ATtiny25/V - Appendix A

Appendix A – ATtiny25/V Specification at 105°C
This document contains information specific to devices operating at temperatures up
to 105°C. Only deviations are covered in this appendix, all other information can be
found in the complete datasheet. The complete datasheet can be found at
www.atmel.com.
8-bit
Microcontroller
with 2K Bytes
In-System
Programmable
Flash
ATtiny25/V
Appendix A
Rev. 2586N–Appendix A–AVR–08/11
1. Electrical Characteristics
1.1
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C
Storage Temperature ..................................... -65°C to +150°C
Voltage on any Pin except RESET
with respect to Ground ................................-0.5V to VCC+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Maximum Operating Voltage ............................................ 6.0V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins................................ 200.0 mA
1.2
DC Characteristics
Table 1-1.
DC Characteristics. TA = -40°C to +105°C
Symbol
Parameter
Condition
Min.
VIL
Input Low-voltage, except
XTAL1 and RESET pin
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
VIH
Input High-voltage, except
XTAL1 and RESET pin
VIL1
Typ.(1)
Max.
Units
-0.5
-0.5
0.2VCC(3)
0.3VCC(3)
V
V
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.7VCC(2)
0.6VCC(2)
VCC +0.5
VCC +0.5
V
V
Input Low-voltage, XTAL1 pin,
External Clock Selected
VCC = 1.8V - 5.5V
-0.5
0.1VCC(3)
V
VIH1
Input High-voltage, XTAL1 pin,
External Clock Selected
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.8VCC(2)
0.7VCC(2)
VCC +0.5
VCC +0.5
V
V
VIL2
Input Low-voltage,
RESET pin
VCC = 1.8V - 5.5V
-0.5
0.2VCC(3)
V
V
VIH2
Input High-voltage,
RESET pin
VCC = 1.8V - 5.5V
0.9VCC(2)
VCC +0.5
V
VIL3
Input Low-voltage,
RESET pin as I/O
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
-0.5
-0.5
0.2VCC(3)
0.3VCC(3)
V
V
VIH3
Input High-voltage,
RESET pin as I/O
VCC = 1.8V - 2.4V
VCC = 2.4V - 5.5V
0.7VCC(2)
0.6VCC(2)
VCC +0.5
VCC +0.5
V
V
VOL
Output Low-voltage (4),
Port B (except RESET) (6)
IOL = 10 mA, VCC = 5V
IOL = 5 mA, VCC = 3V
0.6
0.5
V
V
VOH
Output High-voltage (5),
Port B (except RESET) (6)
IOH = -10 mA, VCC = 5V
IOH = -5 mA, VCC = 3V
IIL
Input Leakage
Current I/O Pin
VCC = 5.5V, pin low
(absolute value)
< 0.05
1
µA
IIH
Input Leakage
Current I/O Pin
VCC = 5.5V, pin high
(absolute value)
< 0.05
1
µA
2
4.3
2.5
V
V
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Table 1-1.
DC Characteristics. TA = -40°C to +105°C (Continued)
Symbol
Parameter
Condition
RRST
Reset Pull-up Resistor
VCC = 5.5V, input low
Rpu
I/O Pin Pull-up Resistor
VCC = 5.5V, input low
Power Supply Current (7)
ICC
Power-down mode (8)
Notes:
Min.
Typ.(1)
Max.
Units
30
60
kΩ
20
50
kΩ
Active 1MHz, VCC = 2V
0.3
0.55
mA
Active 4MHz, VCC = 3V
1.5
2.5
mA
Active 8MHz, VCC = 5V
5
8
mA
Idle 1MHz, VCC = 2V
0.1
0.2
mA
Idle 4MHz, VCC = 3V
0.35
0.6
mA
Idle 8MHz, VCC = 5V
1.2
2
mA
WDT enabled, VCC = 3V
4
20
µA
WDT disabled, VCC = 3V
0.2
10
µA
1. Typical values at 25°C.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. “Max” means the highest value where the pin is guaranteed to be read as low.
4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOL, for all ports, should not exceed 60 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.
5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOH, for all ports, should not exceed 60 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.
6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins.
7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is
enabled (PRR = 0xFF) and there is no I/O drive.
8. Brown-Out Detection (BOD) disabled.
3
2586N–Appendix A–AVR–08/11
1.3
Clock Characteristics
1.3.1
Calibrated Internal RC Oscillator Accuracy
It is possible to manually calibrate the internal oscillator to be more accurate than default factory
calibration. Please note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-36 on page 28 and Figure 2-37 on
page 28.
Table 1-2.
Calibration
Method
Calibration Accuracy of Internal RC Oscillator
Target Frequency
VCC
Temperature
Accuracy at given Voltage
& Temperature (1)
8.0 MHz (2)
3V
25°C
±10%
Fixed frequency within:
6 – 8 MHz
Fixed voltage within:
1.8V - 5.5V (3)
2.7V - 5.5V (4)
Fixed temperature
within:
-40°C to +105°C
±1%
Factory
Calibration
User
Calibration
Notes:
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
2. ATtiny25/V, only: 6.4 MHz in ATtiny15 Compatibility Mode.
3. Voltage range for ATtiny25V.
4. Voltage range for ATtiny25.
1.4
System and Reset Characteristics
Table 1-3.
Parameter
Condition
Min (1)
VRST
RESET Pin Threshold Voltage
VCC = 3V
0.2 VCC
tRST
Minimum pulse width on
RESET Pin
VCC = 3V
Symbol
VHYST
Typ (1)
Max (1)
Units
0.9 VCC
V
2.5
µs
Brown-out Detector Hysteresis
50
mV
tBOD
Min Pulse Width on
Brown-out Reset
2
µs
VBG
Bandgap reference
voltage
VCC = 5.5V
TA = 25°C
tBG
Bandgap reference
start-up time
IBG
Bandgap reference
current consumption
Note:
4
Reset, Brown-out and Internal Voltage Characteristics
1.0
1.1
1.2
V
VCC = 2.7V
TA = 25°C
40
70
µs
VCC = 2.7V
TA = 25°C
15
µA
1. Values are guidelines only.
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
1.4.1
Enhanced Power-On Reset
The table below describes the characteristics of the power-on reset.
Table 1-4.
Symbol
Characteristics of Enhanced Power-On Reset. TA = -40°C to +105°C
Parameter
Release threshold of power-on reset (2)
VPOR
VPOA
Activation threshold of power-on reset
SRON
Power-On Slope Rate
Note:
(3)
Min (1)
Typ (1)
Max (1)
Units
1.1
1.4
1.7
V
0.6
1.3
1.7
V
0.01
V/ms
1. Values are guidelines, only
2. Threshold where device is released from reset when voltage is rising
3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)
5
2586N–Appendix A–AVR–08/11
1.5
ADC Characteristics – Preliminary
Table 1-5.
Symbol
ADC Characteristics, Single Ended Channels. TA = -40°C to +105°C
Parameter
Condition
Min
Typ
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and
Offset errors)
VINT
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
3
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.5
LSB
Integral Non-linearity (INL)
(Accuracy after offset and gain
calibration)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1
LSB
Differential Non-linearity (DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.5
LSB
Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1.5
LSB
Conversion Time
Free Running Conversion
Input Voltage
14
280
µs
50
1000
kHz
GND
VREF
V
38.4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference
(1)
VCC > 3.0V
Analog Input Resistance
ADC Output
Note:
6
Bits
LSB
RREF
RAIN
10
2
Input Bandwidth
AREF
Units
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Clock Frequency
VIN
Max
0
kHz
VCC
V
1.1
1.2
V
2.56
2.8
V
32
kΩ
100
MΩ
1023
LSB
1. Values are guidelines only.
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Table 1-6.
Symbol
ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +105°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
20.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
10.0
LSB
Gain = 1x
10.0
LSB
Gain = 20x
15.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain Error
Offset Error
Conversion Time
Free Running Conversion
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
AREF
VINT
4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference (1)
VCC > 3.0V
kHz
VCC - 1.0
V
1.1
1.2
V
2.56
2.8
V
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
Note:
0
1023
LSB
1. Values are guidelines only.
7
2586N–Appendix A–AVR–08/11
Table 1-7.
Symbol
ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +105°C
Parameter
Condition
Min
Typ
Max
Units
Gain = 1x
10
Bits
Gain = 20x
10
Bits
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
8.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
5.0
LSB
Gain = 1x
4.0
LSB
Gain = 20x
5.0
LSB
Gain = 1x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
3.0
LSB
Gain = 20x
VREF = 4V, VCC = 5V
ADC clock = 50 - 200 kHz
4.0
LSB
Gain Error
Offset Error
Conversion Time
Free Running Conversion
Clock Frequency
VIN
Input Voltage
VDIFF
Input Differential Voltage
70
280
µs
50
200
kHz
GND
VCC
V
VREF/Gain
V
Input Bandwidth
AREF
VINT
4
External Reference Voltage
2.0
Internal Voltage Reference
1.0
2.3
Internal 2.56V Reference (1)
VCC > 3.0V
kHz
VCC - 1.0
V
1.1
1.2
V
2.56
2.8
V
RREF
Reference Input Resistance
32
kΩ
RAIN
Analog Input Resistance
100
MΩ
ADC Conversion Output
Note:
8
-512
511
LSB
1. Values are guidelines only.
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
1.6
Serial Programming Characteristics
Figure 1-1.
Serial Programming Waveforms
SERIAL DATA INPUT
(MOSI)
MSB
LSB
SERIAL DATA OUTPUT
(MISO)
MSB
LSB
SERIAL CLOCK INPUT
(SCK)
SAMPLE
Figure 1-2.
Serial Programming Timing
MOSI
tSHOX
tOVSH
SCK
tSLSH
tSHSL
MISO
tSLIV
Table 1-8.
Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V
(Unless Otherwise Noted)
Symbol
Parameter
1/tCLCL
Oscillator Frequency (VCC = 1.8 - 5.5V)
tCLCL
Oscillator Period (VCC = 1.8 - 5.5V)
1/tCLCL
Oscillator Frequency (VCC = 2.7 - 5.5V)
Oscillator Period (VCC = 2.7 - 5.5V)
tCLCL
1/tCLCL
Min
0
Typ
Max
Units
4
MHz
250
0
ns
10
100
MHz
ns
Oscillator Frequency (VCC = 4.5V - 5.5V)
0
tCLCL
Oscillator Period (VCC = 4.5V - 5.5V)
50
ns
tSHSL
SCK Pulse Width High
2 tCLCL*
ns
tSLSH
SCK Pulse Width Low
2 tCLCL*
ns
tOVSH
MOSI Setup to SCK High
tCLCL
ns
tSHOX
MOSI Hold after SCK High
2 tCLCL
ns
tSLIV
SCK Low to MISO Valid
Note:
20
100
MHz
ns
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
9
2586N–Appendix A–AVR–08/11
2. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar
devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs and
with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock
source.
The power consumption in Power-down mode is independent of clock selection.
The current consumption is a function of several factors such as: operating voltage, operating
frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.
The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where
CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.
The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to
function properly at frequencies higher than the ordering code indicates.
The difference between current consumption in Power-down mode with Watchdog Timer
enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.
2.1
Active Supply Current
Figure 2-1.
Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 8 MHz
7
-40 °C
25 °C
85 °C
105 °C
6
ICC (mA)
5
4
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
10
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-2.
Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 1 MHz
1,6
105 °C
85 °C
25 °C
-40 °C
1,4
1,2
ICC (mA)
1
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-3.
Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 128 KHz
0,25
-40 °C
25 °C
105 °C
85 °C
ICC (mA)
0,2
0,15
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
11
2586N–Appendix A–AVR–08/11
2.2
Idle Supply Current
Figure 2-4.
Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 8 MHz
1,8
105 °C
85 °C
25 °C
-40 °C
1,6
1,4
ICC (mA)
1,2
1
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-5.
Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 1 MHz
0,5
105 °C
85 °C
25 °C
-40 °C
0,45
0,4
ICC (mA)
0,35
0,3
0,25
0,2
0,15
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
12
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-6.
Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz)
IDLE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR, 128 kHz
0,1
0,09
105 °C
-40 °C
25 °C
0,08
85 °C
ICC (mA)
0,07
0,06
0,05
0,04
0,03
0,02
0,01
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.3
Power-down Supply Current
Figure 2-7.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER DISABLED
3
2,5
105 °C
ICC (uA)
2
1,5
85 °C
1
-40 °C
25 °C
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
13
2586N–Appendix A–AVR–08/11
Figure 2-8.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER ENABLED
14
12
ICC (uA)
10
8
6
-40 °C
25 °C
105 °C
85 °C
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.4
Pin Pull-up
Figure 2-9.
I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 1.8V
60
50
IOP (uA)
40
30
20
10
25 °C
-40 °C
85 °C
105 °C
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VOP (V)
14
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 2.7V
80
70
60
IOP (uA)
50
40
30
20
25 °C
85 °C
-40 °C
105 °C
10
0
0
0,5
1
1,5
2
2,5
3
VOP (V)
Figure 2-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
VCC = 5V
160
140
120
IOP (uA)
100
80
60
40
25 °C
85 °C
-40 °C
105 °C
20
0
0
1
2
3
4
5
6
VOP (V)
15
2586N–Appendix A–AVR–08/11
Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 1.8V
40
35
IRESET (uA)
30
25
20
15
10
25 °C
-40 °C
85 °C
105 °C
5
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET (V)
Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC =2.7V
60
50
IRESET (uA)
40
30
20
10
25 °C
-40 °C
85 °C
105 °C
0
0
0,5
1
1,5
2
2,5
3
VRESET (V)
16
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)
RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
VCC = 5V
120
100
IRESET (uA)
80
60
40
20
25 °C
-40 °C
85 °C
105 °C
0
0
1
2
3
4
5
6
VRESET (V)
2.5
Pin Driver Strength
Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
1,2
1
105 °C
85 °C
VOL (V)
0,8
25 °C
0,6
-40 °C
0,4
0,2
0
0
5
10
15
20
25
IOL (mA)
17
2586N–Appendix A–AVR–08/11
Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
0,6
105 °C
85 °C
0,5
25 °C
0,4
VOL (V)
-40 °C
0,3
0,2
0,1
0
0
5
10
15
20
25
IOL (mA)
Figure 2-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
3,5
3
2,5
-40 °C
25 °C
85 °C
105 °C
VOH (V)
2
1,5
1
0,5
0
0
5
10
15
20
25
IOH (mA)
18
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V)
I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
5
4,9
4,8
VOH (V)
4,7
4,6
-40 °C
4,5
25 °C
85 °C
4,4
105 °C
4,3
0
5
15
10
20
25
IOH (mA)
Figure 2-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 3V
1,5
105 °C
85 °C
VOL (V)
1
25 °C
-40 °C
0,5
0
0
0,5
1
1,5
2
2,5
3
IOL (mA)
19
2586N–Appendix A–AVR–08/11
Figure 2-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT
VCC = 5V
1
0,8
0,6
VOL (V)
105 °C
85 °C
25 °C
0,4
-40 °C
0,2
0
0
0,5
1
1,5
2
2,5
3
IOL (mA)
Figure 2-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 3V
3,5
3
2,5
VOH (V)
2
1,5
-40 °C
25 °C
85 °C
105 °C
1
0,5
0
0
0,5
1
1,5
2
IOH (mA)
20
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V)
RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT
VCC = 5V
5
4,5
VOH (V)
4
3,5
3
-40 °C
25 °C
2,5
85 °C
105 °C
2
0
0,5
1
1,5
2
IOH (mA)
2.6
Pin Threshold and Hysteresis
Figure 2-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIH, IO PIN READ AS '1'
3
105 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
21
2586N–Appendix A–AVR–08/11
Figure 2-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)
I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC
VIL, IO PIN READ AS '0'
3
105 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-25. I/O Pin Input Hysteresis vs. VCC
I/O PIN INPUT HYSTERESIS vs. VCC
0,6
0,5
-40 °C
Input Hysteresis (V)
0,4
25 °C
0,3
85 °C
105 °C
0,2
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
22
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIH, IO PIN READ AS '1'
2,5
-40 °C
25 °C
85 °C
105 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)
RESET INPUT THRESHOLD VOLTAGE vs. VCC
VIL, IO PIN READ AS '0'
2,5
105 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
23
2586N–Appendix A–AVR–08/11
Figure 2-28. Reset Pin Input Hysteresis vs. VCC
RESET PIN INPUT HYSTERESIS vs. VCC
0,5
0,45
0,4
-40 °C
Input Hysteresis (V)
0,35
0,3
25 °C
0,25
0,2
0,15
85 °C
105 °C
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.7
BOD Threshold and Analog Comparator Offset
Figure 2-29. BOD Threshold vs. Temperature (BOD Level is 4.3V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 4.3V
4,4
4,38
Rising VCC
Threshold (V)
4,36
4,34
4,32
Falling VCC
4,3
4,28
4,26
-40
-20
0
20
40
60
80
100
120
Temperature (C)
24
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-30. BOD Threshold vs. Temperature (BOD Level is 2.7V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 2.7V
2,8
Rising VCC
2,78
Threshold (V)
2,76
2,74
2,72
Falling VCC
2,7
2,68
-40
-20
0
20
40
60
80
100
120
Temperature (C)
Figure 2-31. BOD Threshold vs. Temperature (BOD Level is 1.8V)
BOD THRESHOLDS vs. TEMPERATURE
BODLEVEL = 1.8V
1,85
1,845
Rising VCC
1,84
Threshold (V)
1,835
1,83
1,825
1,82
1,815
1,81
Falling VCC
1,805
1,8
1,795
-40
-20
0
20
40
60
80
100
120
Temperature (C)
25
2586N–Appendix A–AVR–08/11
Figure 2-32. Bandgap Voltage vs. Supply Voltage
BANDGAP VOLTAGE vs. VCC
1,2
1,18
1,16
Bandgap Voltage (V)
1,14
1,12
105 °C
85 °C
1,1
25 °C
1,08
1,06
-40 °C
1,04
1,02
1
1,5
2
2,5
3
3,5
4
4,5
5
5,5
Vcc (V)
Figure 2-33. Bandgap Voltage vs. Temperature
BANDGAP VOLTAGE vs. Temperature
1,2
1,18
1,16
1.8 V
3V
Bandgap Voltage (V)
1,14
5V
1,12
1,1
1,08
1,06
1,04
1,02
1
-40
-20
0
20
40
60
80
100
120
Temperature
26
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
2.8
Internal Oscillator Speed
Figure 2-34. Watchdog Oscillator Frequency vs. VCC
WATCHDOG OSCILLATOR FREQUENCY vs. VCC
0,128
0,126
0,124
-40 °C
FRC (MHz)
0,122
25 °C
0,12
0,118
0,116
0,114
85 °C
0,112
105 °C
0,11
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-35. Watchdog Oscillator Frequency vs. Temperature
WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE
0,12
0,118
0,116
FRC (MHz)
0,114
0,112
0,11
1.8 V
2.7 V
0,108
3.3 V
4.0 V
5.5 V
0,106
0,104
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
Temperature
27
2586N–Appendix A–AVR–08/11
Figure 2-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC
CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. VCC
8300000
8200000
105 °C
85 °C
8100000
FRC (Hz)
8000000
25 °C
7900000
7800000
-40 °C
7700000
7600000
7500000
7400000
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature
CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE
8300000
8200000
5.0 V
3.0 V
8100000
FRC (Hz)
8000000
1.8 V
7900000
7800000
7700000
7600000
7500000
7400000
-60
-40
-20
0
20
40
60
80
100
120
Temperature
28
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value
CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE
18
105 °C
85 °C
25 °C
-40 °C
16
14
FRC (MHz)
12
10
8
6
4
2
0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
OSCCAL (X1)
2.9
Current Consumption of Peripheral Units
Figure 2-39. Brownout Detector Current vs. VCC
BROWNOUT DETECTOR CURRENT vs. VCC
BOD level = 1.8V
30
105 °C
85 °C
25
25 °C
-40 °C
ICC (uA)
20
15
10
5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
29
2586N–Appendix A–AVR–08/11
Figure 2-40. ADC Current vs. VCC (AREF = AVCC)
ADC CURRENT vs. VCC
AREF = AVCC
0,25
105 °C
85 °C
0,2
25 °C
-40 °C
ICC (mA)
0,15
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
4,5
5
5,5
VCC (V)
Figure 2-41. Analog Comparator Current vs. VCC
ANALOG COMPARATOR CURRENT vs. VCC
0,07
0,06
ICC (mA)
0,05
105 °C
85 °C
0,04
25 °C
-40 °C
0,03
0,02
0,01
0
1,5
2
2,5
3
3,5
4
VCC (V)
30
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
Figure 2-42. Programming Current vs. VCC
PROGRAMMING CURRENT vs. Vcc
Ext Clk
10
-40 °C
9
8
7
25 °C
ICC (mA)
6
5
4
85 °C
105 °C
3
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
2.10
Current Consumption in Reset and Reset Pulsewidth
Figure 2-43. Minimum Reset Pulse Width vs. VCC
MINIMUM RESET PULSE WIDTH vs. VCC
2500
Pulsewidth (ns)
2000
1500
1000
105 °C
85 °C
25 °C
-40 °C
500
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
31
2586N–Appendix A–AVR–08/11
3. Ordering Information
Speed (MHz)
10
20
Notes:
Ordering Code(1)
Package(2)
1.8 - 5.5V
ATtiny25V-10SN
ATtiny25V-10SNR
ATtiny25V-10SSN
ATtiny25V-10SSNR
8S2
8S2
S8S1
S8S1
Industrial
(-40°C to +105°C)
2.7 - 5.5V
ATtiny25-20SN
ATtiny25-20SNR
ATtiny25-20SSN
ATtiny25-20SSNR
8S2
8S2
S8S1
S8S1
Industrial
(-40°C to +105°C)
Power Supply
Operational Range
1. Code indicators:
– N: matte tin
– R: tape & reel
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
Package Type
8S2
8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC)
S8S1
8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC)
32
ATtiny25
2586N–Appendix A–AVR–08/11
ATtiny25
4. Revision History
Revision No.
History
2586A–Appendix A–AVR–06/10
Initial revision
2586B–Appendix A–AVR–07/10
Added Ordering Codes -SN and -SNR (package 8S2)
2586N–Appendix A–AVR–08/11
Removed “Preliminary” status, updated contact information
33
2586N–Appendix A–AVR–08/11
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2011 Atmel Corporation. All rights reserved.
Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms
and product names may be trademarks of others.
2586N–Appendix A–AVR–08/11