RUN event
Pin used as HRST POWERDOWN event
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 11-1.
EVENTS Timing Table
Pin
Parameter
Comments
Min
Typ
Max
Units
WAKEUP0
Pin pulsed to VBACKUP Level. Pulse Width.
Pin used as WAKEUP event
5
-
-
ns
WAKEUP1
Pin pulsed to VPAD Level. Pulse Width.
Pin used as WAKEUP event
5
-
-
ns
WAKEUP2
Pin pulsed to VPAD Level. Pulse Width.
Pin used as WAKEUP event
5
-
-
ns
WAKEUP3
Pin pulsed to VPAD Level. Pulse Width.
Pin used as WAKEUP event
5
-
-
ns
11.4
Power Manager State Description
AT73C246 ICs are available with 2 factory programmed power sequences. The following timing
diagrams refer to “SEQUENCE A” and “SEQUENCE B” programmed ICs as defined in section
17. “Ordering Information” on page 154. See also the structure of register “VERSION (0x7F)”.
11.4.1
POWERDOWN STATE
When AT73C246 is in POWERDOWN state:
• Only VBACKUP supply is active. VDD{0,1,2,3,4} power supplies are OFF.
• Audio function is OFF.
• ADC function is OFF.
• RSTB pin is held low.
• Led pin is set as input with internal 120k pull-up resistor to VINSYS.
• TWI registers are reset to default value.
When the POWERDOWN state is reached from the RUN state, the CPU power supplies are
switched off sequentially as described in Figure 11-3 on page 30.
29
11050A–PMAAC–07-Apr-10
Figure 11-3. AT73C246 - RUN to POWERDOWN state Supplies Shutdown timing diagram.
SEQUENCE A
RUN
STATE
SEQUENCE B
POWERDOWN
STATE
SUPPLIES SHUTDOWN
RUN
STATE
POWERDOWN
STATE
SUPPLIES SHUTDOWN
TPWRDOWN
TPWRDOWN
POWEROFF
EVENT
POWEROFF
EVENT
TOFF_AUDIO
RSTB
3.3V
TOFF_AUDIO
RSTB
TOFF_VDD3
1V
VDD3 (3.3V)
TOFF_VDD2
VDD2 (1V)
1.2V
TOFF_VDD1
1.2V
VDD1 (1.2V)
TOFF_VDD1
VDD1 (1.2V)
1.85V
TOFF_VDD0
TOFF_VDD0
1.85V
VDD0 (1.85V)
VDD0 (1.85V)
1V
TOFF_VDD2
3.3V
VDD2 (1V)
TOFF_VDD3
VDD3 (3.3V)
TOFF_VDD4
VDD4 (CODEC)
Table 11-2.
TOFF_VDD4
VDD4 (CODEC)
RUN to POWERDOWN state timing table
Symbol
Parameter
TPWRDOWN
POWERDOWN Event detection
time
TOFF_AUDIO
Audio CODEC Shutdown Time
Comments
Min
Typ
Max
Units
58
62
66
µs
Audio CODEC is OFF or Power Fail
Occurs
58
62
66
µs
Audio CODEC is ON
486
512
538
ms
58
62
66
µs
4.8
5.2
5.4
ms
(1)
TOFF_VDDx
Note:
30
VDDx SHUTDOWN Time
VDDx is OFF in RUN state
(1)
VDDx is ON in RUN state
1. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL.
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
When the POWERDOWN state is reached from the STANDBY state, the CPU power supplies
are switched off sequentially as described in Figure 11-4.
Figure 11-4. AT73C246 - STANDBY to POWERDOWN state Supplies Shutdown timing diagram.
SEQUENCE A
STANDBY
STATE
SEQUENCE B
STANDBY
STATE
POWERDOWN
STATE
SUPPLIES SHUTDOWN
TSTBY_OUT
POWERDOWN
STATE
SUPPLIES SHUTDOWN
TSTBY_OUT
STANDBY_OUT
EVENT
STANDBY_OUT
EVENT
RSTB
RSTB
TOFF_VDD3
3.3V
1V
VDD3 (3.3V)
TOFF_VDD2
VDD2 (1V)
1.2V
TOFF_VDD1
1.2V
VDD1 (1.2V)
TOFF_VDD1
VDD1 (1.2V)
1.85V
TOFF_VDD0
TOFF_VDD0
1.85V
VDD0 (1.85V)
VDD0 (1.85V)
1V
TOFF_VDD2
3.3V
VDD2 (1V)
TOFF_VDD3
VDD3 (3.3V)
TOFF_VDD4
VDD4 (CODEC)
Table 11-3.
TOFF_VDD4
VDD4 (CODEC)
STANDBY to POWERDOWN state timing table
Symbol
Parameter
Comments
TSTBY_OUT
STANDBY OUT Event
detection time
TOFF_VDDx
VDDx SHUTDOWN Time
Min
Typ
Max
Units
95
100
105
µs
58
62
66
µs
4.8
5.2
5.4
ms
VDD4 is OFF in RUN state
58
62
66
µs
VDD4 is ON in RUN state(2)
4.8
5.2
5.4
ms
VDDx is OFF during STANDBY state(1)
(1)
VDDx is ON during STANDBY state
(2)
TOFF_VDD4
Notes:
VDD4 SHUTDOWN Time
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.
2. VDD4 activity during RUN state is set by Bit7 of register VDD4_CTRL.
11.4.2
RUN STATE
When AT73C246 is in RUN state:
• VDD{0,1,2,3,5} power supplies are ON.
• RSTB pin is released.
• PMU functions are under software control (LDO4, AUDIO CODEC, ADC Controller)
• Led pin is driven according to register PMU_LED (0x0B).
31
11050A–PMAAC–07-Apr-10
When RUN state is reached from the POWERDOWN state, the power supplies are sequentially
started-up according to the Figure 11-5
Figure 11-5. AT73C246 - POWERDOWN to RUN state Supplies Start-Up timing diagram..
SEQUENCE A
POWERDOWN
STATE
SEQUENCE B
SUPPLIES START UP
RUN STATE
PWREN
EVENT
POWERDOWN
STATE
SUPPLIES START UP
RUN STATE
PWREN
EVENT
TON_SYS
TON_SYS
1V
VDD2 (1V)
3.3V
VDD3 (3.3V)
TON_VDD2
TON_VDD3
1.85V
VDD0 (1.85V)
1.85V
VDD0 (1.85V)
TON_VDD0
TON_VDD0
1.2V
VDD1 (1.2V)
1.2V
VDD1 (1.2V)
TON_VDD1
TON_VDD1
3.3V
VDD3 (3.3V)
1V
VDD2 (1V)
TON_VDD3
TON_VDD2
VPAD LEVEL
RSTB
VPAD LEVEL
RSTB
TRESET
Table 11-4.
TRESET
POWERDOWN to RUN state timing table
Symbol
Parameter
TON_SYS
POWER-ON Event Detection Time
TON_VDD0
Min
Typ
Max
Units
1.7
1.8
1.9
ms
VDD0 Start-up Time
5
5.3
5.6
ms
TON_VDD1
VDD1 Start-up Time
5
5.3
5.6
ms
TON_VDD2
VDD2 Start-up Time
5.2
5.5
5.8
ms
TON_VDD3
VDD3 Start-up Time
5.2
5.5
5.8
ms
TRESET
All Regulators ON To RSTB High
30.4
32
33.6
ms
32
Comments
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
When RUN state is reached from the STANDBY state, the power supplies are sequentially
started-up according to the Figure 11-6.
Figure 11-6. AT73C246 - STANDBY to RUN state Supplies Start-Up timing diagram.
SEQUENCE A
STANDBY
STATE
SEQUENCE B
SUPPLIES START UP
RUN STATE
WAKEUP
EVENT
STANDBY
STATE
SUPPLIES START UP
RUN STATE
WAKEUP
EVENT
TON_SYS
TON_SYS
1V
VDD2 (1V)
VDD3 (3.3V)
TON_VDD2
3.3V
VDD3 ON
or OFF
TON_VDD3
1.85V
1.85V
VDD0
VDD0 (1.85V)
PFM
TON_VDD0
VDD1 (1.2V)
TPFM
PFM
VDD0
VDD0 (1.85V)
PWM
PFM
TON_VDD0
1.2V
VDD1 (1.2V)
VDD1
PWM
PWM
PFM
TON_VDD1
TPFM
1.2V
VDD1
PWM
TON_VDD1
3.3V
1V
VDD3 ON
or OFF
VDD3 (3.3V)
VDD2 (1V)
TON_VDD3
TON_VDD2
VPAD LEVEL
RSTB
VPAD LEVEL
RSTB
TRESET
Table 11-5.
TRESET
STANDBY to RUN state timing table
Symbol
Parameter
Comments
Min
Typ
Max
Units
TON_SYS
Start-up Time
Time from validated WAKEUP event (end of debounce
time when applicable) to VDD2 or VDD3 power on.
810
900
990
µs
TPFM
PFM/PWM Switching
time
Time from validated WAKEUP event (end of debounce
time when applicable) to PFM/PWM switching if
applicable.
420
470
520
µs
TON_VDDx
VDDx Start-up Time
VDDx is OFF during STANDBY state(1)
5.2
5.4
5.7
ms
VDDx is ON during STANDBY state(1)
58
62
66
µs
TRESET
All Regulators ON To
RSTB High
30.4
32
33.6
ms
Note:
11.4.3
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.
STANDBY STATE
When AT73C246 is in STANDBY state:
• VBACKUP is ON.
• VDD{0,1,2,3} are ON or OFF according to the status in register 0x03
(PMU_STANDBY_SUPPLIES)
• VDD4 is ON or OFF according to the status in register 0x0A (VDD4_CTRL)
• Audio function is OFF
• ADC function is ON or OFF according to the status in register 0x30 (ADC_CTRL)
• RSTB pin is forced to ground.
• TWI pins are ignored to prevent TWI registers from corruption
• Led pin is driven according to register PMU_LED (0x0B)
To reach the STANDBY state, the appropriate power supplies are shut down as described in the
Figure 11-7 on page 34.
33
11050A–PMAAC–07-Apr-10
Figure 11-7. AT73C246 - RUN to STANDBY state Supplies Shutdown timing diagram.
SEQUENCE A
RUN
STATE
SEQUENCE B
STANDBY
STATE
SUPPLIES SHUTDOWN
RUN
STATE
TSTANDBY
TSTANDBY
STANDBY
EVENT
STANDBY
EVENT
TWAIT +
TOFF_AUDIO TOFF_VDD3
RSTB
TWAIT +
TOFF_AUDIO TOFF_VDD2
RSTB
3.3V
1V
VDD3 (3.3V)
(VDD3 ON
or OFF)
TOFF_VDD1
VDD2 (1V)
1.2V
VDD1
VDD1 (1.2V)
TPWM
PWM
PFM
PWM
TOFF_VDD0
1.85V
VDD0 (1.85V)
VDD1
VDD1 (1.2V)
PFM
PWM
VDD0
VDD0 (1.85V)
PFM
TOFF_VDD2
TOFF_VDD0
1.85V
1.85V
TPWM
PWM
1.85V
VDD0
PFM
1V
TOFF_VDD3
3.3V
VDD2 (1V)
VDD3 (3.3V)
Table 11-6.
RUN to STANDBY state timing table
Symbol
Parameter
TSTANDBY
STANDBY Event
Detection Time
TPWM
PFM/PWM Switching
time
TWAIT
WAKEUP Event
Detection Window
TOFF_AUDIO
Audio CODEC
Shutdown Time
TOFF_VDDx
VDDx SHUTDOWN
Time
Note:
(VDD3 ON
or OFF)
TOFF_VDD1
1.2V
TON_VDDx
STANDBY
STATE
SUPPLIES SHUTDOWN
Comments
VDDx STARTUP Time
Min
Typ
Max
Units
150
160
170
µs
Time from validated WAKEUP event (end of debounce
time when applicable) to PFM/PWM switching if
applicable.
460
500
540
µs
If a WAKEUP event occurs in this window the PMU
automatically restart at the end of the STANDBY
process.
150
160
170
µs
Audio CODEC is ON
486
512
538
ms
Audio CODEC is OFF
58
62
66
µs
58
62
66
µs
VDDx is OFF during STANBY state .
VDDx is ON during RUN state(2).
4.8
5.2
5.4
ms
VDDx is ON during STANBY state(1).
VDDx is OFF during RUN state(2).
4.8
5.2
5.4
ms
VDDx is ON during both STANBY(1) and RUN(2) states.
58
62
66
µs
VDDx is OFF during both STANBY(1) and RUN(2) states.
(1)
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.
2. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL.
11.4.4
HRST STATE
HRST state is a transition state used to restart the CPU:
• VDD{0,1,2,3,4} are switched off according to figure Figure 11-8 on page 35 depending on the
previous state
• VDD5 is ON
• RSTB pin is forced to ground
34
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 11-8. AT73C246 - HRST state Supplies Shutdown timing diagram.
SEQUENCE A
RUN / STANDBY /
POWERDOWN
SEQUENCE B
SUPPLIES SHUTDOWN
STATE
RUN / STANDBY /
POWERDOWN
HRST
STATE
HRST
STATE
SUPPLIES SHUTDOWN
STATE
THRST
THRST
HRST_EVENT
EVENT
HRST_EVENT
EVENT
TOFF_AUDIO
TOFF_AUDIO
RSTB
RSTB
3.3V
TOFF_VDD3
1V
VDD3 (3.3V)
TOFF_VDD2
VDD2 (1V)
1.2V
TOFF_VDD1
TOFF_VDD1
1.2V
VDD1 (1.2V)
VDD1 (1.2V)
1.85V
TOFF_VDD0
1.85V
VDD0 (1.85V)
TOFF_VDD0
VDD0 (1.85V)
1V
TOFF_VDD2
TOFF_VDD3
3.3V
VDD2 (1V)
VDD3 (3.3V)
TOFF_PMU
TOFF_PMU
PMU FUNCTIONS
(LDO4, ADC, LED,...)
Table 11-7.
PMU FUNCTIONS
(LDO4, ADC, LED,...)
HRST state timing table from RUN STATE
Symbol
Parameter
Comments
THRST
HRST Event Detection Time
TOFF_AUDIO
Audio CODEC Shutdown Time
Audio CODEC is ON
Min
Typ
Max
Units
58
62
66
µs
486
512
538
ms
58
62
66
µs
58
62
66
µs
4.8
5.2
5.4
ms
1.4
1.5
1.6
ms
Audio CODEC is OFF
(1)
VDDx is OFF in RUN state
TOFF_VDDx
VDDx SHUTDOWN Time
TOFF_PMU
PMU Functions Shutdown Time
Note:
VDDx is ON in RUN state
1. VDDx activity during RUN state is set by Bit7 of register VDDx_CTRL
Table 11-8.
HRST state timing table from STANDBY STATE
Symbol
Parameter
THRST
HRST Event Detection
Time
TOFF_AUDIO
Audio CODEC Shutdown
Time
TOFF_VDDx
VDDx SHUTDOWN Time
TOFF_VDD4
VDD4 SHUTDOWN Time
TOFF_PMU
PMU Functions Shutdown
Time
Notes:
(1)
Comments
Min
Typ
Max
Units
58
62
66
µs
486
512
538
ms
58
62
66
µs
58
62
66
µs
VDDx is ON during STANDBY state
4.8
5.2
5.4
ms
VDD4 is OFF in RUN state(2)
58
62
66
µs
4.8
5.2
5.4
ms
1.4
1.5
1.6
ms
Audio CODEC is ON
Audio CODEC is OFF
VDDx is OFF during STANDBY state
(1)
(1)
(2)
VDD4 is ON in RUN state
1. VDDx activity during STANDBY state is set by register PMU_STANDBY_SUPPLIES.
2. VDD4 activity during RUN state is set by Bit7 of register VDD4_CTRL.
35
11050A–PMAAC–07-Apr-10
11.5
DCDC0 and DCDC1 Functional Description
DCDC0 and DCDC1 are 2 identical high performance synchronous step-down (buck) converters. They feature:
• 2 control modes: PFM and PWM,
• A soft start circuit,
• A software programmable output voltage between 0.8 and 3.6V with automatic ramping for
DVS application,
• An Over-Current-Protection circuit,
• A 180 degree out of phase operating mode.
11.5.1
PFM and PWM Control Modes
Pulse Frequency Modulation control is an hysteretic control of the output voltage. It is specially
intended for light loads (< 50mA typ). In this mode, the DCDC converter exhibits a very low quiescent current (< 50µA) thus achieving very high efficiency at light loads. The frequency of
operation in this mode is not fixed but proportional to the load current.
Pulse Width Modulation control is a fixed frequency, variable duty cycle control of the DCDC
converter. It has a fast and precise feedback loop specially intended to handle hard loads and
low output ripple voltage.
At start-up, DCDC0 and DCDC1 operate in PWM mode. This way, high load at CPU boot are
properly handled. Through software control in registers VDD0_CTRL (0x06) and VDD1_CTRL
(0x07), the user may enter the low-power mode (PFM) when the application consumption is
reduced.
11.5.2
Soft-start Circuit
DCDC0 and DCDC1 feature a soft start circuit to prevent high input current while charging the
output capacitor from 0V to the default output voltage. Typically, the in-rush current at start-up
(with no load) is limited to 30 mA.
11.5.3
Output Voltage Programming
DCDC0 and DCDC1 output voltages can be managed through software control in registers
VDD0_CTRL (0x06) and VDD1_CTRL (0x07). 50mV steps are provided from 0.8V to 3.6V. It is
recommended to use the automatic ramping function in register PMU_SUPPLY_CTRL (0x04) to
achieve smooth operation. When the DVS_VDD{0,1} bit is active (default mode), output voltages
are ramped from the current value to the final value in 50mV / 280us steps. For users who intend
to disable the DVS_VDD{0,1} bit, a maximum of 4 steps (= 200mV) per 100us is allowed.
At power up, DCDC0 and DCDC1 default output voltages are respectively 1.85V and 1.20V. For
different default output voltages, please contact Atmel.
11.5.4
36
180° Out-of-phase Operation
DCDC0 and DCDC1 can be operated in-phase or at 180° out-of-phase according to the selection bit in register PMU_SUPPLY_CTRL (0x04). When operated in phase both converters will
start charging their inductor at the same time. When operated at 180° out-of-phase, the inductor
charge start time will be shifted by half a 2MHz clock delay (= 250ns) from one converter to the
other. This latter scheme tends to average the input current of both DCDC converters.
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.6
LDO2 Functional Description
LDO2 is a linear voltage regulator intended to supply CPU core voltages in the range 0.8V to
1.35V. Its maximum input voltage is 3.6V. Thus, it must not be wired to the VIN plane with VINSYS, VIN0, VIN1, VIN3 and VIN4 if VIN is above 3.6V. Considering its low-output voltage and
for the sake of efficiency and power dissipation, the user may connect it at the output of DCDC0.
This LDO features:
• A soft start circuit,
• A software programmable output voltage between 0.8 and 1.35V with automatic ramping for
DVS application.
11.6.1
Soft-start Circuit
LDO2 features a soft start circuit to prevent high input current while charging the output capacitor from 0V to the default output voltage. This soft start circuit limits the input current during 5ms
(+/-5%) at startup to 200mA in typical conditions. After this delay, LDO2 recovers full current
capability.
11.6.2
Output Voltage Programming
LDO2 output voltage can be managed through software control in register VDD2_CTRL (0x08).
50mV steps are provided from 0.8V to 1.35V. It is recommended to use the automatic ramping
function in register PMU_SUPPLY_CTRL (0x04) to achieve smooth operation. When the
DVS_VDD2 bit is active (default mode), output voltages are ramped from the current value to
the final value in 50mV / 600us steps.
At power up, LDO2 default output voltage is 1V. For different default output voltage, please contact Atmel.
11.7
LDO3 and LDO4 Functional Description
LDO3 and LDO4 are low dropout linear voltage regulators intended to supply CPU peripherals
(I/Os, analog functions) in the range 2.7V to 3.6V. They can be operated directly from a 5.5V
maximum input voltage. They feature:
• A soft start circuit,
• A software programmable output between 2.7V and 3.6V voltage with automatic ramping for
DVS application,
11.7.1
Soft-start Circuit
LDO3 and LDO4 feature a soft start circuit to prevent high input current while charging the output capacitor from 0V to the default output voltage. This soft start circuit limits the input current
during 5ms (+/-5%) at startup to 200mA in typical conditions. After this delay, LDO3(4) recovers
full current capability.
11.7.2
Output Voltage Programming
LDO3 and LDO4 output voltages can be managed through software control in registers
VDD3_CTRL (0x09) and VDD4_CTRL (0x0A). 50mV steps are provided from 2.7V to 3.6V. It is
recommended to use the automatic ramping function in register PMU_SUPPLY_CTRL (0x04) to
achieve smooth operation. When the DVS_VDD{3,4} bit is active (default mode), output voltages
are ramped from the current value to the final value in 50mV / 600us steps.
37
11050A–PMAAC–07-Apr-10
At power up, LDO3 an LDO4 default output voltages are both 3.3V. For different default output
voltages, please contact Atmel.
11.8
Power Fail Detectors
AT73C246 features a Power Fail detector on each CPU supplies (VDD0, VDD1, VDD2, VDD3). This
function is made of a comparator that toggles each time one the listed power supplies goes
below a defined threshold. The comparator toggling is considered by the PMU digital state
machine as a POWER-FAIL event.
The threshold value of the power fail detector is proportional to the output voltage of the regulator. It is not a fixed voltage, it is adapted to the programmed output voltage. The default
threshold value is set according to register PMU_RST_LVL (0x05) and can be programmed to
another value through TWI access. For other default threshold values at startup, please contact
Atmel.
11.9
Measurement Bridge and 10-bit ADC
AT73C246 features a 10-channel measurement chain including:
• A multiplexer + attenuator followed by a unity gain buffer
• A 300kS/s 10-bit SAR ADC.
ADC function is enabled through the register ADC_CTRL (0x30). ADC_MUX_1 (0x31) and
ADC_MUX_2 (0x32) allow the selection of inputs to be measured. 1 to 10 inputs can be
selected. The ADC will then perform serial conversion on these inputs and write the corresponding result in registers 0x33 to 0x49.
2 sampling modes are provided to perform periodic conversions:
• Max speed
• Low speed.
To enter these modes, refer to the sampling period bits (TS) in the register ADC_CTRL (0x30).
When MAX_SPEED mode is selected, the ADC runs at 300kS/s and loop without any dead time
over the selected inputs. When a LOW_SPEED sampling period is selected, the ADC performs
a set of input conversions (1 to 10) at 300kS/s and then wait for one sampling period (defined by
TS bits) to start another set of conversions.
38
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 11-9. Measurement Bridge and 10-bit ADC Block Diagram.
ADC_MUX_1 0x31
ADC_MUX_2 0x32
VINSYS
VDD0
VDD1
VDD3
VDD4
ANA0
ANA1
VDDC
10-channel
resistive attenuator
VDD2
TWI Registers
ADC_ANA0_MSB 0
MUX
10 1
ADC_ANA0_LSB 0
VREFP
BUFFER
ADC
ADCOUT <9:0>
VREFN
ADC_ANA_LSB
ANA2
0
GNDSYS
ANA3
ADC_CTRL 0x30
39
11050A–PMAAC–07-Apr-10
11.10 Real Time Clock (RTC) User Interface
Figure 11-10. RTC Block Diagram
RTC DATA 3
RTC DATA 2
RTC DATA 1
RTC DATA 0
CONTROL REGISTER
MODE REGISTER
TIME REGISTER
RTC_SEL
CALENDAR REGISTER
TIME ALARM REGISTER
CALENDAR ALARM REGISTER
RTC
CTRL
RTC_EN
RTC
STATUS REGISTER
STATUS CLEAR COMMAND REGISTER
INTERRUPT ENABLE REGISTER
INTERRUPT DISABLE REGISTER
RTC_WRITE
INTERRUPT MASK REGISTER
VALID ENTRY REGISTER
VERSION REGISTER
RESERVED REGISTER
RTC ADDR
Table 11-9.
Offset
Note:
40
Register Mapping
Register
Name
Access
Reset
0x00
Control Register
RTC_CR
Read-write
0x0
0x04
Mode Register
RTC_MR
Read-write
0x0
0x08
Time Register
RTC_TIMR
Read-write
0x0
0x0C
Calendar Register
RTC_CALR
Read-write
0x01819819
0x10
Time Alarm Register
RTC_TIMALR
Read-write
0x0
0x14
Calendar Alarm Register
RTC_CALALR
Read-write
0x01010000
0x18
Status Register
RTC_SR
Read-only
0x0
0x1C
Status Clear Command Register
RTC_SCCR
Write-only
---
0x20
Interrupt Enable Register
RTC_IER
Write-only
---
0x24
Interrupt Disable Register
RTC_IDR
Write-only
---
0x28
Interrupt Mask Register
RTC_IMR
Read-only
0x0
0x2C
Valid Entry Register
RTC_VER
Read-only
0x0
RTC_VERSION
Read-only
---
---
---
---
(1)
0xFC
Version Register
0xFC
Reserved Register
1. Values in the Version Register vary with the version of the IP block implementation.
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.1
RTC Register Read/Write Operation
Figure 11-11. RTC Read Operation
TWI ACCESS
WRITE
RTC_ADDR
WRITE 00
@RTC_CTRL
WRITE 02
@RTC_CTRL
WRITE 03
@RTC_CTRL
WRITE 02
@RTC_CTRL
RTC_EN = 0
RTC_EN = 1
RTC_EN = 0
RTC_EN = 0
RTC_SEL = 1
RTC_SEL = 1
RTC_SEL = 1
RTC_SEL = 0
RTC_WRITE = 0
RTC_WRITE = 0
RTC_WRITE = 0
RTC_WRITE = 0
READ
RTC_DATA3
READ
RTC_DATA2
READ
RTC_DATA1
READ
RTC_DATA0
RTC_ADDR
RTC_DATA
RTC_EN
RTC_SEL
RTC_WRITE
Figure 11-12. RTC Write Operation
TWI ACCESS
WRITE
RTC_ADDR
WRITE
RTC_DATA3
WRITE
RTC_DATA2
WRITE
RTC_DATA1
WRITE
RTC_DATA0
WRITE 06
@RTC_CTRL
WRITE 07
@RTC_CTRL
WRITE 06
@RTC_CTRL
WRITE 00
@RTC_CTRL
RTC_EN = 0
RTC_EN = 1
RTC_EN = 0
RTC_EN = 0
RTC_SEL = 1
RTC_SEL = 1
RTC_SEL = 1
RTC_SEL = 0
RTC_WRITE = 1
RTC_WRITE = 1
RTC_WRITE = 1
RTC_WRITE = 0
RTC_ADDR
RTC_DATA
RTC_EN
RTC_SEL
RTC_WRITE
41
11050A–PMAAC–07-Apr-10
11.10.2
RTC Control Register
Name:
RTC_CR
Access:
Read-write
Address:
0x00
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
–
–
–
–
–
–
15
14
13
12
11
10
–
–
–
–
–
–
16
CALEVSEL
9
8
TIMEVSEL
7
6
5
4
3
2
1
0
–
–
–
–
–
–
UPDCAL
UPDTIM
• UPDTIM: Update Request Time Register
0 = No effect.
1 = Stops the RTC time counting.
Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.
• UPDCAL: Update Request Calendar Register
0 = No effect.
1 = Stops the RTC calendar counting.
Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.
• TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.
0 = Minute change.
1 = Hour change.
2 = Every day at midnight.
3 = Every day at noon.
• CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.
0 = Week change (every Monday at time 00:00:00).
1 = Month change (every 01 of each month at time 00:00:00).
2, 3 = Year change (every January 1 at time 00:00:00)
42
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.3
RTC Mode Register
Name:
RTC_MR
Access:
Read-write
Address:
0x04
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
HRMOD
• HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.
1 = 12-hour mode is selected.
All non-significant bits read zero.
43
11050A–PMAAC–07-Apr-10
11.10.4
RTC Time Register
Name:
RTC_TIMR
Access:
Read-write
Address:
0x08
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
AMPM
15
14
10
9
8
2
1
0
HOUR
13
12
–
7
11
MIN
6
5
–
4
3
SEC
• SEC: Current Second
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• MIN: Current Minute
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• HOUR: Current Hour
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.
• AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0 = AM.
1 = PM.
All non-significant bits read zero.
44
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.5
RTC Calendar Register
Name:
RTC_CALR
Access:
Read-write
Address:
0x0C
31
30
–
–
23
22
29
28
27
21
20
19
DAY
15
14
26
25
24
18
17
16
DATE
MONTH
13
12
11
10
9
8
3
2
1
0
YEAR
7
6
5
–
4
CENT
• CENT: Current Century
The range that can be set is 19 - 20 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• YEAR: Current Year
The range that can be set is 00 - 99 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• MONTH: Current Month
The range that can be set is 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• DAY: Current Day
The range that can be set is 1 - 7 (BCD).
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.
• DATE: Current Date
The range that can be set is 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
All non-significant bits read zero.
45
11050A–PMAAC–07-Apr-10
11.10.6
RTC Time Alarm Register
Name:
RTC_TIMALR
Access:
Read-write
Address:
0x10
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
21
20
19
18
17
16
10
9
8
2
1
0
23
22
HOUREN
AMPM
15
14
HOUR
13
12
MINEN
7
11
MIN
6
5
SECEN
4
3
SEC
• SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.
• SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.
• MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.
• MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.
• HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.
• AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.
• HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.
1 = The hour-matching alarm is enabled.
46
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.7
RTC Calendar Alarm Register
Name:
RTC_CALALR
Access:
Read-write
Address:
0x14
31
30
DATEEN
–
29
28
27
26
25
24
18
17
16
DATE
23
22
21
MTHEN
–
–
20
19
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
MONTH
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
• MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.
• MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.
• DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.
• DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.
1 = The date-matching alarm is enabled.
47
11050A–PMAAC–07-Apr-10
11.10.8
RTC Status Register
Name:
RTC_SR
Access:
Read-only
Address:
0x18
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALEV
TIMEV
SEC
ALARM
ACKUPD
• ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.
1 = Time and calendar registers can be updated.
• ALARM: Alarm Flag
0 = No alarm matching condition occurred.
1 = An alarm matching condition has occurred.
• SEC: Second Event
0 = No second event has occurred since the last clear.
1 = At least one second event has occurred since the last clear.
• TIMEV: Time Event
0 = No time event has occurred since the last clear.
1 = At least one time event has occurred since the last clear.
The time event is selected in the TIMEVSEL field in RTC_CTRL (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).
• CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.
1 = At least one calendar event has occurred since the last clear.
The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.
48
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.9
RTC Status Clear Command Register
Name:
RTC_SCCR
Access:
Write-only
Address:
0x1C
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALCLR
TIMCLR
SECCLR
ALRCLR
ACKCLR
• ACKCLR: Acknowledge Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• ALRCLR: Alarm Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• SECCLR: Second Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• TIMCLR: Time Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• CALCLR: Calendar Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
49
11050A–PMAAC–07-Apr-10
11.10.10 RTC Interrupt Enable Register
Name:
RTC_IER
Access:
Write-only
Address:
0x20
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALEN
TIMEN
SECEN
ALREN
ACKEN
• ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.
1 = The acknowledge for update interrupt is enabled.
• ALREN: Alarm Interrupt Enable
0 = No effect.
1 = The alarm interrupt is enabled.
• SECEN: Second Event Interrupt Enable
0 = No effect.
1 = The second periodic interrupt is enabled.
• TIMEN: Time Event Interrupt Enable
0 = No effect.
1 = The selected time event interrupt is enabled.
• CALEN: Calendar Event Interrupt Enable
0 = No effect.
• 1 = The selected calendar event interrupt is enabled.
50
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.11 RTC Interrupt Disable Register
Name:
RTC_IDR
Access:
Write-only
Address:
0x24
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALDIS
TIMDIS
SECDIS
ALRDIS
ACKDIS
• ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.
1 = The acknowledge for update interrupt is disabled.
• ALRDIS: Alarm Interrupt Disable
0 = No effect.
1 = The alarm interrupt is disabled.
• SECDIS: Second Event Interrupt Disable
0 = No effect.
1 = The second periodic interrupt is disabled.
• TIMDIS: Time Event Interrupt Disable
0 = No effect.
1 = The selected time event interrupt is disabled.
• CALDIS: Calendar Event Interrupt Disable
0 = No effect.
1 = The selected calendar event interrupt is disabled.
51
11050A–PMAAC–07-Apr-10
11.10.12 RTC Interrupt Mask Register
Name:
RTC_IMR
Access:
Read-only
Address:
0x28
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CAL
TIM
SEC
ALR
ACK
• ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.
1 = The acknowledge for update interrupt is enabled.
• ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.
1 = The alarm interrupt is enabled.
• SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.
1 = The second periodic interrupt is enabled.
• TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.
1 = The selected time event interrupt is enabled.
• CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.
1 = The selected calendar event interrupt is enabled.
52
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
11.10.13 RTC Valid Entry Register
Name:
RTC_VER
Access:
Read-only
Address:
0x2C
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
NVCALALR
NVTIMALR
NVCAL
NVTIM
• NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).
1 = RTC_TIMR has contained invalid data since it was last programmed.
• NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).
1 = RTC_CALR has contained invalid data since it was last programmed.
• NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).
1 = RTC_TIMALR has contained invalid data since it was last programmed.
• NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).
1 = RTC_CALALR has contained invalid data since it was last programmed.
53
11050A–PMAAC–07-Apr-10
11.10.14 RTC Version register
Name:
RTC_VERSION
Access:
Read-only
Address:
0xFC
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
15
14
13
12
11
–
–
–
–
7
6
5
4
MFN
10
9
8
1
0
VERSION
3
2
VERSION
• VERSION
Reserved. Value subject to change. No funcionality associated. This is the Atmel internal version of the macrocell.
• MFN
Reserved. Value subject to change. No funcionality associated.
11.11 Die Temperature Sensor
The AT73C246 features a die temperature sensor for protection reasons. If the junction temperature rises above the shutdown threshold for a minimum time of 1ms (+/- 5%), the power
manager event TJ > 130°C is asserted. In a similar fashion, if the temperature falls through the
restart threshold for more than 1ms, the power manager event TJ <110°C is asserted.
The two internal thresholds shutdown and restart are defined in Section 9.11 “Die Temperature
Sensor” on page 21.
54
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
12. Audio Codec Functional Description
12.1
Description
AT73C246 features a high quality, low power stereo audio codec with integrated headphone
amplifier.
The playback channel accommodates 16 to 24-bit stereo programmable format entering the digital audio interface (I2S) and delivers an internal analog audio output through a 100dB SNR
Sigma Delta Stereo DAC. An output mixer allows to mix this DAC output with a line / aux or
microphone input.
A 16-32 Ohms Stereo headphone amplifier with virtual ground output provides a 97dB SNR output for line / headphone loads. The virtual ground output allows to remove 2 space demanding
coupling capacitors on board.
On the record side, a multiplexer can select between a main stereo line input and a stereo auxiliary input such as an FM radio. A stereo microphone input with up to 46dB gain is provided. A
stereo input mixer allows mixing between line (or aux) and microphone channels before entering
a 96dB SNR Stereo Sigma Delta ADC. The digital audio signal is then digitally filtered and transferred to the I2S audio interface.
12.2
Audio Codec Block Diagram
Figure 12-1. Audio Codec Block Diagram
BYPASS
0 -> -30dB
1dB Step
MUX
-34 -> +12dB
1dB Step
LINL
-77/+6dB
1dB Step
AUXL
0 -> +46dB
1dB Step
MICL
ADC
HPL
DSP
+
Audio
Controller
MICLN
0 -> +46dB
1dB Step
MICR
DAC
VMID
HPVCM
-77/+6dB
1dB Step
MICRN
MUX
LINR
-34 -> +12dB
1dB Step
AUXR
ADC
DAC
HPR
HPDET
0 -> -30dB
1dB Step
BYPASS
Codec Bias
2K
200K
MICBIAS AVDD
I²S
200K
VMID
AGND
PAO
DAI
LRFS BCLK MCLK
55
11050A–PMAAC–07-Apr-10
56
AUXINR
LINEINR
MICRN
MICBIAS
2K
200K
AVDD
ONMICBIAS
Gain Control
-35 to +12dB
1dB step
INRVOL MUTEINR
ONLINR
MICDETLEV
LINESEL
ONMICBIAS
MICRDIFF
MICRVOL MUTEMICR
ONMICR
VMID
AGND
200K
MIXLINER
MIXMICR
+
SELFS
0 to +46dB
1dB step
WL
ONMIXR
ONADCR
ADCR
ONADCL
Digital
Processor
PATHSEL
MICR
MICLDIFF
DAIMODE
MICLN
SSCMODE
ONMICL
MASTER
0 to +46dB
1dB step
MCLKSEL
MIXMICL
BCLKINV
MICLVOL MUTEMICL
+
RINBOTH
ADCL
ENAC
ONMIXL
LINBOTH
ONBYPASS
DACR
ONDACR
ONDACL
DACL
Sidetone
-30 to +0dB
3dB step
GSDT ONSIDETONE
ONBYPASS
DEEMP
MUTEDACR
EQUALIZER
FX3D
MONOADC
SWAPADC
MONODAC
SWAPDAC
DEEMP
MUTEDACL
EQUALIZER
FX3D
Sidetone
-30 to +0dB
3dB step
GSDT ONSIDETONE
RHSBOTH
MICL
LINESEL
MIXLINEL
STDBY
INLVOL MUTEINL
ONLINL
ENASR
AUXINL
LINEINL
Gain Control
-35 to 12dB
1dB step
ASRTIME
AUDIO
CONTROLLER
LHSBOTH
I2S INTERFACE
ONPLAYBACK
ONPLAYBACK
+
VMID
+
HPRVOL
-77 to 6dB
1dB step
HPLVOL
-77 to 6dB
1dB step
TWI
ONHPL
MUTEHPL
ONHPL/R
DCBLOCK
MUTEHPR
ONHPR
DCBLOCK
DCBLOCK
HPDET
HPR
HPVCM
HPL
12.3
Audio Codec Controls
Figure 12-2. Audio Codec Controls
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
12.4
Audio Controller
The audio controller sequences the power-up and power-down of the audio codec sub-functions
(Mic.amp / ADC / DAC / …). During these transitioning phases, the controller also manages the
gain steps to fade them in and out, thus providing smooth operation.
Depending on the application, two modes are provided:
1. Automatic path control
Dedicated to the major audio path scenarios (those described in Table 13-25 on page 95), this
mode enables the whole audio path setup only via "PATHSEL" bits in register AUTOSTART
(0x10).
2. Custom path control
Dedicated to audio path scenarios not described in the previously mentioned table, this mode
brings the flexibility to start manually the audio sub-functions.
The following figure shows the global context of the audio codec control.
Figure 12-3. Audio Codec Typical Control Sequence
Apply Supply
1 & MCLK
Configure
2 Analog & Digital
Interfaces
3 Unmute Codec
Start Audio
4 Codec in
Registers to set :
- AUDIO_CONTROL (0x11)
(Set DCBlock bit here)
- MIC_CONTROL (0x12)
- DAI_CONTROL (0x13)
- FRAME_CONTROL (0x14)
Register to set :
- MUTE (0x15)
Automatic path
control
6
7
8
Register to set :
- AUTOSTART (0x10)
Software
Wait
Standby
5
Software
Wait
Typically 350ms.
- See VMID section.
Shutdown
Audio Codec
9
Unset
DCBLOCK bit
Custom path
control
Registers to set
- See dedicated sections.
Register to set :
- AUTOSTART (0x10)
At least 1s.
- See “Power-off Time”
section.
Register to set :
- AUDIO_CONTROL (0x11)
- See “AC/DC coupled load
management” section.
Remove MCLK
10 & supply
57
11050A–PMAAC–07-Apr-10
12.4.1
12.4.1.1
Audio Codec General Recommendations
VMID
• VMID is the common mode voltage of the audio codec analog core. It is recommended to
decouple this voltage with a 1uF capacitor to ensure low noise operation as well as slow
(thus silent) transients at codec power up and power down.
• The VMID capacitor is charged and discharged whenever the ENAC bit is set or cleared.
Particularly, placing the audio codec in STANDBY mode does not discharge the VMID
capacitor. The software WAIT operations in the previous diagram (step #5 and step #8 in
“Audio Codec Typical Control Sequence” on page 57) should accommodate VMID's settling
time constant. See “Audio Codec Bias” on page 22..
12.4.1.2
AC / DC Coupled Load Management
• By default the audio codec is in DC-coupled load configuration: DCBLOCK = 0 in register
AUDIO_CONTROL(0x11). In this case, a virtual ground voltage is provided on pin HPVCM (a
buffered version of VMID). It allows to directly connect headphones or line loads between
HPVCM and HPL(or R) without any coupling capacitors. To prevent any audio pop at start-up
or shutdown in this DC coupling mode, the audio codec fastly starts HPL, HPR and HPVCM
outputs shorted all together. No software management is required to achieve pop-less
operation.
• If output loads are AC coupled to the headphone amplifier, the audio codec DCBLOCK bit
must be set and unset as described in “Audio Codec Typical Control Sequence” on page 57.
This bit partially controls the two switches S1 and S2 described in the following figure. When
DCBLOCK = 1 and the headphone amplifier is OFF, the output coupling capacitors are
charged and discharged by the amplifier “VMID_BUFFER”. In order to achieve silent startup
and shutdown, the following rules must be respected:
– DCBLOCK = 0 at supply power-on and power-off. This ensures that the LDO4
power-on and power-off transients are not transmitted to the audio loads.
– DCBLOCK = 1 when ENAC = 1. Particularly, DCBLOCK must be set before
ENAC=1 and unset after ENAC=0. This ensures that the full VMID waveform is
properly buffered to the output loads.
– DCBLOCK = 1 after ENAC = 0 and until VMID capacitor is fully discharged. At codec
shutdown (ENAC=0), VMID will discharge slowly. The VMID_BUFFER ensures slow
and silent discharge of the output coupling capacitors, and needs S1 and S2 to be
closed.
58
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 12-4. AC / DC Coupled Load Management Schematic View
VIN4
AT73C246
LDO4
CL
LEFT
VDD4
HPL
S1
10uF
RL
ENAC
DCBLOCK.ONHP
AVDD
200k
VMID
BUFFER
VMID
CR
S2
RR
RIGHT
HPR
1uF
AGND
200k
Figure 12-5. Audio Codec Typical Startup and Shutdown Waveforms With AC Coupled Loads.
VDD4
VMID
HP(L/R)
DCBLOCK
ENAC
STANDBY
S1 & S2
S1 AND S2 OPENED
BY AUDIO CODEC
12.4.1.3
MUTE Register
By default, the audio codec starts muted. To enable the audio processing, the MUTE register
(0x15) must be cleared. Unmute operation can be performed before or after releasing the
STANDBY mode. During operation, this register provides a convenient way of muting the audio
signal without changing the various gain registers.
12.4.1.4
Master Clock Input (MCLK)
The Audio Controller is clocked by MCLK pin. Therefore a clock must be present at this pin
before each codec control change. Particularly, the master clock must be present at power-on,
power-off, gain change, path change. The master clock must also be available when fully analog
path are used.
12.4.1.5
Power-off Conditions
Three audio codec power-off conditions can occur:
• Sofware request (ENAC = 0 in AUTOSTART register). In this case, the codec is smoothly
powered off by the audio controller.
• PMU Power-off event or Standby event (as defined in Section 11.3 “Power Manager
Conditional Transitions” on page 27). In this case, the codec is smoothly powered off with a
59
11050A–PMAAC–07-Apr-10
500ms timeout. Contrary to the first point, which has no timeout, the audio power-off time
limit is here fixed to 500ms. Beyond this limit, the codec is hardly reseted as in the following
point.
• PMU Power-fail event. In this case, the PMU finite state machine makes an immediate hard
reset of the audio codec to ensure fast shutdown. This case may generate an audible click /
pop noise.
12.4.1.6
Power-off Time
At power-off, the audio controller needs to perform several controls on audio codec sub-functions and to discharge the output coupling capacitors. Therefore, the codec’s power-off time is
divided into:
• a digital power-off time and,
• an analogue one.
During this power-off phase, the codec‘s master clock and supply must be present. See “Audio
Codec Power-off Waveforms” on page 60.
Figure 12-6. Audio Codec Power-off Waveforms
VDD4
MCLK
ENAC
VMID
analog
power-off
time
AUDIO
SIGNAL
digital
power-off
time
The digital power-off time depends on the number of controls (power-off, gain steps ramping, ...)
to perform and for this reason strongly varies according to:
• the master clock frequency,
• the current path,
• the current gains and
• the current Automatic Soft Ramping time (ASR_TIME in AUDIO_CONTROL(0x11)).
In worst case conditions (slowest clock, maximum ASR_TIME, maximum complexity audio path,
maximum gains everywhere), the power-off time reaches 3 seconds. During this period, the
60
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
master clock must be running to properly shutdown the codec. This time linearly varies with
ASR_TIME value. See Table 12-1
Table 12-1.
ASR_TIME
Audio Codec Maximum Power-off Time
Power-off time (ms)
00
375
01
750
10
1500
11
3000
The analog power-off time corresponds to the VMID’s discharge time specified in “Audio Codec
Bias” on page 22: TMID_OFF.
Finally, the wait step #8 in “Audio Codec Typical Control Sequence” on page 57 needs to accomodate the digital power-off time + the analog power-off time.
12.4.2
Automatic Path Configuration
In this automatic path mode, the audio path control is fully managed by the AUTOSTART(0x10)
register and more precisely by the following bits:
• ENAC (Enable Audio codec),
• STANDBY(1) (Audio standby) and
• PATHSEL (Audio path selection).
When the audio controller detects a change in these bits, it generates sequential controls to the
audio codec sub-functions (power-up, gain ramping, unmute,…) with the right timing and order.
Notes:
12.4.2.1
1. Audio STANDBY does not refer to the PMU STANDBY state as defined in “AT73C246 Power
Manager Functional State Diagram” on page 25. The audio STANDBY mode activated by register AUTOSTART (0x10) only refers to the audio codec controller.
STANDBY Release
Once the CODEC is started and in standby mode (ENAC=1 and STANDBY=1, step #5 in “Audio
Codec Typical Control Sequence” on page 57), the audio path is simply selected by PATHSEL
bits.
At STANDBY release (STANDBY=0), the audio controller will:
• Power-up the requested audio sub-functions. To do so, the audio controller makes WRITE
accesses to the registers
– INPUT_CONTROL (0x1E),
– OUTPUT_CONTROL (0x1F) and
– INPUT_MIXER (0x20).
• Ramp-up the concerned path gains from mute to their current register value.
Notes:
1. Changing PATHSEL value with STANDBY=1 does not changes the codec state. It remains in
STANDBY mode.
2. The audio controller always ensures minimum power consumption by powering only needed
sub-functions.
3. Audio parameters (volume, mute, effects…) can be modified before or after releasing the
standby mode.
61
11050A–PMAAC–07-Apr-10
12.4.2.2
Pause Management With STANDBY Bit
To pause the audio codec activity and reduce power consumption to few hundreds of microamps, the STANDBY bit can be activated in register AUTOSTART (0x10). The Audio codec will
then:
• Softly ramp down all the path concerned gains down-to mute and
• Power off all the audio sub-functions. The registers INPUT_CONTROL (0x1E),
OUTPUT_CONTROL (0x1F), and INPUT_MIXER (0x20) are modified by the audio
controller.
Notes:
1. Placing the codec in standby mode maintains the common mode voltage at VMID pin and thus
allows to re-start fastly,
2. Standby release is simply achieved by clearing the STANDBY bit (STANDBY = 0). The procedure described in “STANDBY Release” on page 61 applies.
12.4.2.3
On-the-fly Path Change
The audio controller is able to softly switch from one audio path configuration to another without
shutting down the codec nor entering the STANDBY mode. As soon as it detects a change in the
PATHSEL value, the following mechanism occurs:
• Power up and/or power down of the audio sub-functions according to the final state to reach.
This operation generates automatic changes in the registers INPUT_CONTROL (0x1E),
OUTPUT_CONTROL (0x1F), and INPUT_MIXER (0x20).
• Ramp up and/or ramp down of the concerned path gain.
Notes:
1. A channel may be temporarily and smoothly switched off and on to reach the new path.
2. Any software write operation in the registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL
(0x1F), and INPUT_MIXER (0x20) will generate a series of control on the audio codec subfunctions. In automatic path control, the order of the write operations in those registers is of
prime importance. Please note that changing those registers updates the used audio path
without updating the PATHSEL value. Therefore, these write operations are not recommended
and must be limited to simple ones (for example changing LINESEL bit in register
INPUT_CONTROL (0x1E) ).
12.4.2.4
Audio Codec Shutdown
The Audio controller will start to shutdown the codec if ENAC = 0. The shutdown sequence is
made of the following steps:
• Softly ramp down all the path concerned gains down-to mute,
• Power off all the audio sub-functions and,
• Power off the common voltage VMID.
Notes:
1. In this mode, the power consumption is reduced to few hundreds of nA.
2. The common mode voltage power-off follows VMID time constant and thus may take a few
hundreds of milliseconds depending on VMID capacitor. See “Audio Codec Bias” on page
22.
A software example of audio codec control using automatic path control is provided in the section “Basic Audio Codec Setting Using Automatic Path Control” on page 134.
12.4.3
Custom Path Configuration
In this custom path mode, the audio path control is managed by the following registers:
• AUTOSTART (0x10) (ENAC and STANDBY bits only)
• AUDIO_CONTROL (0x11) (ENCONF and CUSTCONF bits only)
62
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
• INPUT_CONTROL (0x1E)
• OUTPUT_CONTROL (0x1F)
• INPUT_MIXER (0x20)
Like in the automatic path configuration, the audio controller will sequence audio codec subfunctions ON/OFF as well as gain stepping. However, the audio path is no more selected via the
"PATHSEL" value in register AUTOSTART.
To specify a custom audio path:
• The bit CUSTCONF in register AUDIO_CONTROL (0x11) must be set to '1' to specify the
'custom' path configuration mode.
• The registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL (0x1F), and INPUT_MIXER
(0x20) are set to define the audio path,
• The bit ENCONF in register AUDIO_CONTROL (0x11) is pulsed to '1' to enable the audio
controller sequencing.
Notes:
1. “Pulsed to ‘1’ ”means written to ‘1’ and then written to ’0’.
2. In this mode, the STANDBY bit behaves like in the automatic mode. It is possible to place the
CODEC in standby mode to reduce power consumption during audio pause by simply setting
the STANDBY bit to 1. STANDBY release is achieved by clearing this bit.
3. On-the-fly path change is achieved by modifying the registers INPUT_CONTROL (0x1E),
OUTPUT_CONTROL (0x1F) , and INPUT_MIXER (0x20) to define the new audio path configuration and then pulsing to '1' the ENCONF bit. In this case, a channel may be temporarily
(and smoothly) switched off and on to reach the new configuration.
4. Changing the three registers INPUT_CONTROL (0x1E), OUTPUT_CONTROL (0x1F) , and
INPUT_MIXER (0x20) with the ENCONF bit set to ‘1’ makes the changes to take effect immediately. Therefore, the order of write operations is of prime importance. It is then recommended
to write these registers with ENCONF set to 0 and then pulse ENCONF to ‘1’ once the new
audio path is fully specified. Knowing the final state to reach, the audio controller is able to
sequence the controls with the right order and timings to ensure noise-free operation.
5. In this custom mode, the Audio Controller may forbid any configuration that does not make
sense. For example, it will prevent the headphone amplifier from being switched on if it has no
input source (DAC, Microphone, or Line).
6. It is possible and sometimes convenient to switch from an automatically set path to a custom
one. In this case, the audio controller softly performs the required path change. However, activating an automatic path configuration from a current custom path configuration is not allowed.
The audio codec must be switched off first (ENAC=0).
A software example of audio codec control using custom path control is provided in the section
“Basic Audio Codec Setting Using Custom Path Control” on page 135.
12.5
Audio Codec Power Consumption Versus Programmed Audio Path
Unless otherwise specified:
• AVDD = 3.3V
• MCLK = 12.288MHz , FS = 48KHz
• All Gains set to 0dB
• No audio signal
• TA = 25°C.
• Headphone amplifier set in AC coupling mode.
63
11050A–PMAAC–07-Apr-10
• Current consumptions don’t account for load consumption and are measured in AVDD pin and
VINSYS pin.
Table 12-2.
Audio PATH Power Consumption
PATH_SEL
AUDIO PATH
Description
Consumption
Units
VINSYS
AVDD
0.10
0.61
mA
00000
No Path
00001
DAC Playback
Digital IN - Headphone OUT
1.80
5.2
mA
00010
Mic Sidetone
Microphone IN - Headphone OUT
0.10
2.65
mA
00011
Aux Bypass
Aux IN - Headphone OUT
0.10
2.65
mA
00100
Line Bypass
Line IN - Headphone OUT
0.10
2.65
mA
00101
Mic Record
Mic IN - Digital OUT
2.00
3.40
mA
00110
Aux Record
Aux IN - Digital OUT
2.00
3.40
mA
00111
Line Record
Line IN - DIGITAL OUT
2.00
3.40
mA
01000
Mic Sidetone + Record
Mic IN - Headphone and Digital OUT
2.00
5.05
mA
01001
Aux Bypass + Record
Aux IN - Headphone and Digital OUT
2.00
5.05
mA
01010
Line Bypass + Record
Line IN - Headphone and Digital OUT
2.00
5.05
mA
01011
Mic + Aux Record
Mic + Aux IN - Digital OUT
2.00
3.70
mA
01100
Mic + Line Record
Mic + Line IN - Digital OUT
2.00
3.70
mA
01101
DAC Playback + Mic Sidetone
Digital + Mic IN - Headphone OUT
1.80
5.60
mA
01110
DAC Playback + Aux Bypass
Digital + Aux IN - Headphone OUT
1.80
5.60
mA
01111
DAC Playback + Line Bypass
Digital + Line IN - Headphone OUT
1.80
5.60
mA
10000
DAC Playback + Mic Sidetone
+ Aux Bypass
Digital + Mic + Aux IN - Headphone OUT
1.80
5.85
mA
10001
DAC Playback + Mic Sidetone
+ Line Bypass
Digital + Mic + Line IN - Headphone OUT
1.80
5.85
mA
10010
DAC Playback and
MIC Record
Digital IN - Headphone OUT
Mic IN - Digital OUT
3.80
8.00
mA
10011
DAC Playback and
Aux Record
Digital IN - Headphone OUT
Aux IN - Digital OUT
3.80
8.00
mA
10100
DAC Playback and
Line Record
Digital IN - Headphone OUT
Line IN - Digital OUT
3.80
8.00
mA
10101
DAC Playback + Mic Sidetone
and Mic Record
Digital + Mic IN - Headphone OUT
Mic IN - Digital OUT
3.80
8.00
mA
10110
DAC Playback + Aux Bypass
and Aux Record
Digital + Aux IN - Headphone OUT
Aux IN - Digital OUT
3.80
8.00
mA
64
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Table 12-2.
Audio PATH Power Consumption
PATH_SEL
AUDIO PATH
Description
Consumption
VINSYS
AVDD
Units
10111
DAC Playback + Line Bypass
and Line Record
Digital + Line IN - Headphone OUT
Line IN - Digital OUT
3.80
8.00
mA
11000
DAC Playback + Mic Sidetone
+ Aux Bypass and
Mic + Aux Record
Digital + Mic + Aux IN - Headphone OUT
Mic + Aux IN - Digital OUT
3.80
8.25
mA
11001
DAC Playback + Mic Sidetone
+ Line Bypass and
Mic + Line Record
Digital + Mic + Line IN - Headphone OUT
Mic + Line IN - Digital OUT
3.80
8.25
mA
65
11050A–PMAAC–07-Apr-10
12.6
12.6.1
Digital Audio Interface
General Description
AT73C246 features a 16 to 24-bit multi-mode master / slave I2S port. The following modes are
provided:
• I2S,
• Left Justified,
• Right Justified, and
• SSC
The I2S port is configured through register I2S_CONTROL (0x13) and FRAME_CONTROL
(0x14). For each of the listed modes, the data transfer is described in the following sections.
The following table provides authorized MCLK / FS ratios and associated filter types:
Table 12-3.
12 MHz(1)
12.288 MHz
18.432 MHz
11.2896 MHz
16.9344 MHz
8 KHz
0
2
2
NA
NA
16 KHz
0
2
2
NA
NA
32 KHz
0
2
2
NA
NA
48 KHz
3
1
1
NA
NA
96 KHz
4
3
3
NA
NA
22.05 KHz
1
NA
NA
1
1
44.1 KHz
1
NA
NA
1
1
88.2 KHz
3
NA
NA
3
3
Note:
12.6.2
Authorized MCLK / FS Ratios & Filter Types
1. 12.0000 MHz case is not provided if DAI is configured in Right-Justified and Master mode in
DAI_CONTROL (0x13) and FRAME_CONTROL registers (0x14).
Data Transfer: I²S MODE
Figure 12-7. N-bit I²S Mode (FS = 44.1KHz - MCLK = 256 x FS)
MCLK
LRFS
BCLK
SDOUT
SDIN
Ln
L n-1
n bits Left Channel
66
L0
Rn
R n-1
R3
R2
R1
R0
n bits Right Channel
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
12.6.3
Data Transfer: Left Justified Mode
Figure 12-8. N-bit Left Justified Mode (FS = 44.1KHz - MCLK = 256 x FS)
MCLK
LRFS
BCLK
SDOUT
SDIN
Ln
Ln-1
Ln-2
L0
Rn
R n-1
R n-2
n bits Left Channel
12.6.4
R3
R2
R1
R0
n bits Right Channel
Data Transfer: Right Justified Mode
Figure 12-9. N-bit Right Justified Mode (FS = 44.1KHz - MCLK = 256 x FS)
MCLK
LRFS
BCLK
SDOUT
SDIN
Ln
Ln-1
Ln-2
n bits Left Channel
L0
Rn
R n-1
R n-2
R3
R2
R1
R0
n bits Right Channel
67
11050A–PMAAC–07-Apr-10
12.6.5
Timing Specifications
Figure 12-10. Timing Diagram of data interface (I²S Mode)
TLRCLK
TLRCLK
VIH
LRFS
VIL
TBCLK
VIH
BCLK
VIL
THSDX
TLSDX
DAI
DAO
VXH
LSB
VXL
Word N-1
Right Channel
Table 12-4.
LSB
MSB
MSB
LSB
Word N
Left Channel
Word N
Right Channel
Digital Audio InterfaceTiming Specifications
Parameter
Symbols
Left/Right Word Cycle Time
TLRCLK
Bit Clock Period
TBCLK
TMCLK / 2
s
BCLK Posedge to {DAI, DAO and LRFS} Change
Hold Time
THSDX
5
ns
{DAI, DAO and LRFS} Change to BCLK
Posedge Setup Time
TLSDX
5
ns
12.7
12.7.1
Min
Typ
Max
Unit
1 / (2 x FS)
s
Digital Filters Transfer Function
DAC Frequency Response
The following diagrams are referred to FS = 1 (Sampling Frequency).
Figure 12-11. DAC Type 0 Frequency Response
Overall
68
Ripple
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 12-12. DAC Type 1 Frequency Response
Overall
Ripple
Figure 12-13. DAC Type 2 Frequency Response
Overall
Ripple
Figure 12-14. DAC Type 3 Frequency Response
Overall
Ripple
69
11050A–PMAAC–07-Apr-10
Figure 12-15. DAC Type 4 Frequency Response
Overall
12.7.2
Ripple
ADC Frequency Response
The following diagrams are referred to FS = 1 (Sampling Frequency).
Figure 12-16. ADC Type 0 Frequency Response
Overall
Ripple
Figure 12-17. ADC Type 1 Frequency Response
Overall
70
Ripple
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 12-18. ADC Type 2 Frequency Response
Overall
Ripple
Figure 12-19. ADC Type 3 Frequency Response
Overall
Ripple
Figure 12-20. ADC Type 4 Frequency Response
Overall
Ripple
71
11050A–PMAAC–07-Apr-10
12.7.3
12.7.3.1
De-Emphasis Filter Frequency Response
De-Emphasis Filter: Frequency Response & Error (FS = 32kHz)
Figure 12-21. De-Emphasis Filter: Frequency Response & Error (FS = 32kHz)
Error
Response (dB)
Response (dB)
Response
Fequency (Hz)
12.7.3.2
Fequency (Hz)
De-Emphasis Filter: Frequency Response & Error (FS = 44.1kHz)
Figure 12-22. De-Emphasis Filter: Frequency Response & Error (FS = 44.1kHz)
Error
Response (dB)
Response (dB)
Response
Fequency (Hz)
12.7.3.3
Fequency (Hz)
De-Emphasis Filter: Frequency Response & Error (FS = 48kHz)
Figure 12-23. De-Emphasis Filter: Frequency Response & Error (FS = 48kHz)
Fequency (Hz)
72
Error
Response (dB)
Response (dB)
Response
Fequency (Hz)
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
12.7.4
Equalizer Frequency Response
The following figures show the frequency response of the equalizer function implemented in the
D/A channels.
Figure 12-24. Bass Filters Response
dB
Fs
Figure 12-25. Medium Filters Response
dB
Fs
73
11050A–PMAAC–07-Apr-10
Figure 12-26. Treble Filters Response
dB
Fs
12.8
12.8.1
Analog Audio Interfaces
Microphone Inputs
The following figures show recommended application circuits for microphone inputs
configurations:
• Mono - single-ended and differential microphone
• Stereo - single ended and differential microphone
• Long-wires microphone
Recommended resistor / capacitor / inductor value may be tuned to the final application,
depending on:
• the microphone specified load resistance,
• the high pass filter desired corner frequency,
• the level and frequency of unwanted signals to be rejected.
Depending also on desired high frequency filtering: common-mode or differential, the differential
suggested application diagrams may be modified.
74
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 12-27. Mono - Single Ended and Differential Microphone Applications
VIN4
VIN4
LDO4
LDO4
VDD4
VDD4
10uF
AVDD
10uF
AVDD
2k
2k
MICBIAS
MICBIAS
AT73C246
2k
MICL
AT73C246
10uF
1uF
1k
MICL
M
2.2nF
M
1uF
MICLN
NC
MICR
NC
MICR
NC
MICRN
NC
MICRN
NC
MICLN
10uF
1uF
1k
2.2nF
Figure 12-28. Stereo - Single Ended and Differential Microphone Applications
VIN4
VIN4
LDO4
LDO4
VDD4
VDD4
10uF
AVDD
470
470
2k
10uF
MICBIAS
10uF
NC
AT73C246
1k
1uF
MICL
1uF
M
2.2nF
MICLN
470
10uF
MICBIAS
2k
MICL
470
2k
10uF
NC
AT73C246
10uF
AVDD
M
2.2nF
NC
MICLN
1uF
1k
1k
2k
1uF
MICR
2.2nF
MICRN
1uF
MICR
M
M
2.2nF
NC
1uF
MICRN
1k
Figure 12-29. Long Wires Microphone Applications
VIN4
VIN4
LDO4
LDO4
VDD4
VDD4
10uF
AVDD
10uF
AVDD
2k
470
470
2k
MICBIAS
MICBIAS
AT73C246
2k
MICL
1k
MICL
1uF
10uH
MICLN
MICLN
1nF
10uF
10uH
1nF
2.2nF
NC
2.2nF
10uF
NC
AT73C246
10uF
1uF
long wires
1uF
M
10uH
M
1k
long wires
1k
MICR
NC
MICR
10uH
1uF
1nF
2.2nF
MICRN
NC
MICRN
long wires
1uF
M
10uH
1k
75
11050A–PMAAC–07-Apr-10
12.8.2
Aux / Line Inputs
Figure 12-30. Aux and Line Input Application Circuits
3.3uF
100
AUXL
10nF
ON-BOARD
AUDIO IC
SOURCE
(FM receiver, ...)
10nF
AUXR
100
3.3uF
AT73C246
3.3uF
100
10nF
100k
10nF
100k
LINL
jack
LINR
100
3.3uF
12.8.3
Line / Headphone Outputs
Figure 12-31. AC Coupled Output Application Circuits
3.3uF
330uF
100
100k
HPR
100k
HPR
jack
HPVCM
jack
AT73C246
NC
HPVCM
NC
3.3uF
headphone
output
16 / 32 Ohms
330uF
100
HPL
100k
line-output
100k
AT73C246
HPL
Figure 12-32. DC Coupled (CAPLESS) Application Circuits
HPR
HPR
DIFF. IN /
DIFF. OUT
POWER AMP.
jack
AT73C246
HPL
76
AT73C246
HPVCM
DIFF. IN /
DIFF. OUT
POWER AMP.
HPVCM
headphone
output
16 / 32 Ohms
HPL
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
13. Two Wire Interface and Control Registers
13.1
Two-wire Interface (TWI) Protocol
The two-wire interface interconnects components on a unique two-wire bus, made up of one
clock line and one data line with speeds up to 400 Kbits per second, based one a byte oriented
transfer format. The TWI is slave only and single byte access.
The interface adds flexibility to the power supply solution, enabling LDO regulators to be controlled depending on the instantaneous application requirements.
The AT73C246 has the following 7-bit address:1001001.
Attempting to read data from register addresses not listed in this section results in 0xFF being
read out.
• TWCK is an input pin for the clock
• TWD is an open-drain pin that drives or receives the serial data
The data put on the TWD line must be 8 bits long. Data is transferred MSB first. Each byte must
be followed by an acknowledgement.
Each transfer begins with a START condition and terminates with a STOP condition.
• A high-to-low transition on TWD while TWCK is high defines a START condition.
• A low-to-high transition on TWD while TWCK is high defines a STOP condition.
Figure 13-1. TWI Start/Stop Cycle
TWD
TWCK
Start
Stop
Figure 13-2. TWI Data Cycle
TWD
TWCK
Start
Address
R/W
Ack
Data
Ack
Data
Ack
Stop
After the host initiates a Start condition, it sends the 7-bit slave address defined above to notify
the slave device. A Read/Write bit follows (Read = 1, Write = 0).
The device acknowledges each received byte.
The first byte sent after device address and R/W bit is the address of the device register the host
wants to read or write.
For a write operation the data follows the internal address
77
11050A–PMAAC–07-Apr-10
For a read operation a repeated Start condition needs to be generated followed by a read on the
device.
Figure 13-3. TWD Write Operation
S
TWD
ADDR
W
A
IADDR
DATA
A
A
P
Figure 13-4. TWD Read Operation
TWD
S
ADDR
W
A
IADDR
A
S
ADDR
R
A
DATA
N
P
• S = Start
• P = Stop
• W = Write
• R = Read
• A = Acknowledge
• N = Not Acknowledge
• ADDR = Device address
• IADDR = Internal address
78
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
13.2
13.2.1
PMU Register Tables
Register Mapping
Table 13-1.
Register Mapping
Addr
Name
7
6
5
4
3
2
1
0
0x00
PMU_MODES
-
-
-
-
-
STANDBY
PWRDOWN
RUN
0x01
PMU_WAKEUP_EVENTS
-
-
RTC
PWREN
WAKEUP3
WAKEUP2
WAKEUP1
WAKEUP0
0x02
PMU_WAKEUP_TRIG
-
-
RTCR
PWREN
WAKEUP3
WAKEUP2
WAKEUP1
WAKEUP0
0x03
PMU_STANDBY_SUPPLIES
-
-
LP_VDD1
LP_VDD0
VDD3
VDD2
VDD1
VDD0
0x04
PMU_SUPPLY_CTRL
-
-
IN_PHASE
DVS_VDD4
DVS_VDD3
DVS_VDD2
DVS_VDD1
DVS_VDD0
0x05
PMU_RST_LEVEL
0x06
VDD0_CTRL
ON_VDD0
LPMODE
VDD0_SEL
0x07
VDD1_CTRL
ON_VDD1
LPMODE
VDD1_SEL
0x08
VDD2_CTRL
ON_VDD2
-
-
VDD2_SEL
0x09
VDD3_CTRL
ON_VDD3
-
-
VDD3_SEL
0x0A
VDD4_CTRL
ON_VDD4
-
-
VDD4_SEL
0x0B
PMU_LED
0x0C
PMU_MASK
RST_VDD3
RST_VDD2
RST_VDD1
TON_LED
-
RST_VDD0
PERIOD_LED
-
-
-
-
BLINK
ON_LED
-
RTC_ALARM
RTC_IT
0x0D
PMU_IT
-
-
-
-
-
-
RTC_ALARM
RTC_IT
0x0E
PMU_WAKEUP_SUPPLIES
-
-
-
-
VDD0_WUP
VDD1_WUP
VDD2_WUP
VDD3_WUP
0x10
AUTOSTART
-
ENAC
STANDBY
0x11
AUDIO_CONTROL
-
BCLKINV
DCBLOCK
ENCONF
0x12
MIC_CONTROL
-
-
MICLDIFF
MICRDIFF
0x13
DAI_CONTROL
-
-
0x14
FRAME_CONTROL
SSCMODE
0x15
MUTE
MUTEDACL
MUTEDACR
0x16
MICLVOL
-
-
MICLVOL
0x17
MICRVOL
-
-
MICRVOL
0x18
INLVOL
INLBOTH
INLVOL
0x19
INRVOL
INRBOTH
INRVOL
0x1A
HPLVOL
HPLVOL
0x1B
HPRVOL
HPRVOL
0x1C
HP_CONTROL
0x1D
AUDIO_EFFECTS
0x1E
INPUT_CONTROL
-
LINESEL
0x1F
OUTPUT_CONTROL
-
ONSIDETONE
0x20
INPUT_MIXER
-
-
MIXMICL
0x21
SIDETONE_VOL
-
-
-
0x22
EQUALIZER
-
-
-
0x30
ADC_CTRL
ON_ADC
ON_BUF
0x31
ADC_MUX_1
-
VIN
-
VDD4
VDD3
VDD2
VDD1
VDD0
0x32
ADC_MUX_2
-
-
-
-
ANA3
ANA2
ANA1
ANA0
0x33
ADC_ANA0_MSB
PATH_SEL
ENASR
MICDET
ASR_TIME
ONMICBIAS
MASTER
WL
3DFX_DEPTH
CUSTCONF
DAIMODE
MUTEINL
ON3DFX
MUTEINR
MICDET_ST
MCLKSEL
SELFS
MUTEMICL
MUTEMICR
MUTEHPL
MUTEHPR
HPDET_ST
LHPBOTH
RHPBOTH
MONO_ADC
ONDEEMP
SWAP_DAC
SWAP_ADC
MONO_DAC
ONMICL
ONMICR
ONADCL
ONADCR
ONLINL
ONLINR
ONPLAYBACK
ONBYPASS
ONHPL
ONHPR
ONDACL
ONDACR
MIXMICR
MIXLINEL
MIXLINER
ONMIXL
ONMIXR
SIDETONE_VOL
-
EQ_SEL
TS
ADC<9:2>
79
11050A–PMAAC–07-Apr-10
Table 13-1.
Register Mapping
Addr
Name
7
6
5
4
3
2
0x34
ADC_ANA0_LSB
-
-
-
-
-
-
ADC<1:0>
-
-
-
-
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
-
-
ADC<1:0>
0x35
ADC_ANA1_MSB
0x36
ADC_ANA1_LSB
0x37
ADC_ANA2_MSB
0x38
ADC_ANA2_LSB
0x39
ADC_ANA3_MSB
0x3A
ADC_ANA3_LSB
0x3B
ADC_VDD0_MSB
0x3C
ADC_VDD0_LSB
0x3D
ADC_VDD1_MSB
0x3E
ADC_VDD1_LSB
0x3F
ADC_VDD2_MSB
0x40
ADC_VDD2_LSB
0x41
ADC_VDD3_MSB
0x42
ADC_VDD3_LSB
0x43
ADC_VDD4_MSB
0x44
ADC_VDD4_LSB
0x47
ADC_VIN_MSB
0x48
1
0
ADC<9:2>
ADC<9:2>
-
-
-
-
-
-
-
-
ADC<9:2>
ADC<9:2>
-
-
-
-
-
-
-
-
ADC<9:2>
ADC<9:2>
-
-
-
-
-
-
-
-
ADC<9:2>
ADC<9:2>
-
-
-
-
ADC_VIN_LSB
-
-
-
-
0x49
ADC_ANA_LSB
ADC_ANA3<1:0>
ADC_ANA2<1:0>
ADC_ANA1<1:0>
0x50
RTC_CTRL
-
-
-
RTC_WRITE
RTC_SEL
RTC_EN
0X51
RTC_ADDR
RTC_ADDR
0x52
RTC_DATA0
RTC_DATA0
0x53
RTC_DATA1
RTC_DATA1
0x54
RTC_DATA2
RTC_DATA2
0x55
RTC_DATA3
0x56
BACKUP_CTRL
OSC_UPDT
OSC_EN
OSC_STAT
RST_BKUP
0x7F
VERSION
80
ADC<9:2>
-
-
ADC_ANA0<1:0>
RTC_DATA3
-
-
-
SOFTWARE_TAG
-
VERSION
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
13.2.2
PMU Control
Name:
PMU_MODES
Access:
Read / Write
Address:
0x00
7
6
5
4
3
2
1
0
-
-
-
-
-
STANDBY
PWRDOWN
RUN
Table 13-2.
PMU_MODES (0x00) Structure
Bit
Name
Description
Reset value
7:3
-
unused
00000
STANDBY
STANDBY request
0: Default value.
1: STANDBY request. Reset to 0 at STANDBY
exit.
0
1
PWRDOWN
POWERDOWN request
0: Default value.
1: POWERDOWN request. Reset to 0 when
POWERDOWN state reached.
0
0
RUN
RUN mode
0
2
Notes:
1. Please refer to Section 11. “PMU Functional Description” on page 25
2. ‘RUN’ bit is read-only. Only ‘STANDBY’ and ‘PWRDOWN’ bits can be written
81
11050A–PMAAC–07-Apr-10
Name:
PMU_WAKEUP_EVENTS
Access:
Read / Write
Address:
0x01
7
6
5
4
3
2
1
0
-
-
RTC
PWREN
WAKEUP3
WAKEUP2
WAKEUP1
WAKEUP0
Table 13-3.
Bit
Name
Description
Reset value
7:6
-
unused
00
5
RTC
Wake up by RTC alarm input
0: disabled
1: enabled
0
4
PWREN
Wake up by PWREN input
0: disabled
1: enabled
0
3
WAKEUP3
Wake up by WAKEUP3 input
0: disabled
1: enabled
0
2
WAKEUP2
Wake up by WAKEUP2 input
0: disabled
1: enabled
0
1
WAKEUP1
Wake up by WAKEUP1 input
0: disabled
1: enabled
0
0
WAKEUP0
Wake up by WAKEUP0 input
0: disabled
1: enabled
1
Note:
82
PMU_WAKEUP_EVENTS (0x01) Structure
Please refer to Section 11. “PMU Functional Description” on page 25
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
PMU_WAKEUP_TRIG
Access:
Read Only
Address:
0x02
7
6
5
4
3
2
1
0
-
-
RTCR
PWREN
WAKEUP3
WAKEUP2
WAKEUP1
WAKEUP0
Table 13-4.
PMU_WAKEUP_TRIG (0x02) Structure
Bit
Name
Description
Reset value
7:6
-
unused
00
5
RTCR
WAKEUP_EVENT trigged on RTC alarm
0
4
PWREN
WAKEUP_EVENT trigged on PWREN
0
3
WAKEUP3
WAKEUP_EVENT trigged on WAKEUP3
0
2
WAKEUP2
WAKEUP_EVENT trigged on WAKEUP2
0
1
WAKEUP1
WAKEUP_EVENT trigged on WAKEUP1
0
0
WAKEUP0
WAKEUP_EVENT trigged on WAKEUP0
0
Note:
Please refer to Section 11. “PMU Functional Description” on page 25
83
11050A–PMAAC–07-Apr-10
Name:
PMU_STANDBY_SUPPLIES
Access:
Read / Write
Address:
0x03
7
6
5
4
3
2
1
0
-
-
LP_VDD1
LP_VDD0
VDD3
VDD2
VDD1
VDD0
Table 13-5.
84
PMU_STANDBY_SUPPLIES (0x03) Structure
Bit
Name
Description
Reset value
7:6
-
unused
00
5
LP_VDD1
VDD1 Low power mode in STANDBY
0: Full power (PWM)
1: Low power (PFM)
1
4
LP_VDD0
VDD0 Low power mode in STANDBY
0: Full power (PWM)
1: Low power (PFM)
1
3
VDD3
VDD3 in STANDY state
0: OFF
1: ON
1
2
VDD2
VDD2 in STANDY state
0: OFF
1: ON
0
1
VDD1
VDD1 in STANDY state
0: OFF
1: ON
0
0
VDD0
VDD0 in STANDY state
0: OFF
1: ON
1
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
PMU_SUPPLY_CTRL
Access:
Read / Write
Address:
0x04
7
6
5
4
3
2
1
0
-
-
IN_PHASE
DVS_VDD4
DVS_VDD3
DVS_VDD2
DVS_VDD1
DVS_VDD0
Table 13-6.
PMU_SUPPLY_CTRL (0x04) Structure
Bit
Name
Description
Reset value
7:6
-
unused
00
5
IN_PHASE
DCDC0 and DCDC1 phase operation
0: out-of phase
1: in-phase
0
4
DVS_VDD4
DVS function on VDD4
0: OFF
1: ON
1
3
DVS_VDD3
DVS function on VDD3
0: OFF
1: ON
1
2
DVS_VDD2
DVS function on VDD2
0: OFF
1: ON
1
1
DVS_VDD1
DVS function on VDD1
0: OFF
1: ON
1
0
DVS_VDD0
DVS function on VDD0
0: OFF
1: ON
1
85
11050A–PMAAC–07-Apr-10
Name:
PMU_RST_LVL
Access:
Read / Write
Address:
0x05
7
6
RST_VDD3
Table 13-7.
4
RST_VDD2
3
2
RST_VDD1
1
0
RST_VDD0
PMU_RST_LVL (0x05) Structure
Bit
Name
Description
Reset value
7:6
RST_VDD3
RST level on VDD3
01
5:4
RST_VDD2
RST level on VDD2
10
3:2
RST_VDD1
RST level on VDD1
10
1:0
RST_VDD0
RST level on VDD0
11
Table 13-8.
86
5
VDDx Reset Level Selection Table
RST_VDDx
RST LEVEL
00
0.85 x VDDx
01
0.90 x VDDx
10
0.92 x VDDx
11
0.95 x VDDx
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
VDD0_CTRL
Access:
Read / Write
Address:
0x06
7
6
ON_VDD0
LPMODE
Table 13-9.
5
4
3
2
1
0
VDD0_SEL
VDD0_CTRL (0x06) Structure
Bit
Name
Description
Reset value
7
ON_VDD0
VDD0 ON/OFF
0: OFF
1: ON
0
6
LPMODE
VDD0 Low power mode
0: Full power (PWM)
1: Low power (PFM)
0
5:0
VDD0_SEL
VDD0 voltage selection
010101
Table 13-10. VDD0 Voltage Selection Table
VDD0_SEL
VDD0 (V)
VDD0_SEL
VDD0 (V)
VDD0_SEL
VDD0 (V)
000000
0.80
010011
1.75
100110
2.70
000001
0.85
010100
1.80
100111
2.75
000010
0.90
010101
1.85
101000
2.80
000011
0.95
010110
1.90
101001
2.85
000100
1.00
010111
1.95
101010
2.90
000101
1.05
011000
2.00
101011
2.95
000110
1.10
011001
2.05
101100
3.00
000111
1.15
011010
2.10
101101
3.05
001000
1.20
011011
2.15
101110
3.10
001001
1.25
011100
2.20
101111
3.15
001010
1.30
011101
2.25
110000
3.20
001011
1.35
011110
2.30
110001
3.25
001100
1.40
011111
2.35
110010
3.30
001101
1.45
100000
2.40
110011
3.35
001110
1.50
100001
2.45
110100
3.40
001111
1.55
100010
2.50
110101
3.45
010000
1.60
100011
2.55
110110
3.50
010001
1.65
100100
2.60
110111
3.55
010010
1.70
100101
2.65
111000
3.60
87
11050A–PMAAC–07-Apr-10
Name:
VDD1_CTRL
Access:
Read / Write
Address:
0x07
7
6
5
ON_VDD1
LPMODE
4
3
2
1
0
VDD1_SEL
Table 13-11. VDD1_CTRL (0x07) Structure
Bit
Name
Description
Reset value
7
ON_VDD1
VDD1 ON / OFF
0: OFF
1: ON
0
6
LPMODE
VDD1 Low power mode
0: Full power (PWM)
1: Low power (PFM)
0
5:0
VDD1_SEL
VDD1 voltage selection
001000
Table 13-12. VDD1 Voltage Selection Table
88
VDD1_SEL
VDD1 (V)
VDD1_SEL
VDD1 (V)
VDD1_SEL
VDD1 (V)
000000
0.80
010011
1.75
100110
2.70
000001
0.85
010100
1.80
100111
2.75
000010
0.90
010101
1.85
101000
2.80
000011
0.95
010110
1.90
101001
2.85
000100
1.00
010111
1.95
101010
2.90
000101
1.05
011000
2.00
101011
2.95
000110
1.10
011001
2.05
101100
3.00
000111
1.15
011010
2.10
101101
3.05
001000
1.20
011011
2.15
101110
3.10
001001
1.25
011100
2.20
101111
3.15
001010
1.30
011101
2.25
110000
3.20
001011
1.35
011110
2.30
110001
3.25
001100
1.40
011111
2.35
110010
3.30
001101
1.45
100000
2.40
110011
3.35
001110
1.50
100001
2.45
110100
3.40
001111
1.55
100010
2.50
110101
3.45
010000
1.60
100011
2.55
110110
3.50
010001
1.65
100100
2.60
110111
3.55
010010
1.70
100101
2.65
111000
3.60
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
VDD2_CTRL
Access:
Read / Write
Address:
0x08
7
6
5
ON_VDD2
-
-
4
3
2
1
0
VDD2_SEL
Table 13-13. VDD2_CTRL (0x08) Structure
Bit
Name
Description
Reset value
7
ON_VDD2
VDD2 ON / OFF
0: OFF
1: ON
0
6:5
-
unused
00
4:0
VDD2_SEL
VDD2 voltage selection
00100
Table 13-14. VDD2 Voltage Selection Table
VDD2_SEL
VDD2 (V)
00000
0.80
00001
0.85
00010
0.90
00011
0.95
00100
1.00
00101
1.05
00110
1.10
00111
1.15
01000
1.20
01001
1.25
01010
1.30
01011
1.35
89
11050A–PMAAC–07-Apr-10
Name:
VDD3_CTRL
Access:
Read / Write
Address:
0x09
7
6
5
ON_VDD3
-
-
4
3
2
1
0
VDD3_SEL
Table 13-15. VDD3_CTRL (0x09) Structure
Bit
Name
Description
Reset value
7
ON_VDD3
VDD3 ON / OFF
0: OFF
1: ON
0
6:5
-
unused
00
4:0
VDD3_SEL
VDD3 voltage selection
01100
Table 13-16. VDD3 Voltage Selection Table
90
VDD3_SEL
VDD3 (V)
00000
2.70
00001
2.75
00010
2.80
00011
2.85
00100
2.90
00101
2.95
00110
3.00
00111
3.05
01000
3.10
01001
3.15
01010
3.20
01011
3.25
01100
3.30
01101
3.35
01110
3.40
01111
3.45
10000
3.50
10001
3.55
10010
3.60
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
VDD4_CTRL
Access:
Read / Write
Address:
0x0A
7
6
5
ON_VDD4
-
-
4
3
2
1
0
VDD4_SEL
Table 13-17. VDD4_CTRL (0x0A) Structure
Bit
Name
Description
Reset value
7
ON_VDD4
VDD4 ON / OFF
0: OFF
1: ON
0
6:5
-
unused
00
4:0
VDD4_SEL
VDD4 voltage selection
01100
Table 13-18. VDD4 Voltage Selection Table
VDD4_SEL
VDD4 (V)
00000
2.70
00001
2.75
00010
2.80
00011
2.85
00100
2.90
00101
2.95
00110
3.00
00111
3.05
01000
3.10
01001
3.15
01010
3.20
01011
3.25
01100
3.30
01101
3.35
01110
3.40
01111
3.45
10000
3.50
10001
3.55
10010
3.60
91
11050A–PMAAC–07-Apr-10
Name:
PMU_LED
Access:
Read / Write
Address:
0x0B
7
6
5
4
3
TON_LED
2
PERIOD_LED
1
0
BLINK
ON_LED
Table 13-19. PMU_LED (0x0B) Structure
Bit
Name
Description
Reset value
7:5
TON_LED
LED ‘ON’ time
000
4:2
PERIOD_LED
LED blinking period
010
1
BLINK
Blinking function ON / OFF
0: OFF
1: ON
0
0
ON_LED
Led ON / OFF
0: OFF
1: ON
0
Table 13-20. LED Blinking Function Parameters Selection Table
TON_LED
LED ‘ON’ Time (ms)
PERIOD_LED
BLINKING PERIOD (s)
000
25
000
0.5
001
50
001
1
010
75
010
2
011
100
011
3
100
125
100
4
101
150
101
5
110
175
110
6
111
200
111
8
Note:
In case of TON_LED = 175ms, PERIOD_LED=5s and BLINK=1 selection, the LED pin is driven
according to the following diagram. During 9 clock periods (internal RC 32kHz oscillator) the pin is
driven to 0, and during 1 clock period the pin is configured as ‘input’ with an internal pull up resistor to VINSYS.
Figure 13-5. LED Pin Timing Diagram for TON_LED = 175ms and PERIOD_LED=5s
Internal
RC 32kHz
LED Pin
Pin forced to ‘0’
9 x 32kHz clock periods
92
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
PMU_MASK
Access:
Read / Write
Address:
0x0C
7
6
5
4
3
2
1
0
-
-
-
-
-
-
RTC_ALA
RM
RTC_IT
Table 13-21. PMU_MASK (0x0C) Structure
Bit
Name
Description
Reset value
7:2
-
unused
111111
1
RTC_ALARM
Mask RTC alarm
0: not masked
1: masked
1
0
RTC_IT
Mask RTC interrupt
0: not masked
1: masked
1
Name:
PMU_IT
Access:
Read Only
Address:
0x0D
7
6
5
4
3
2
1
0
-
-
-
-
-
-
RTC_ALA
RM
RTC_IT
Table 13-22. PMU_IT (0x0D) Structure
Bit
Name
Description
Reset value
7:2
-
unused
000000
1
RTC_ALARM
RTC alarm interrupt
0: default value
1: RTC alarm has occurred. Reset to 0 at read.
0
0
RTC_IT
RTC interrupt
0: default value
1: RTC interrupt has occurred. Reset to 0 at read.
0
93
11050A–PMAAC–07-Apr-10
Name:
PMU_WAKEUP_SUPPLIES
Access:
Read / Write
Address:
0x0E
7
6
5
4
3
2
1
0
-
-
-
-
VDD0_WUP
VDD1_WUP
VDD2_WUP
VDD3_WUP
Table 13-23. PMU_WAKEUP_SUPPLIES (0x0E) Structure
94
Bit
Name
Description
Reset value
7:4
-
unused
0000
3
VDD0_WUP
VDD0 Value at WAKEUP
0: Programmed value
1: Default value
1
2
VDD1_WUP
VDD1Value at WAKEUP
0: Programmed value
1: Default value
1
1
VDD2_WUP
VDD2 Value at WAKEUP
0: Programmed value
1: Default value
1
0
VDD3_WUP
VDD3 Value at WAKEUP
0: Programmed value
1: Default value
1
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
AUTOSTART
Access:
Read / Write
Address:
0x10
7
6
5
4
-
ENAC
STANDBY
3
2
1
0
PATH_SEL
Table 13-24. AUTOSTART (0x10) Structure
Bit
Name
Description
Reset value
7
-
unused
0
6
ENAC
Audio Codec ON / OFF
0: OFF
1: ON
0
5
STANDBY
Audio STANDBY mode ON / OFF
0: Audio codec active
1: Audio codec in standby
1
4:0
PATH_SEL
Audio PATH selection
00000
Table 13-25. Audio Path Selection Table
PATH_SEL
AUDIO PATH
00000
No Path
00001
DAC Playback
Digital IN - Headphone OUT
00010
Mic Sidetone
Microphone IN - Headphone OUT
00011
Aux Bypass
Aux IN - Headphone OUT
00100
Line Bypass
Line IN - Headphone OUT
00101
Mic Record
Mic IN - Digital OUT
00110
Aux Record
Aux IN - Digital OUT
00111
Line Record
Line IN - DIGITAL OUT
01000
Mic Sidetone + Record
Mic IN - Headphone and Digital OUT
01001
Aux Bypass + Record
Aux IN - Headphone and Digital OUT
01010
Line Bypass + Record
Line IN - Headphone and Digital OUT
01011
Mic + Aux Record
Mic + Aux IN - Digital OUT
01100
Mic + Line Record
Mic + Line IN - Digital OUT
01101
DAC Playback + Mic Sidetone
Digital + Mic IN - Headphone OUT
01110
DAC Playback + Aux Bypass
Digital + Aux IN - Headphone OUT
01111
DAC Playback + Line Bypass
Digital + Line IN - Headphone OUT
10000
DAC Playback + Mic Sidetone
+ Aux Bypass
Digital + Mic + Aux IN - Headphone OUT
10001
DAC Playback + Mic Sidetone
+ Line Bypass
Digital + Mic + Line IN - Headphone OUT
10010
DAC Playback and
MIC Record
Digital IN - Headphone OUT
Mic IN - Digital OUT
95
11050A–PMAAC–07-Apr-10
Table 13-25. Audio Path Selection Table
96
PATH_SEL
AUDIO PATH
10011
DAC Playback and
Aux Record
Digital IN - Headphone OUT
Aux IN - Digital OUT
10100
DAC Playback and
Line Record
Digital IN - Headphone OUT
Line IN - Digital OUT
10101
DAC Playback + Mic Sidetone
and Mic Record
Digital + Mic IN - Headphone OUT
Mic IN - Digital OUT
10110
DAC Playback + Aux Bypass
and Aux Record
Digital + Aux IN - Headphone OUT
Aux IN - Digital OUT
10111
DAC Playback + Line Bypass
and Line Record
Digital + Line IN - Headphone OUT
Line IN - Digital OUT
11000
DAC Playback + Mic Sidetone
+ Aux Bypass and
Mic + Aux Record
Digital + Mic + Aux IN - Headphone OUT
Mic + Aux IN - Digital OUT
11001
DAC Playback + Mic Sidetone
+ Line Bypass and
Mic + Line Record
Digital + Mic + Line IN - Headphone OUT
Mic + Line IN - Digital OUT
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
AUDIO_CONTROL
Access:
Read / Write
Address:
0x11
7
6
5
4
3
2
-
BCLKINV
DCBLOCK
ENCONF
CUST_CO
NF
ENASR
1
0
ASR_TIME
Table 13-26. AUDIO_CONTROL (0x11) Structure
Bit
Name
Description
Reset value
7
-
-
0
6
BLCKINV
Bit clock inversion on I2S port
0: not inverted
1: inverted
0
5
DCBLOCK
Headphone output coupling configuration
0: DC coupled (capless operation)
1: AC coupled
0
4
ENCONF
Custom configuration enable
0: Default value.
1: custom configuration is send to audio
controller.
0
3
CUST_CONF
Custom audio configuration
0: Audio path are set with PATH_SEL
1: Custom audio path set by software
0
2
ENASR
Gain soft ramping ON / OFF
0: OFF
1: ON
1
1:0
ASR_TIME
Gain soft ramping timing selection
11
Table 13-27. Gain Soft Ramping Timing Selection Table
ASR_TIME
Timing
00
MCLK / (32 x 512)
01
MCLK / (64 x 512)
10
MCLK / (128 x 512)
11
MCLK / (256 x 512)
97
11050A–PMAAC–07-Apr-10
Name:
MIC_CONTROL
Access:
Read / Write
Address:
0x12
7
6
5
4
-
-
MICLDIFF
MICRDIFF
3
2
MICDET
1
0
ONMICBIAS MICDET_ST
Table 13-28. MIC_CONTROL (0x12) Structure
Bit
Name
Description
Reset value
7:6
-
unused
00
5
MICLDIFF
Left microphone differential configuration
0: Single-ended
1: Differential
0
4
MICRDIFF
Right microphone differential configuration
0: Single-ended
1: Differential
0
3:2
MICDET
Microphone detector threshold
00
1
ONMICBIAS
Microphone bias generator ON / OFF
0: OFF
1: ON
0
0
MICDET_ST
MICBIAS pin microphone detector status bit
0: No microphone detected
1: Microphone detected
0
Table 13-29. Microphone Detector Threshold Selection Table
98
MICDET
MICBIAS PIN LEVEL (V)
00
AVDD - 0.1
01
AVDD - 0.2
10
AVDD - 0.3
11
AVDD - 0.4
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
DAI_CONTROL
Access:
Read / Write
Address:
0x13
7
6
5
4
3
-
-
-
-
MASTER
2
1
0
MCLKSEL
Table 13-30. DAI_CONTROL (0x13) Structure
Bit
Name
Description
Reset value
7:4
-
unused
0000
3
MASTER(1)
MASTER / SLAVE operation on DAI port
0: Slave
1: Master
0
2:0
MCLKSEL
Audio Master clock frequency selection
001
Note:
1. The MASTER mode is not provided for 12.0000 MHz clock case and Right-Justified mode on
DAI.
Table 13-31. Audio Master Clock Selection Table
MCLKSEL
MCLK (MHz)
MCLKSEL
MCLK (MHz)
000
12.000
100
16.9344
001
12.288
101
-
010
11.2896
110
-
011
18.432
111
-
99
11050A–PMAAC–07-Apr-10
Name:
FRAME_CONTROL
Access:
Read / Write
Address:
0x14
7
6
SSCMODE
5
4
WL
3
2
DAI_MODE
1
0
SELFS
Table 13-32. FRAME_CONTROL (0x14) Structure
Bit
Name
Description
Reset value
7
SSCMODE
SSC mode for DAI
0: DAI according to DAI_MODE bits
1: SSC mode
0
6:5
WL
Word length selection
11
4:3
DAI_MODE
Digital Audio Interface mode control
00
2:0
SELFS
Audio Frame frequency selection
011
Table 13-33. Digital Audio Interface Word Length Selection Table
WL
MODE
00
16
01
18
10
20
11
24
Table 13-34. Digital Audio Interface Mode Selection Table
DAIMODE
MODE
00
I2S
01
Left-Justified
10
Right-Justified(1)
11
N/A
Note:
1. The Right-Justified mode is not provided for 12.0000 MHz clock case and MASTER mode on
DAI.
Table 13-35. Audio Sampling Frequency Selection Table
100
SELFS
FS (kHz)
SELFS
FS (kHz)
000
8
100
96
001
16
101
22.050
010
32
110
44.100
011
48
111
88.200
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
MUTE
Access:
Read / Write
Address:
0x15
7
6
5
4
3
2
1
0
MUTEDACL
MUTEDAC
R
MUTEINL
MUTEINR
MUTEMICL
MUTEMICR
MUTEHPL
MUTEHPR
Table 13-36. MUTE (0x15) Structure
Bit
Name
Description
Reset value
7
MUTEDACL
DAC Left mute
0: active
1: muted
1
6
MUTEDACR
DACR Right mute
0: active
1: muted
1
5
MUTEINL
AUX / LINE Left mute
0: active
1: muted
1
4
MUTEINR
AUX / LINE Right mute
0: active
1: muted
1
3
MUTEMICL
MIC Left mute
0: active
1: muted
1
2
MUTEMICR
MIC Right mute
0: active
1: muted
1
1
MUTEHPL
Headphone Left mute
0: active
1: muted
1
0
MUTEHPR
Headphone Right mute
0: active
1: muted
1
101
11050A–PMAAC–07-Apr-10
Name:
MICLVOL
Access:
Read / Write
Address:
0x16
7
6
-
-
5
4
3
2
1
0
MICLVOL
Table 13-37. MICLVOL (0x16) Structure
Bit
Name
Description
Reset value
7:6
-
unused
00
5:0
MICLVOL
Microphone Left volume selection
000000
Table 13-38. Microphone Left Volume Selection Table
102
MICLVOL
GAIN(dB)
MICLVOL
GAIN(dB)
MICLVOL
GAIN(dB)
000000
0
010000
16
100000
32
000001
1
010001
17
100001
33
000010
2
010010
18
100010
34
000011
3
010011
19
100011
35
000100
4
010100
20
100100
36
000101
5
010101
21
100101
37
000110
6
010110
22
100110
38
000111
7
010111
23
100111
39
001000
8
011000
24
101000
40
001001
9
011001
25
101001
41
001010
10
011010
26
101010
42
001011
11
011011
27
101011
43
001100
12
011100
28
101100
44
001101
13
011101
29
101101
45
001110
14
011110
30
101110
46
001111
15
011111
31
Other values
46
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
MICRVOL
Access:
Read / Write
Address:
0x17
7
6
-
-
5
4
3
2
1
0
MICRVOL
Table 13-39. MICRVOL (0x17) Structure
Bit
Name
Description
Reset value
7:6
-
unused
0
5:0
MICRVOL
Microphone Right volume selection
000000
Table 13-40. Microphone Right Volume Selection Table
MICRVOL
GAIN(dB)
MICRVOL
GAIN(dB)
MICRVOL
GAIN(dB)
000000
0
010000
16
100000
32
000001
1
010001
17
100001
33
000010
2
010010
18
100010
34
000011
3
010011
19
100011
35
000100
4
010100
20
100100
36
000101
5
010101
21
100101
37
000110
6
010110
22
100110
38
000111
7
010111
23
100111
39
001000
8
011000
24
101000
40
001001
9
011001
25
101001
41
001010
10
011010
26
101010
42
001011
11
011011
27
101011
43
001100
12
011100
28
101100
44
001101
13
011101
29
101101
45
001110
14
011110
30
101110
46
001111
15
011111
31
Other values
46
103
11050A–PMAAC–07-Apr-10
Name:
INLVOL
Access:
Read / Write
Address:
0x18
7
6
5
4
INLBOTH
3
2
1
0
INLVOL
Table 13-41. INLVOL (0x18) Structure
Bit
Name
Description
Reset value
7
INLBOTH
AUX / LINE Left volume controls Right channel
0: inactive
1: active. Prioritary bit over INRBOTH.
1
6:0
INLVOL
AUX / LINE input Left volume selection
0000000
Table 13-42. AUX / LINE Left Volume Selection Table
104
INLVOL
GAIN(dB)
INLVOL
GAIN(dB)
INLVOL
GAIN(dB)
≤1011100
MUTE
1101101
-19
1111110
-2
1011101
-35
1101110
-18
1111111
-1
1011110
-34
1101111
-17
0000000
0
1011111
-33
1110000
-16
0000001
1
1100000
-32
1110001
-15
0000010
2
1100001
-31
1110010
-14
0000011
3
1100010
-30
1110011
-13
0000100
4
1100011
-29
1110100
-12
0000101
5
1100100
-28
1110101
-11
0000110
6
1100101
-27
1110110
-10
0000111
7
1100110
-26
1110111
-9
0001000
8
1100111
-25
1111000
-8
0001001
9
1101000
-24
1111001
-7
0001010
10
1101001
-23
1111010
-6
0001011
11
1101010
-22
1111011
-5
>=0101111
12
1101011
-21
1111100
-4
1101100
-20
1111101
-3
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
INRVOL
Access:
Read / Write
Address:
0x19
7
6
5
4
INRBOTH
3
2
1
0
INRVOL
Table 13-43. INRVOL (0x19) Structure
Bit
Name
Description
Reset value
7
INRBOTH
AUX / LINE Right volume controls left channel
0: inactive
1: active.
0
6:0
INRVOL
AUX / LINE input Right volume selection
0000000
Table 13-44. AUX / LINE Right Volume Selection Table
INLVOL
GAIN(dB)
INLVOL
GAIN(dB)
INLVOL
GAIN(dB)
≤1011100
MUTE
1101101
-19
1111110
-2
1011101
-35
1101110
-18
1111111
-1
1011110
-34
1101111
-17
0000000
0
1011111
-33
1110000
-16
0000001
1
1100000
-32
1110001
-15
0000010
2
1100001
-31
1110010
-14
0000011
3
1100010
-30
1110011
-13
0000100
4
1100011
-29
1110100
-12
0000101
5
1100100
-28
1110101
-11
0000110
6
1100101
-27
1110110
-10
0000111
7
1100110
-26
1110111
-9
0001000
8
1100111
-25
1111000
-8
0001001
9
1101000
-24
1111001
-7
0001010
10
1101001
-23
1111010
-6
0001011
11
1101010
-22
1111011
-5
>=0101111
12
1101011
-21
1111100
-4
1101100
-20
1111101
-3
105
11050A–PMAAC–07-Apr-10
Name:
HPLVOL
Access:
Read / Write
Address:
0x1A
7
6
5
4
3
2
1
0
HPLVOL
Table 13-45. HPLVOL (0x1A) Structure
Bit
Name
Description
Reset value
7:0
HPLVOL
Headphone Left volume selection
00000000
Table 13-46. Headphone Left Volume Selection Table
106
HPLVOL
GAIN
(dB)
HPLVOL
GAIN
(dB)
HPLVOL
GAIN
(dB)
HPLVOL
GAIN
(dB)
≤10110010
MUT
E
11001000
-56
11011110
-34
11110100
-12
10110011
-77
11001001
-55
11011111
-33
11110101
-11
10110100
-76
11001010
-54
11100000
-32
11110110
-10
10110101
-75
11001011
-53
11100001
-31
11110111
-9
10110110
-74
11001100
-52
11100010
-30
11111000
-8
10110111
-73
11001101
-51
11100011
-29
11111001
-7
10111000
-72
11001110
-50
11100100
-28
11111010
-6
10111001
-71
11001111
-49
11100101
-27
11111011
-5
10111010
-70
11010000
-48
11100110
-26
11111100
-4
10111011
-69
11010001
-47
11100111
-25
11111101
-3
10111100
-68
11010010
-46
11101000
-24
11111110
-2
10111101
-67
11010011
-45
11101001
-23
11111111
-1
10111110
-66
11010100
-44
11101010
-22
00000000
0
10111111
-65
11010101
-43
11101011
-21
00000001
1
11000000
-64
11010110
-42
11101100
-20
00000010
2
11000001
-63
11010111
-41
11101101
-19
00000011
3
11000010
-62
11011000
-40
11101110
-18
00000100
4
11000011
-61
11011001
-39
11101111
-17
00000101
5
11000100
-60
11011010
-38
11110000
-16
>=00000110
6
11000101
-59
11011011
-37
11110001
-15
11000110
-58
11011100
-36
11110010
-14
11000111
-57
11011101
-35
11110011
-13
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
HPRVOL
Access:
Read / Write
Address:
0x1B
7
6
5
4
3
2
1
0
HPRVOL
Table 13-47. HPRVOL (0x1B) Structure
Bit
Name
Description
Reset value
7:0
HPRVOL
HEADSET Right volume selection
00000000
Table 13-48. Headphone Right Volume Selection Table
HPRVOL
GAIN
(dB)
HPRVOL
GAIN
(dB)
HPRVOL
GAIN
(dB)
HPRVOL
GAIN
(dB)
≤10110010
MUTE
11001000
-56
11011110
-34
11110100
-12
10110011
-77
11001001
-55
11011111
-33
11110101
-11
10110100
-76
11001010
-54
11100000
-32
11110110
-10
10110101
-75
11001011
-53
11100001
-31
11110111
-9
10110110
-74
11001100
-52
11100010
-30
11111000
-8
10110111
-73
11001101
-51
11100011
-29
11111001
-7
10111000
-72
11001110
-50
11100100
-28
11111010
-6
10111001
-71
11001111
-49
11100101
-27
11111011
-5
10111010
-70
11010000
-48
11100110
-26
11111100
-4
10111011
-69
11010001
-47
11100111
-25
11111101
-3
10111100
-68
11010010
-46
11101000
-24
11111110
-2
10111101
-67
11010011
-45
11101001
-23
11111111
-1
10111110
-66
11010100
-44
11101010
-22
00000000
0
10111111
-65
11010101
-43
11101011
-21
00000001
1
11000000
-64
11010110
-42
11101100
-20
00000010
2
11000001
-63
11010111
-41
11101101
-19
00000011
3
11000010
-62
11011000
-40
11101110
-18
00000100
4
11000011
-61
11011001
-39
11101111
-17
00000101
5
11000100
-60
11011010
-38
11110000
-16
>=00000110
6
11000101
-59
11011011
-37
11110001
-15
11000110
-58
11011100
-36
11110010
-14
11000111
-57
11011101
-35
11110011
-13
107
11050A–PMAAC–07-Apr-10
Name:
HP_CONTROL
Access:
Read / Write
Address:
0x1C
7
6
5
4
3
2
1
0
-
-
-
-
-
HPDET_ST
LHPBOTH
RHPBOTH
Table 13-49. HP_CONTROL (0x1C) Structure
108
Bit
Name
Description
Reset value
7:3
-
unused
00000
2
HPDET_ST
Headphone plug in-out detector
0: OFF
1: ON
0
1
LHPBOTH
Right Headphone volume follows left
0: inactive
1: active. Prioritary bit over RHPBOTH.
1
0
RHPBOTH
Left Headphone volume follows right
0: inactive
1: active
0
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
AUDIO_EFFECTS
Access:
Read / Write
Address:
0x1D
7
6
3DFX_DEPTH
5
4
ON3DFX
SWAP_DAC
3
2
1
0
SWAP_ADC MONO_DAC MONO_ADC
ONDEEMP
Table 13-50. AUDIO_EFFECTS (0x1D) Structure
Bit
Name
Description
Reset value
7:6
3DFX_DEPTH
3D effect depth control
00
5
ON3DFX
3D effect
0: OFF
1: ON
0
4
SWAP_DAC
DAC Left / Right channel swap
0: Left / Right inputs on Left / Right outputs
1: Left / Right inputs on Right / Left outputs
0
3
SWAP_ADC
ADC Left / Right channel swap
0: Left / Right inputs on Left / Right outputs
1: Left / Right inputs on Right / Left outputs
0
2
MONO_DAC
(Left + Right) / 2 on Left and Right channels
0: inactive
1: active
0
1
MONO_ADC
Left ADC output on both Left and Right channels
0: inactive
1: active
0
0
ONDEEMP
De-emphasis filter
0: OFF
1: ON
0
Table 13-51. 3-D Effect Depth Control Table
3DFX_DEPTH
Attenuation
00
0dB
01
-6dB
10
-12dB
11
-18dB
109
11050A–PMAAC–07-Apr-10
Name:
INPUT_CONTROL
Access:
Read / Write.
This register is modified by Audio Controller at audio path change.
Address:
0x1E
7
6
5
4
3
2
1
0
-
LINESEL
ONMICL
ONMICR
ONADCL
ONADCR
ONLINL
ONLINR
Table 13-52. INPUT_CONTROL (0x1E) Structure
Bit
Name
7
110
Description
Reset value
unused
0
6
LINESEL
LINE / AUX input selection
0: Aux input selected
1: Line input selected
1
5
ONMICL
Left microphone amplifier
0: OFF
1: ON
0
4
ONMICR
Right microphone amplifier
0: OFF
1: ON
0
3
ONADCL
Left ADC
0: OFF
1: ON
0
2
ONADCR
Right ADC
0: OFF
1: ON
0
1
ONLINL
Left line input amplifier
0: OFF
1: ON
0
0
ONLINR
Right line input amplifier
0: OFF
1: ON
0
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
OUTPUT_CONTROL
Access:
Read / Write
This register is modified by Audio Controller at audio path change.
Address:
0x1F
7
6
5
4
3
2
1
0
-
ONSIDETONE
ONPLAYBACK
ONBYPASS
ONHPL
ONHPR
ONDACL
ONDACR
Table 13-53. OUTPUT_CONTROL (0x1F) Structure
Bit
Name
7
Description
Reset value
unused
0
6
ONSIDETONE
Sidetone switch
0: muted
1: enabled
0
5
ONPLAYBACK
Playback switch
0: muted
1: enabled
0
4
ONBYPASS
Bypass switch
0: muted
1: enabled
0
3
ONHPL
Left headphone amplifier
0: OFF
1: ON
0
2
ONHPR
Right headphone amplifier
0: OFF
1: ON
0
1
ONDACL
Left DAC
0: OFF
1: ON
0
0
ONDACR
Right DAC
0: OFF
1: ON
0
111
11050A–PMAAC–07-Apr-10
Name:
INPUT_MIXER
Access:
Read / Write
This register is modified by Audio Controller at audio path change.
Address:
0x20
7
6
5
4
3
2
1
0
-
-
MIXMICL
MIXMICR
MIXLINEL
MIXLINER
ONMIXL
ONMIXR
Table 13-54. INPUT_MIXER (0x20) Structure
112
Bit
Name
Description
Reset value
7:6
-
unused
00
5
MIXMICL
Left microphone input mixer switch
0: muted
1: enabled
0
4
MIXMICR
Right microphone input mixer switch
0: muted
1: enabled
0
3
MIXLINEL
Left line / aux input mixer switch
0: muted
1: enabled
0
2
MIXLINER
Right line / aux input mixer switch
0: muted
1: enabled
0
1
ONMIXL
Left input mixer ON / OFF
0: muted
1: enabled
0
0
ONMIXR
Right input mixer ON / OFF
0: muted
1: enabled
0
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
SIDETONE_VOL
Access:
Read / Write
Address:
0x21
7
6
5
-
-
-
4
3
2
1
0
SIDETONE_VOL
Table 13-55. SIDETONE_VOL (0x21) Structure
Bit
Name
7:5
4:0
SIDETONE_VOL
Description
Reset value
unused
000
Left / Right sidetone path attenuation
01011
Table 13-56. Left / Right Sidetone Path Attenuation Selection Table
SIDETONE_VOL
ATT(dB)
SIDETONE_VOL
ATT(dB)
SIDETONE_VOL
ATT(dB)
00000
0
00100
12
01000
24
00001
3
00101
15
01001
27
00010
6
00110
18
01010
30
00011
9
00111
21
>=01011
30
113
11050A–PMAAC–07-Apr-10
Name:
EQUALIZER
Access:
Read / Write
Address:
0x22
7
6
5
4
-
-
-
-
3
2
1
0
EQ_SEL
Table 13-57. EQUALIZER (0x22) Structure
Bit
Name
Description
7:4
3:0
Reset value
0
EQ_SEL
Equalizer selection
0000
Table 13-58. Equalizer Selection Table(0x22) Structure
114
EQ_SEL
Description
0000
Flat Response
0001
Bass boost +12dB
0010
Bass boost +6dB
0011
Bass cut -12dB
0100
Bass cut -6dB
0101
Medium boost +3dB
0110
Medium boost +8dB
0111
Medium cut -3dB
1000
Medium cut -8dB
1001
Treble boost +12dB
1010
Treble boost +6dB
1011
Treble cut -12dB
1100
Treble cut -6dB
Other value
Flat response.
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_CTRL
Access:
Read / Write
Address:
0x30
7
6
5
4
3
ON_ADC
ON_BUF
-
-
-
2
1
0
TS
Table 13-59. ADC_CTRL (0x30) Structure
Bit
Name
Description
Reset value
7
ON_ADC
ADC function
0: OFF
1: ON
0
6
ON_BUF
Analog buffer
0: OFF
1: ON
0
5:3
unused
-
000
2:0
TS
Sampling period
000
Table 13-60. ADC Sampling Period Selection Table
TS
SAMPLING
PERIOD (s)
000
0.01
001
0.02
010
0.1
011
1
100
2
101
3
110
4
111
Max speed
115
11050A–PMAAC–07-Apr-10
Name:
ADC_MUX_1
Access:
Read / Write
Address:
0x31
7
6
5
4
3
2
1
0
-
VIN
-
VDD4
VDD3
VDD2
VDD1
VDD0
Table 13-61. ADC_MUX1 (0x31) Structure
116
Bit
Name
Description
Reset value
7
unused
-
0
6
VIN
VIN channel selection
0: Not selected
1: Selected
1
5
unused
-
1
4
VDD4
VDD4 channel selection
0: Not selected
1: Selected
1
3
VDD3
VDD3 channel selection
0: Not selected
1: Selected
1
2
VDD2
VDD2 channel selection
0: Not selected
1: Selected
1
1
VDD1
VDD1 channel selection
0: Not selected
1: Selected
1
0
VDD0
VDD0 channel selection
0: Not selected
1: Selected
1
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_MUX_2
Access:
Read / Write
Address:
0x32
7
6
5
4
3
2
1
0
-
-
-
-
ANA3
ANA2
ANA1
ANA0
Table 13-62. ADC_MUX2 (0x32) Structure
Bit
Name
Description
Reset value
7:4
unused
-
0000
3
ANA3
ANA3 channel selection
0: Not selected
1: Selected
1
2
ANA2
ANA2 channel selection
0: Not selected
1: Selected
1
1
ANA1
ANA1 channel selection
0: Not selected
1: Selected
1
0
ANA0
ANA0 channel selection
0: Not selected
1: Selected
1
117
11050A–PMAAC–07-Apr-10
Name:
ADC_ANA0_MSB
Access:
Read Only
Address:
0x33
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-63. ADC_ANA0_MSB (0x33) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for ANA0 Channel
00000000
Name:
ADC_ANA0_LSB
Access:
Read Only
Address:
0x34
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-64. ADC_ANA0_LSB (0x34) Structure
118
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for ANA0 Channel
Reset value
00
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_ANA1_MSB
Access:
Read Only
Address:
0x35
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-65. ADC_ANA1_MSB (0x35) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for ANA1 Channel
00000000
Name:
ADC_ANA1_LSB
Access:
Read Only
Address:
0x36
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-66. ADC_ANA1_LSB (0x36) Structure
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for ANA1 Channel
Reset value
00
119
11050A–PMAAC–07-Apr-10
Name:
ADC_ANA2_MSB
Access:
Read Only
Address:
0x37
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-67. ADC_ANA2_MSB (0x37) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for ANA2 Channel
00000000
Name:
ADC_ANA2_LSB
Access:
Read Only
Address:
0x38
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-68. ADC_ANA2_LSB (0x38) Structure
120
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for ANA2 Channel
Reset value
00
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_ANA3_MSB
Access:
Read Only
Address:
0x39
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-69. ADC_ANA3_MSB (0x39) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for ANA3 Channel
00000000
Name:
ADC_ANA3_LSB
Access:
Read Only
Address:
0x3A
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-70. ADC_ANA3_LSB (0x3A) Structure
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for ANA3 Channel
Reset value
00
121
11050A–PMAAC–07-Apr-10
Name:
ADC_VDD0_MSB
Access:
Read Only
Address:
0x3B
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-71. ADC_VDD0_MSB (0x3B) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for VDD0 Channel
00000000
Name:
ADC_VDD0_LSB
Access:
Read Only
Address:
0x3C
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-72. ADC_VDD0_LSB (0x3C) Structure
122
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VDD0 Channel
Reset value
00
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_VDD1_MSB
Access:
Read Only
Address:
0x3D
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-73. ADC_VDD1_MSB (0x3D) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for VDD1 Channel
00000000
Name:
ADC_VDD1_LSB
Access:
Read Only
Address:
0x3E
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-74. ADC_VDD1_LSB (0x3E) Structure
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VDD1 Channel
Reset value
00
123
11050A–PMAAC–07-Apr-10
Name:
ADC_VDD2_MSB
Access:
Read Only
Address:
0x3F
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-75. ADC_VDD2_MSB (0x3F) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for VDD2 Channel
00000000
Name:
ADC_VDD2_LSB
Access:
Read Only
Address:
0x40
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-76. ADC_VDD2_LSB (0x40) Structure
124
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VDD2 Channel
Reset value
00
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_VDD3_MSB
Access:
Read Only
Address:
0x41
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-77. ADC_VDD3_MSB (0x41) Structure
Bit
Name
Description
Reset value
7:2
ADC<9:2>
ADC_OUT<9:2> for VDD3 Channel
00000000
Name:
ADC_VDD3_LSB
Access:
Read Only
Address:
0x42
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-78. ADC_VDD3_LSB (0x42) Structure
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VDD3 Channel
Reset value
00
125
11050A–PMAAC–07-Apr-10
Name:
ADC_VDD4_MSB
Access:
Read Only
Address:
0x43
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-79. ADC_VDD4_MSB (0x43) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for VDD4 Channel
00000000
Name:
ADC_VDD4_LSB
Access:
Read Only
Address:
0x44
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-80. ADC_VDD4_LSB (0x44) Structure
126
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VDD4 Channel
Reset value
00
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
ADC_VIN_MSB
Access:
Read Only
Address:
0x47
7
6
5
4
3
2
1
0
ADC<9:2>
Table 13-81. ADC_VIN_MSB (0x47) Structure
Bit
Name
Description
Reset value
7:0
ADC<9:2>
ADC_OUT<9:2> for VIN Channel
00000000
Name:
ADC_VIN_LSB
Access:
Read Only
Address:
0x48
7
6
5
4
3
2
1
0
ADC<1:0>
Table 13-82. ADC_VIN_LSB (0x48) Structure
Bit
Name
Description
7:2
-
unused
1:0
ADC<1:0>
ADC_OUT<1:0> for VIN Channel
Reset value
00
127
11050A–PMAAC–07-Apr-10
Name:
ADC_ANA_LSB
Access:
Read Only
Address:
0x49
7
6
ADC_ANA3<1:0>
5
4
ADC_ANA2<1:0>
3
2
ADC_ANA1<1:0>
1
0
ADC_ANA0<1:0>
Table 13-83. ADC_ANA_LSB (0x49) Structure
Bit
Name
Description
Reset value
7:6
ADC_ANA3<1:0>
ADC_OUT<1:0:> for ANA3 Channel
00
5:4
ADC_ANA2<1:0>
ADC_OUT<1:0:> for ANA2 Channel
00
3:2
ADC_ANA1<1:0>
ADC_OUT<1:0:> for ANA1 Channel
00
1:0
ADC_ANA0<1:0>
ADC_OUT<1:0:> for ANA0 Channel
00
Name:
RTC_CTRL
Access:
Read / Write
Address:
0x50
7
6
-
-
5
4
3
2
1
0
RTC_WRITE
RTC_SEL
RTC_EN
Table 13-84. RTC_CTRL (0x50) Structure
128
Bit
Name
Description
Reset value
7:3
-
unused
2
RTC_WRITE
RTC read/write:
RTC_WRITE = 0: Read mode
RTC_WRITE = 1: Write mode
0
1
RTC_SEL
RTC block select:
RTC_SEL = 0: Not Selected
RTC_SEL = 1: Selected
0
0
RTC_EN
RTC block enable:
RTC_EN = 0: Disabled
RTC_EN = 1: Enabled
0
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
RTC_ADDR
Access:
Read / Write
Address:
0x51
7
6
5
4
3
2
1
0
RTC_ADDR
Table 13-85. RTC_ADDR (0x51) Structure
Bit
Name
Description
Reset value
7:0
RTC_ADDR
RTC address
0000
Name:
RTC_DATA0
Access:
Read / Write
Address:
0x52
7
6
5
4
3
2
1
0
RTC_DATA0
Table 13-86. RTC_DATA0 (0x52) Structure
Bit
Name
Description
Reset value
7:0
RTC_DATA0
RTC DATA 0
0000000
129
11050A–PMAAC–07-Apr-10
Name:
RTC_DATA1
Access:
Read / Write
Address:
0x53
7
6
5
4
3
2
1
0
RTC_DATA1
Table 13-87. RTC_DATA1 (0x53) Structure
Bit
Name
Description
Reset value
7:0
RTC_DATA1
RTC DATA 1
0000000
Name:
RTC_DATA2
Access:
Read / Write
Address:
0x54
7
6
5
4
3
2
1
0
RTC_DATA2
Table 13-88. RTC_DATA2 (0x54) Structure
Bit
Name
Description
Reset value
7:0
RTC_DATA2
RTC DATA 2
0000000
Name:
RTC_DATA3
Access:
Read / Write
Address:
0x55
7
6
5
4
3
2
1
0
RTC_DATA3
Table 13-89. RTC_DATA3 (0x55) Structure
130
Bit
Name
Description
Reset value
7:0
RTC_DATA3
RTC DATA 3
0000000
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Name:
BACKUP_CTRL
Access:
Read / Write
Address:
0x56
7
6
5
4
3
2
1
0
-
-
-
-
OSC_UPDT
OSC_EN
OSC_STAT
RST_BKUP
Table 13-90. BACKUP_CTRL (0x56) Structure
Bit
Name
Description
Reset value
7:4
-
unused
0000
3
OSC_UPDT
RTC Oscillator update
0: No action.
1: Update RTC oscillator with OSC_EN
0
2
OSC_EN
RTC Oscillator enable request
0: Oscillator off.
1: Oscillator on.
0
1
OSC_STAT
RTC Oscillator status (read only)
0: Oscillator off.
1: Oscillator on.
0
0
RST_BKUP
Reset of the Backup Area
0: Backup area active
1: Backup area in reset state
0
Name:
VERSION
Access:
Read
Address:
0x7F
7
6
5
4
3
SOFTWARE_TAG
2
1
0
VERSION
Table 13-91. VERSION (0x7F) Structure
Bit
Name
Description
Reset value
7:4
SOFTWARE_TAG
Software Tag to identify product specificities as
described in Section 17. “Ordering Information”
on page 154.
XXXX
3:0
VERSION
‘0001’: Rev. C samples
‘0010’: Rev. D samples
XXXX
131
11050A–PMAAC–07-Apr-10
14. PMU and Audio Soft Control: Quick Start
14.1
14.1.1
RTC Examples
RTC Oscillator POWER-ON
// Set OSC_EN = 1 and OSC_UPDT = 1
TWI_WRITE 0x0C @BACKUP_CTRL
// Wait > 200us.
WAIT 200us
// Set OSC_UPDT = 0
TWI_WRITE 0x04 @BACKUP_CTRL
// Read BACKUP_CTRL to verify OSC_STAT bit. Result = 0x06.
TWI_READ @BACKUP_CTRL
14.1.2
RTC Oscillator POWER-OFF
// Set OSC_EN = 0 and OSC_UPDT = 1
TWI_WRITE 0x08 @BACKUP_CTRL
// Wait 200us
WAIT 200us
// Set OSC_UPDT = 0
TWI_WRITE 0x00 @BACKUP_CTRL
// Read BACKUP_CTRL to verify OSC_STAT bit. Result = 0x00.
TWI_READ @BACKUP_CTRL
14.1.3
RTC Domain RESET
// Set RST_BKUP = 1
TWI_WRITE 0x01 @BACKUP_CTRL
// Wait 200s
WAIT 200us
// Set RST_BKUP = 0
TWI_WRITE 0x00 @BACKUP_CTRL
Note:
14.1.4
Reset of the RTC domain powers off the RTC oscillator.
RTC Write Operation
The following example makes a generic 32-bit write operation into the RTC macro. The 32-bit
data is split into 4 bytes, that are successively sent over the TWI.
unsigned int RTC_DATA;
char DATA0 = (char) (RTC_DATA); // LSBs
char DATA1 = (char) (RTC_DATA >> 8);
char DATA2 = (char) (RTC_DATA >> 16);
char DATA3 = (char) (RTC_DATA >> 24); // MSBs
// Select RTC_ADDR = ADDR. ADDR is the RTC macro register to write,
TWI_WRITE ADDR @RTC_ADDR
// Set RTC_DATA0 to RTC_DATA4 registers.
TWI_WRITE DATA0 @RTC_DATA0
TWI_WRITE DATA1 @RTC_DATA1
132
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
TWI_WRITE DATA2 @RTC_DATA2
TWI_WRITE DATA3 @RTC_DATA3
// Set RTC_WRITE = 1 (write) and RTC_SEL = 1
TWI_WRITE 0x06 @ RTC_CTRL
// Pulse RTC_EN
TWI_WRITE 0x07 @ RTC_CTRL
TWI_WRITE 0x06 @ RTC_CTRL
// Disable RTC access
TWI_WRITE 0x00 @ RTC_CTRL
14.1.5
RTC Read Operation
The following example makes a generic 32-bit read operation into the RTC macro. The 32-bit
RTC data is split into 4 bytes, that are successively read over the TWI.
// Select RTC_ADDR = ADDR. ADDR is the RTC macro register to read,
TWI_WRITE ADDR @RTC_ADDR
// Set RTC_WRITE = 0 (read) and RTC_SEL = 1
TWI_WRITE 0x02 @ RTC_CTRL
// Pulse RTC_EN
TWI_WRITE 0x03 @ RTC_CTRL
TWI_WRITE 0x02 @ RTC_CTRL
// Read RTC_DATA0 to RTC_DATA4 registers.
TWI_READ @RTC_DATA0 // LSBs
TWI_READ @RTC_DATA1
TWI_READ @RTC_DATA2
TWI_READ @RTC_DATA3 // MSBs
// Disable RTC access
TWI_WRITE 0x00 @ RTC_CTRL
14.1.6
RTC Date and Time Update
In the following example, the RTC date and time is set to “12 October 2004, 08h 49min 59s”.
The WRITE_RTC and READ_RTC functions operate as described in the previous sections.
// Disable RTC interrupt MASK
TWI_WRITE 0xFE @PMU_MASK
// Enable RTC ACKUPD IT @RTC_IER (RTC_ADDR 0x20).
WRITE_RTC 0x00000001 @RTC_IER
// Set UPDTIME and UPDCAL @RTC_CR (RTC_ADDR 0x00).
WRITE_RTC 0x00000003 @RTC_CR
// Wait ITB low. This ensures that the RTC is ready to be updated.
// Reset IT by read operation, result is 0x01.
TWI_READ @PMU_IT
// Read in RTC_SR that ACKUPD = 1 (RTC_ADDR = 0x18)
READ_RTC @RTC_SR
// Disable ACKUPD IT @RTC_IDR (RTC_ADDR = 0x24)
WRITE_RTC 0x00000001 @RTC_IDR
// Write Date @RTC_CALR (RTC_ADDR = 0x0C) (12 October 2004)
WRITE_RTC 0x12300420 @RTC_CALR
133
11050A–PMAAC–07-Apr-10
// Write Time @RTC_TIMR (RTC_ADDR = 0x08) (08h 49min 59s)
WRITE_RTC 0x00084959 @RTC_TIMR
// Start RTC @RTC_CR (RTC_ADDR = 0x00)
WRITE_RTC 0x00000000 @RTC_CR
14.2
14.2.1
Audio Examples
Basic Audio Codec Setting Using Automatic Path Control
The following example demonstrates an automatic audio path setting. Assuming that the audio
codec is supplied by the LDO4, the sequence is the following:
• Make the codec interface configuration,
• Set the Digital-IN to Headphone-OUT path,
• Put the audio codec in standby mode,
• Release the standby mode to re-activate the selected path,
• Change the path on-the-fly,
• Shutdown the codec.
// Start LDO4 @3.3V
TWI_WRITE 0x8C @ VDD4_CTRL
// Digital Audio Interface configuration
// Master clock = 12.288MHz, Master / Slave = slave.
// DAI mode = I2S mode, Word length = 24 bits, FS = 48kHz
TWI_WRITE 0x01 @ DAI_CONTROL
TWI_WRITE 0x63 @ FRAME_CONTROL
// Analog interface configuration
// Mic. config: L & R single ended, Micbias = OFF, Mic. detection = OFF.
// Headphone config: AC coupled,
// Automatic Soft Ramping = ON, ASR timing = 11 (~10ms / step)
TWI_WRITE 0x00 @ MIC_CONTROL
TWI_WRITE 0x27 @ AUDIO_CONTROL
// Analog gain
// Headphone (L & R) gain: -20dB. (LHPBOTH set by default in HP_CONTROL)
// Mic L & R gain: +26 dB.
// Unmute all gains. No power-up is performed.
TWI_WRITE 0xEC @ HPLVOL
TWI_WRITE 0x1A @ MICLVOL
TWI_WRITE 0x1A @ MICRVOL
TWI_WRITE 0x00 @ MUTE
// Audio Start
// ENAC = 1, STANDBY = 1. PATH = 1 (DAC playback)
// At the first start, VMID capacitor is charged.
134
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
// Wait (3.tau) = 300ms with 1uF before standby release. (VMID will be
// discharged only when ENAC = 0.)
// From this point Audio Data can be sent over the Digital audio interface.
TWI_WRITE 0x61 @ AUTOSTART.
WAIT 300ms
// Release standby. The audio codec starts silently, the gains are slowly
// ramped up from mute to the register gains. The codec is active.
TWI_WRITE 0x41 @ AUTOSTART
// Codec Pause by Standby
// All gains are softly ramped down to mute. The codec functions are
// shut down. Current consumption is reduced to a few hundreds of micro// amps. VMID remains charged
TWI_WRITE 0x61 @ AUTOSTART
// Pause out: Standby release. The codec softly re-starts.
TWI_WRITE 0x41 @ AUTOSTART
// On-the-fly path change
// PATH = 19: Digital IN to Headphone OUT + Mic IN to Digital OUT.
// The codec controller powers up automatically the new path. The DAC
// playback is not affected by starting the Mic. recording.
TWI_WRITE 0x52 @ AUTOSTART
// Codec Shutdown. ENAC = 0, STANDBY = 1. The codec turns off smoothly.
// In case of AC Coupling output configuration, HPR & HPL will slowly
// discharge following VMID time constant.
TWI_WRITE 0x20 @ AUTOSTART
WAIT 600ms
// Disable DCBLOCK bit.
TWI_WRITE 0x07 @ AUDIO_CONTROL
// LDO4 shutdown.
TWI_WRITE 0x0C @ VDD4_CONTROL
14.2.2
Basic Audio Codec Setting Using Custom Path Control
The following example demonstrates a custom audio path setting. Assuming that the audio
codec is supplied by the LDO4, the sequence is the following:
• Make the codec analog and digital interfaces configuration,
• Enter the custom path mode and configure a path with DAC input and Headphone Amplifier
output,
• Put the audio codec in standby mode,
• Release the standby mode to re-activate the selected path,
• Change the path on-the-fly to add the microphone inputs to the DAC signal,
• Shutdown the codec.
135
11050A–PMAAC–07-Apr-10
// Start LDO4 @3.3V
TWI_WRITE 0x8C @ VDD4_CTRL
// Digital Audio Interface configuration
// Master clock = 12.288MHz, Master / Slave = slave.
// DAI mode = I2S mode, Word length = 24 bits, FS = 48kHz
TWI_WRITE 0x01 @ DAI_CONTROL
TWI_WRITE 0x63 @ FRAME_CONTROL
// Analog interface configuration
// Mic. config: L & R single ended, Micbias = OFF, Mic. detection = OFF.
// Headphone config: AC coupled,
// Automatic Soft Ramping = ON, ASR timing = 11 (~10ms / step)
TWI_WRITE 0x00 @ MIC_CONTROL
TWI_WRITE 0x27 @ AUDIO_CONTROL
// Analog gain
// Headphone (L & R) gain: -20dB. (LHPBOTH set by default in HP_CONTROL)
// Mic L & R gain: +26 dB.
// Unmute all gains. No power-up is performed.
TWI_WRITE 0xEC @ HPLVOL
TWI_WRITE 0x1A @ MICLVOL
TWI_WRITE 0x1A @ MICRVOL
TWI_WRITE 0x00 @ MUTE
// Enter the custom path configuration mode
TWI_WRITE 0x2F @ AUDIO_CONTROL
// Audio Start
// ENAC = 1, STANDBY = 1. PATH = 0 (Not read by the audio controller)
// At the first start, VMID capacitor is charged.
// Wait (3.tau) = 300ms with 1uF before standby release. (VMID will be
// discharged only when ENAC = 0.)
// From this point Audio Data can be sent over the Digital audio interface.
TWI_WRITE 0x60 @ AUTOSTART.
WAIT 300ms
// Audio path definition: DAC input to Headphone output. The software sets
// the bits: ONDACL, ONDACR, ONHPL, ONHPR and PLAYBACK by writing
// the registers INPUT_CONTROL, OUTPUT_CONTROL, and INPUT_MIXER.
// The changes are not taken immediately into account (ENCONF = 0).
TWI_WRITE 0x40 @ INPUT_CTRL
TWI_WRITE 0x2F @ OUTPUT_CTRL
TWI_WRITE 0x00 @ INPUT_MIXER
// ENCONF pulse: the audio controller takes the requested changes into
136
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
// account.
TWI_WRITE 0x3F @ AUDIO_CONTROL
TWI_WRITE 0x2F @ AUDIO_CONTROL
// STANDBY release. The codec softly starts.
TWI_WRITE 0x40 @ AUTOSTART.
// Codec Pause by Standby
// All gains are softly ramped down to mute. The codec functions are
// shut down. Current consumption is reduced to a few hundreds of micro// amps. VMID remains charged
TWI_WRITE 0x60 @ AUTOSTART
// Pause out: Standby release. The codec softly re-starts.
TWI_WRITE 0x40 @ AUTOSTART
// On-the-fly path change: the stereo microphone inputs are added to the
// DAC playback. The software sets: ONMICL, ONMICR, and ONSIDETONE.
TWI_WRITE 0x70 @ INPUT_CTRL
TWI_WRITE 0x6F @ OUTPUT_CTRL
TWI_WRITE 0x00 @ INPUT_MIXER
// Sidetone gain
TWI_WRITE 0x00 @ SIDETONE_VOL
// ENCONF pulse: the audio controller takes the requested changes into
// account. The path modification is here immediate because STANDBY=0.
TWI_WRITE 0x3F @ AUDIO_CONTROL
TWI_WRITE 0x2F @ AUDIO_CONTROL
// Codec Shutdown. ENAC = 0, STANDBY = 1. The codec turns off smoothly.
// In case of AC Coupling output configuration, HPR & HPL will slowly
// discharge following VMID time constant.
TWI_WRITE 0x20 @ AUTOSTART
WAIT 600ms
// Disable DCBLOCK bit.
TWI_WRITE 0x07 @ AUDIO_CONTROL
// LDO4 shutdown.
TWI_WRITE 0x0C @ VDD4_CONTROL
137
11050A–PMAAC–07-Apr-10
138
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
15. Typical Performance Characteristics
15.1
PMU: Power Supply Sequences
Figure 15-1. Powerdown State to Run State Supplies Start-Up
Powerdown to Run State
SEQUENCE A
Powerdown to Run State
SEQUENCE B
Figure 15-2. Run Sate to Powerdown State Supplies Shut-Down
Run to Powerdown State
SEQUENCE A
Run to Powerdown State
SEQUENCE B
139
11050A–PMAAC–07-Apr-10
Figure 15-3. Detailed Supplies Start-Up
Detailed Supplies Start-Up
SEQUENCE A
Detailed Supplies Start-Up
SEQUENCE B
Figure 15-4. Detailed Supplies Shutdown
Detailed Supplies Shutdown
SEQUENCE A
140
Detailed Supplies shutdown
SEQUENCE B
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 15-5. Run State to Standby State
Run To Standby State (default setting)
SEQUENCE A
Run To Standby State (default setting)
SEQUENCE B
Figure 15-6. Standby To Run State
Standby To Run State (default setting)
SEQUENCE A
Standby To Run State (default setting)
SEQUENCE B
141
11050A–PMAAC–07-Apr-10
15.2
DCDC0 and DCDC1
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those
described in Section 5. “Application Block Diagram” on page 8.
Figure 15-7. DCDC0 Transient Load Regulation Performance
142
DCDC0 - VIN = 3.3V - VOUT = 1.85V
Load Step 0 To 600mA / 1us
DCDC0 - VIN = 3.3V - VOUT = 1.85V
Load Step 600 To 0mA / 1us
DCDC0 - VIN = 5.5V - VOUT = 1.85V
Load Step 0 To 600mA / 1us
DCDC0 - VIN = 5.5V - VOUT = 1.85V
Load Step 600 To 0mA / 1us
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 15-8. DCDC0 Ripple and Efficency Performance
DCDC0 - VOUT = 1.8V
Efficiency in PFM and PWM modes
DCDC0 - VIN = 5.5V - VOUT = 1.8V
Output Voltage Ripple
143
11050A–PMAAC–07-Apr-10
Figure 15-9. DCDC1Transient Load Regulation Performance
144
DCDC0 - VIN = 3.3V - VOUT = 1.2V
Load Step 0 To 600mA / 1us
DCDC0 - VIN = 3.3V - VOUT = 1.2V
Load Step 600 To 0mA / 1us
DCDC0 - VIN = 5.5V - VOUT = 1.2V
Load Step 0 To 600mA / 1us
DCDC0 - VIN = 5.5V - VOUT = 1.2V
Load Step 600 To 0mA / 1us
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 15-10. DCDC0 Ripple and Efficiency Performance
DCDC1 - VOUT = 1.2V
Efficiency in PFM and PWM modes
DCDC1 - VIN = 5.5V - VOUT = 1.2V
Output Voltage Ripple
145
11050A–PMAAC–07-Apr-10
15.3
LDO2
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those
described in Section 5. “Application Block Diagram” on page 8.
Figure 15-11. LDO2 Tansient and Static Load Regulation Performance
146
LDO2- VIN = 1.8V - VOUT = 1V
Load Step 0 To 300mA / 1us
LDO2 - VIN = 1.8V - VOUT = 1V
Load Step 300 To 0mA / 1us
LDO2 - VIN = 1.8V - VOUT = 1V
Static Load Regulation - 0 To 300mA
LDO2 - VIN = 1.7V - VOUT = 1.2V
Static Load Regulation - 0 To 300mA
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
15.4
LDO3
Unless otherwise noted, the reported measurement were performed at room temperature. External components are those
described in Section 5. “Application Block Diagram” on page 8.
Figure 15-12. LDO3 Transient and Static Load Regulation Performance
LDO3- VIN = 5.5V - VDD3 = 3.3V
Load Step 0 To 200mA / 1us
LDO3 - VIN = 3.6V - VDD3 = 3.3V
Static Load Regulation - 0 To 200mA
LDO3 - VIN = 5.5V - VDD3 = 3.3V
Load Step 200 To 0mA / 1us
LDO3 - VDD3 = 3.3V - 200mA output load
Drop Out Characteristic.
(VDD3REG = VDD3 with VIN3 > VDD3 + 300mV)
147
11050A–PMAAC–07-Apr-10
15.5
AUDIO
Unless otherwise noted, the reported measurement were performed at room temperature with AVDD = 3.3V supplied from
LDO4. Typical components as described in Section 5. “Application Block Diagram” on page 8 are used.
Figure 15-13. Microphone Recording Waveforms
Differential Microphone Recording ( Path 5)
-1dBV / 1kHz Input - Fs = 48kHz - 16kpts FFT
Differential Microphone Recording ( Path 5)
-60dBV / 1kHz Input - Fs = 48kHz - 16kpts FFT
Differential Microphone Recording ( Path 5)
THD+N Ratio Versus Input Level
148
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 15-14. DAC Playback Waveforms
DAC playback ( Path 1) - Load 10k
0 dBFs / 1kHz Input - Fs = 48kHz - 32kpts FFT
DAC playback ( Path 1) - Load 10k
-60 dBFs / 1kHz Input - Fs = 48kHz - 32kpts FFT
DAC playback ( Path 1) - Load 10k
THD+N Ratio Versus Input Level
DAC playback ( Path 1) - Load 32 Ohms AC coupled
20mW Ouput Power - Fs = 48kHz - 32kpts FFT
149
11050A–PMAAC–07-Apr-10
Figure 15-15. Line Record Waveforms
Line Record (path 7)
-1 dBV / 1kHz Input - Fs = 48kHz - 32kpts FFT
Line Record (path 7)
-60 dBV / 1kHz Input - Fs = 48kHz - 32kpts FFT
Line Record (path 7)
THD+N Ratio Versus Input Level
150
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
Figure 15-16. Line Bypass Waveforms
Line Bypass (path 5)
0 dBV / 1kHz Input - 10k load - 16kpts FFT
Line Bypass (path 5)
-60 dBV / 1kHz Input - 10k load - 16kpts FFT
Line Record (path 5) - 10k load
THD+N Ratio Versus Input Level
151
11050A–PMAAC–07-Apr-10
152
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
16. Package Information
Figure 16-1. Mechanical Package Drawing for 64-lead Quad Flat No Lead Package
153
11050A–PMAAC–07-Apr-10
17. Ordering Information
Table 17-1.
Ordering Information
Ordering Code
and Marking
AT73C246
AT73C246-A
AT73C246-B
Notes:
Package
QFN64 7.5 x7.5mm
Green
QFN64 7.5 x7.5mm
Green
QFN64 7.5 x7.5mm
Green
Temperature
Operating Range
Power Sequence
Type(2)
Software
Tag(1)
-40°C to +85°C
VDD0 = 1.85V
VDD1 = 1.20V
VDD2 = 1.00V
VDD3 = 3.30V
VDD4 = 3.30V
A
0000
-40°C to +85°C
VDD0 = 1.80V
VDD1 = 1.20V
VDD2 = 1.20V
VDD3 = 3.30V
VDD4 = 3.30V
B
0001
-40°C to +85°C
VDD0 = 1.80V
VDD1 = 1.00V
VDD2 = 1.00V
VDD3 = 3.30V
VDD4 = 3.30V
B
0010
Supplies Default Values
1. See “VERSION” (0x7F) register definition.
2. See “Power Manager State Description” on page 29 and “Typical Performance Characteristics” on page 139.
154
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
18. Revision History
Table 18-1.
Revision History
Doc. Rev
Date
Comments
11050A
07-Apr-10
First issue
Change
Request
Ref.
155
11050A–PMAAC–07-Apr-10
156
AT73C246
11050A–PMAAC–07-Apr-10
AT73C246
1
Description ............................................................................................... 2
2
Block Diagram .......................................................................................... 3
3
Package and Pinout ................................................................................. 4
4
Pin Description ......................................................................................... 5
5
Application Block Diagram ..................................................................... 8
6
Absolute Maximum Ratings .................................................................. 11
7
Recommended Operating Conditions .................................................. 11
8
Power Dissipation Ratings .................................................................... 11
9
PMU Electrical Characteristics ............................................................. 12
9.1Current Consumption Versus Modes ......................................................................12
9.2Supply Monitor Thresholds ......................................................................................12
9.3Digital I/Os DC Characteristics ................................................................................13
9.4DCDC0 and DCDC1 ................................................................................................14
9.5LDO2 .......................................................................................................................16
9.6LDO3 .......................................................................................................................17
9.7LDO4 .......................................................................................................................18
9.8LDO5 .......................................................................................................................19
9.9Measurement Bridge and 10-bit ADC .....................................................................20
9.10RTC Crystal Oscillator ...........................................................................................21
9.11Die Temperature Sensor .......................................................................................21
10 Audio Codec Electrical Characteristics ............................................... 22
11 PMU Functional Description ................................................................. 25
11.1Power Manager State Diagram .............................................................................25
11.2PMU Startup and Shutdown State Diagram ..........................................................26
11.3Power Manager Conditional Transitions ................................................................27
11.4Power Manager State Description .........................................................................29
11.5DCDC0 and DCDC1 Functional Description .........................................................36
11.6LDO2 Functional Description .................................................................................37
11.7LDO3 and LDO4 Functional Description ...............................................................37
11.8Power Fail Detectors .............................................................................................38
11.9Measurement Bridge and 10-bit ADC ....................................................................38
11.10Real Time Clock (RTC) User Interface ................................................................40
11.11Die Temperature Sensor .....................................................................................54
i
11050A–PMAAC–07-Apr-10
12 Audio Codec Functional Description ................................................... 55
12.1Description .............................................................................................................55
12.2Audio Codec Block Diagram ..................................................................................55
12.3Audio Codec Controls ............................................................................................56
12.4Audio Controller .....................................................................................................57
12.5Audio Codec Power Consumption Versus Programmed Audio Path ....................63
12.6Digital Audio Interface ...........................................................................................66
12.7Digital Filters Transfer Function .............................................................................68
12.8Analog Audio Interfaces ........................................................................................74
13 Two Wire Interface and Control Registers ........................................... 77
13.1Two-wire Interface (TWI) Protocol .........................................................................77
13.2PMU Register Tables ............................................................................................79
14 PMU and Audio Soft Control: Quick Start ......................................... 132
14.1RTC Examples ....................................................................................................132
14.2Audio Examples ...................................................................................................134
15 Typical Performance Characteristics ................................................. 139
15.1PMU: Power Supply Sequences .........................................................................139
15.2DCDC0 and DCDC1 ............................................................................................142
15.3LDO2 ...................................................................................................................146
15.4LDO3 ...................................................................................................................147
15.5AUDIO .................................................................................................................148
16 Package Information ............................................................................ 153
17 Ordering Information ........................................................................... 154
18 Revision History ................................................................................... 155
ii
AT73C246
11050A–PMAAC–07-Apr-10
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Atmel Techincal Support
Sales Contacts
www.atmel.com/contacts/
Product Contact
Web Site
www.atmel.com
www.atmel.com/PowerManage
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.
© 2010 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof and others, are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
11050A–PMAAC–07-Apr-10