Appendix A – ATtiny25/V Specification at 105°C This document contains information specific to devices operating at temperatures up to 105°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 2K Bytes In-System Programmable Flash ATtiny25/V Appendix A Rev. 2586N–Appendix A–AVR–08/11 1. Electrical Characteristics 1.1 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C Storage Temperature ..................................... -65°C to +150°C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins................................ 200.0 mA 1.2 DC Characteristics Table 1-1. DC Characteristics. TA = -40°C to +105°C Symbol Parameter Condition Min. VIL Input Low-voltage, except XTAL1 and RESET pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V VIH Input High-voltage, except XTAL1 and RESET pin VIL1 Typ.(1) Max. Units -0.5 -0.5 0.2VCC(3) 0.3VCC(3) V V VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC +0.5 VCC +0.5 V V Input Low-voltage, XTAL1 pin, External Clock Selected VCC = 1.8V - 5.5V -0.5 0.1VCC(3) V VIH1 Input High-voltage, XTAL1 pin, External Clock Selected VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.8VCC(2) 0.7VCC(2) VCC +0.5 VCC +0.5 V V VIL2 Input Low-voltage, RESET pin VCC = 1.8V - 5.5V -0.5 0.2VCC(3) V V VIH2 Input High-voltage, RESET pin VCC = 1.8V - 5.5V 0.9VCC(2) VCC +0.5 V VIL3 Input Low-voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC(3) 0.3VCC(3) V V VIH3 Input High-voltage, RESET pin as I/O VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC +0.5 VCC +0.5 V V VOL Output Low-voltage (4), Port B (except RESET) (6) IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V 0.6 0.5 V V VOH Output High-voltage (5), Port B (except RESET) (6) IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V IIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) < 0.05 1 µA IIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) < 0.05 1 µA 2 4.3 2.5 V V ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Table 1-1. DC Characteristics. TA = -40°C to +105°C (Continued) Symbol Parameter Condition RRST Reset Pull-up Resistor VCC = 5.5V, input low Rpu I/O Pin Pull-up Resistor VCC = 5.5V, input low Power Supply Current (7) ICC Power-down mode (8) Notes: Min. Typ.(1) Max. Units 30 60 kΩ 20 50 kΩ Active 1MHz, VCC = 2V 0.3 0.55 mA Active 4MHz, VCC = 3V 1.5 2.5 mA Active 8MHz, VCC = 5V 5 8 mA Idle 1MHz, VCC = 2V 0.1 0.2 mA Idle 4MHz, VCC = 3V 0.35 0.6 mA Idle 8MHz, VCC = 5V 1.2 2 mA WDT enabled, VCC = 3V 4 20 µA WDT disabled, VCC = 3V 0.2 10 µA 1. Typical values at 25°C. 2. “Min” means the lowest value where the pin is guaranteed to be read as high. 3. “Max” means the highest value where the pin is guaranteed to be read as low. 4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: 1] The sum of all IOL, for all ports, should not exceed 60 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed: 1] The sum of all IOH, for all ports, should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. 7. Values are with external clock using methods described in “Minimizing Power Consumption” on page 37. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 8. Brown-Out Detection (BOD) disabled. 3 2586N–Appendix A–AVR–08/11 1.3 Clock Characteristics 1.3.1 Calibrated Internal RC Oscillator Accuracy It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Please note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-36 on page 28 and Figure 2-37 on page 28. Table 1-2. Calibration Method Calibration Accuracy of Internal RC Oscillator Target Frequency VCC Temperature Accuracy at given Voltage & Temperature (1) 8.0 MHz (2) 3V 25°C ±10% Fixed frequency within: 6 – 8 MHz Fixed voltage within: 1.8V - 5.5V (3) 2.7V - 5.5V (4) Fixed temperature within: -40°C to +105°C ±1% Factory Calibration User Calibration Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). 2. ATtiny25/V, only: 6.4 MHz in ATtiny15 Compatibility Mode. 3. Voltage range for ATtiny25V. 4. Voltage range for ATtiny25. 1.4 System and Reset Characteristics Table 1-3. Parameter Condition Min (1) VRST RESET Pin Threshold Voltage VCC = 3V 0.2 VCC tRST Minimum pulse width on RESET Pin VCC = 3V Symbol VHYST Typ (1) Max (1) Units 0.9 VCC V 2.5 µs Brown-out Detector Hysteresis 50 mV tBOD Min Pulse Width on Brown-out Reset 2 µs VBG Bandgap reference voltage VCC = 5.5V TA = 25°C tBG Bandgap reference start-up time IBG Bandgap reference current consumption Note: 4 Reset, Brown-out and Internal Voltage Characteristics 1.0 1.1 1.2 V VCC = 2.7V TA = 25°C 40 70 µs VCC = 2.7V TA = 25°C 15 µA 1. Values are guidelines only. ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 1.4.1 Enhanced Power-On Reset The table below describes the characteristics of the power-on reset. Table 1-4. Symbol Characteristics of Enhanced Power-On Reset. TA = -40°C to +105°C Parameter Release threshold of power-on reset (2) VPOR VPOA Activation threshold of power-on reset SRON Power-On Slope Rate Note: (3) Min (1) Typ (1) Max (1) Units 1.1 1.4 1.7 V 0.6 1.3 1.7 V 0.01 V/ms 1. Values are guidelines, only 2. Threshold where device is released from reset when voltage is rising 3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling) 5 2586N–Appendix A–AVR–08/11 1.5 ADC Characteristics – Preliminary Table 1-5. Symbol ADC Characteristics, Single Ended Channels. TA = -40°C to +105°C Parameter Condition Min Typ Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset errors) VINT VREF = 4V, VCC = 4V, ADC clock = 1 MHz 3 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.5 LSB Integral Non-linearity (INL) (Accuracy after offset and gain calibration) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.5 LSB Offset Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion Input Voltage 14 280 µs 50 1000 kHz GND VREF V 38.4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V Analog Input Resistance ADC Output Note: 6 Bits LSB RREF RAIN 10 2 Input Bandwidth AREF Units VREF = 4V, VCC = 4V, ADC clock = 200 kHz Clock Frequency VIN Max 0 kHz VCC V 1.1 1.2 V 2.56 2.8 V 32 kΩ 100 MΩ 1023 LSB 1. Values are guidelines only. ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Table 1-6. Symbol ADC Characteristics, Differential Channels (Unipolar Mode). TA = -40°C to +105°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 20.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 10.0 LSB Gain = 1x 10.0 LSB Gain = 20x 15.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain Error Offset Error Conversion Time Free Running Conversion Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth AREF VINT 4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V kHz VCC - 1.0 V 1.1 1.2 V 2.56 2.8 V RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output Note: 0 1023 LSB 1. Values are guidelines only. 7 2586N–Appendix A–AVR–08/11 Table 1-7. Symbol ADC Characteristics, Differential Channels (Bipolar Mode). TA = -40°C to +105°C Parameter Condition Min Typ Max Units Gain = 1x 10 Bits Gain = 20x 10 Bits Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 8.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 5.0 LSB Gain = 1x 4.0 LSB Gain = 20x 5.0 LSB Gain = 1x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 3.0 LSB Gain = 20x VREF = 4V, VCC = 5V ADC clock = 50 - 200 kHz 4.0 LSB Gain Error Offset Error Conversion Time Free Running Conversion Clock Frequency VIN Input Voltage VDIFF Input Differential Voltage 70 280 µs 50 200 kHz GND VCC V VREF/Gain V Input Bandwidth AREF VINT 4 External Reference Voltage 2.0 Internal Voltage Reference 1.0 2.3 Internal 2.56V Reference (1) VCC > 3.0V kHz VCC - 1.0 V 1.1 1.2 V 2.56 2.8 V RREF Reference Input Resistance 32 kΩ RAIN Analog Input Resistance 100 MΩ ADC Conversion Output Note: 8 -512 511 LSB 1. Values are guidelines only. ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 1.6 Serial Programming Characteristics Figure 1-1. Serial Programming Waveforms SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE Figure 1-2. Serial Programming Timing MOSI tSHOX tOVSH SCK tSLSH tSHSL MISO tSLIV Table 1-8. Serial Programming Characteristics, TA = -40°C to +105°C, VCC = 1.8 - 5.5V (Unless Otherwise Noted) Symbol Parameter 1/tCLCL Oscillator Frequency (VCC = 1.8 - 5.5V) tCLCL Oscillator Period (VCC = 1.8 - 5.5V) 1/tCLCL Oscillator Frequency (VCC = 2.7 - 5.5V) Oscillator Period (VCC = 2.7 - 5.5V) tCLCL 1/tCLCL Min 0 Typ Max Units 4 MHz 250 0 ns 10 100 MHz ns Oscillator Frequency (VCC = 4.5V - 5.5V) 0 tCLCL Oscillator Period (VCC = 4.5V - 5.5V) 50 ns tSHSL SCK Pulse Width High 2 tCLCL* ns tSLSH SCK Pulse Width Low 2 tCLCL* ns tOVSH MOSI Setup to SCK High tCLCL ns tSHOX MOSI Hold after SCK High 2 tCLCL ns tSLIV SCK Low to MISO Valid Note: 20 100 MHz ns 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz 9 2586N–Appendix A–AVR–08/11 2. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source. The power consumption in Power-down mode is independent of clock selection. The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin. The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates. The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. 2.1 Active Supply Current Figure 2-1. Active Supply Current vs. VCC (Internal RC oscillator, 8 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 8 MHz 7 -40 °C 25 °C 85 °C 105 °C 6 ICC (mA) 5 4 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 10 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-2. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 1 MHz 1,6 105 °C 85 °C 25 °C -40 °C 1,4 1,2 ICC (mA) 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-3. Active Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) ACTIVE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 128 KHz 0,25 -40 °C 25 °C 105 °C 85 °C ICC (mA) 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 11 2586N–Appendix A–AVR–08/11 2.2 Idle Supply Current Figure 2-4. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 8 MHz 1,8 105 °C 85 °C 25 °C -40 °C 1,6 1,4 ICC (mA) 1,2 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-5. Idle Supply Current vs. VCC (Internal RC Oscilllator, 1 MHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 1 MHz 0,5 105 °C 85 °C 25 °C -40 °C 0,45 0,4 ICC (mA) 0,35 0,3 0,25 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 12 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-6. Idle Supply Current vs. VCC (Internal RC Oscillator, 128 kHz) IDLE SUPPLY CURRENT vs. VCC INTERNAL RC OSCILLATOR, 128 kHz 0,1 0,09 105 °C -40 °C 25 °C 0,08 85 °C ICC (mA) 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.3 Power-down Supply Current Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) POWER-DOWN SUPPLY CURRENT vs. VCC WATCHDOG TIMER DISABLED 3 2,5 105 °C ICC (uA) 2 1,5 85 °C 1 -40 °C 25 °C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 13 2586N–Appendix A–AVR–08/11 Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) POWER-DOWN SUPPLY CURRENT vs. VCC WATCHDOG TIMER ENABLED 14 12 ICC (uA) 10 8 6 -40 °C 25 °C 105 °C 85 °C 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.4 Pin Pull-up Figure 2-9. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE VCC = 1.8V 60 50 IOP (uA) 40 30 20 10 25 °C -40 °C 85 °C 105 °C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP (V) 14 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-10. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE VCC = 2.7V 80 70 60 IOP (uA) 50 40 30 20 25 °C 85 °C -40 °C 105 °C 10 0 0 0,5 1 1,5 2 2,5 3 VOP (V) Figure 2-11. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE VCC = 5V 160 140 120 IOP (uA) 100 80 60 40 25 °C 85 °C -40 °C 105 °C 20 0 0 1 2 3 4 5 6 VOP (V) 15 2586N–Appendix A–AVR–08/11 Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE VCC = 1.8V 40 35 IRESET (uA) 30 25 20 15 10 25 °C -40 °C 85 °C 105 °C 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE VCC =2.7V 60 50 IRESET (uA) 40 30 20 10 25 °C -40 °C 85 °C 105 °C 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) 16 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V) RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE VCC = 5V 120 100 IRESET (uA) 80 60 40 20 25 °C -40 °C 85 °C 105 °C 0 0 1 2 3 4 5 6 VRESET (V) 2.5 Pin Driver Strength Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 3V 1,2 1 105 °C 85 °C VOL (V) 0,8 25 °C 0,6 -40 °C 0,4 0,2 0 0 5 10 15 20 25 IOL (mA) 17 2586N–Appendix A–AVR–08/11 Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 5V 0,6 105 °C 85 °C 0,5 25 °C 0,4 VOL (V) -40 °C 0,3 0,2 0,1 0 0 5 10 15 20 25 IOL (mA) Figure 2-17. I/O Pin Output Voltage vs. Source Current (VCC = 3V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 3V 3,5 3 2,5 -40 °C 25 °C 85 °C 105 °C VOH (V) 2 1,5 1 0,5 0 0 5 10 15 20 25 IOH (mA) 18 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 5V) I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 5V 5 4,9 4,8 VOH (V) 4,7 4,6 -40 °C 4,5 25 °C 85 °C 4,4 105 °C 4,3 0 5 15 10 20 25 IOH (mA) Figure 2-19. Reset Pin Output Voltage vs. Sink Current (VCC = 3V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 3V 1,5 105 °C 85 °C VOL (V) 1 25 °C -40 °C 0,5 0 0 0,5 1 1,5 2 2,5 3 IOL (mA) 19 2586N–Appendix A–AVR–08/11 Figure 2-20. Reset Pin Output Voltage vs. Sink Current (VCC = 5V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SINK CURRENT VCC = 5V 1 0,8 0,6 VOL (V) 105 °C 85 °C 25 °C 0,4 -40 °C 0,2 0 0 0,5 1 1,5 2 2,5 3 IOL (mA) Figure 2-21. Reset Pin Output Voltage vs. Source Current (VCC = 3V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 3V 3,5 3 2,5 VOH (V) 2 1,5 -40 °C 25 °C 85 °C 105 °C 1 0,5 0 0 0,5 1 1,5 2 IOH (mA) 20 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-22. Reset Pin Output Voltage vs. Source Current (VCC = 5V) RESET AS I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENT VCC = 5V 5 4,5 VOH (V) 4 3,5 3 -40 °C 25 °C 2,5 85 °C 105 °C 2 0 0,5 1 1,5 2 IOH (mA) 2.6 Pin Threshold and Hysteresis Figure 2-23. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’) I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIH, IO PIN READ AS '1' 3 105 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 21 2586N–Appendix A–AVR–08/11 Figure 2-24. I/O Pin Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’) I/O PIN INPUT THRESHOLD VOLTAGE vs. VCC VIL, IO PIN READ AS '0' 3 105 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-25. I/O Pin Input Hysteresis vs. VCC I/O PIN INPUT HYSTERESIS vs. VCC 0,6 0,5 -40 °C Input Hysteresis (V) 0,4 25 °C 0,3 85 °C 105 °C 0,2 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 22 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-26. Reset Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’) RESET INPUT THRESHOLD VOLTAGE vs. VCC VIH, IO PIN READ AS '1' 2,5 -40 °C 25 °C 85 °C 105 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’) RESET INPUT THRESHOLD VOLTAGE vs. VCC VIL, IO PIN READ AS '0' 2,5 105 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 23 2586N–Appendix A–AVR–08/11 Figure 2-28. Reset Pin Input Hysteresis vs. VCC RESET PIN INPUT HYSTERESIS vs. VCC 0,5 0,45 0,4 -40 °C Input Hysteresis (V) 0,35 0,3 25 °C 0,25 0,2 0,15 85 °C 105 °C 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.7 BOD Threshold and Analog Comparator Offset Figure 2-29. BOD Threshold vs. Temperature (BOD Level is 4.3V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 4.3V 4,4 4,38 Rising VCC Threshold (V) 4,36 4,34 4,32 Falling VCC 4,3 4,28 4,26 -40 -20 0 20 40 60 80 100 120 Temperature (C) 24 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-30. BOD Threshold vs. Temperature (BOD Level is 2.7V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 2.7V 2,8 Rising VCC 2,78 Threshold (V) 2,76 2,74 2,72 Falling VCC 2,7 2,68 -40 -20 0 20 40 60 80 100 120 Temperature (C) Figure 2-31. BOD Threshold vs. Temperature (BOD Level is 1.8V) BOD THRESHOLDS vs. TEMPERATURE BODLEVEL = 1.8V 1,85 1,845 Rising VCC 1,84 Threshold (V) 1,835 1,83 1,825 1,82 1,815 1,81 Falling VCC 1,805 1,8 1,795 -40 -20 0 20 40 60 80 100 120 Temperature (C) 25 2586N–Appendix A–AVR–08/11 Figure 2-32. Bandgap Voltage vs. Supply Voltage BANDGAP VOLTAGE vs. VCC 1,2 1,18 1,16 Bandgap Voltage (V) 1,14 1,12 105 °C 85 °C 1,1 25 °C 1,08 1,06 -40 °C 1,04 1,02 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 Vcc (V) Figure 2-33. Bandgap Voltage vs. Temperature BANDGAP VOLTAGE vs. Temperature 1,2 1,18 1,16 1.8 V 3V Bandgap Voltage (V) 1,14 5V 1,12 1,1 1,08 1,06 1,04 1,02 1 -40 -20 0 20 40 60 80 100 120 Temperature 26 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 2.8 Internal Oscillator Speed Figure 2-34. Watchdog Oscillator Frequency vs. VCC WATCHDOG OSCILLATOR FREQUENCY vs. VCC 0,128 0,126 0,124 -40 °C FRC (MHz) 0,122 25 °C 0,12 0,118 0,116 0,114 85 °C 0,112 105 °C 0,11 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-35. Watchdog Oscillator Frequency vs. Temperature WATCHDOG OSCILLATOR FREQUENCY vs. TEMPERATURE 0,12 0,118 0,116 FRC (MHz) 0,114 0,112 0,11 1.8 V 2.7 V 0,108 3.3 V 4.0 V 5.5 V 0,106 0,104 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 Temperature 27 2586N–Appendix A–AVR–08/11 Figure 2-36. Calibrated 8 MHz RC Oscillator Frequency vs. VCC CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. VCC 8300000 8200000 105 °C 85 °C 8100000 FRC (Hz) 8000000 25 °C 7900000 7800000 -40 °C 7700000 7600000 7500000 7400000 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-37. Calibrated 8 MHz RC Oscillator Frequency vs. Temperature CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE 8300000 8200000 5.0 V 3.0 V 8100000 FRC (Hz) 8000000 1.8 V 7900000 7800000 7700000 7600000 7500000 7400000 -60 -40 -20 0 20 40 60 80 100 120 Temperature 28 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-38. Calibrated 8 MHz RC Oscillator Frequency vs. OSCCAL Value CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE 18 105 °C 85 °C 25 °C -40 °C 16 14 FRC (MHz) 12 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) 2.9 Current Consumption of Peripheral Units Figure 2-39. Brownout Detector Current vs. VCC BROWNOUT DETECTOR CURRENT vs. VCC BOD level = 1.8V 30 105 °C 85 °C 25 25 °C -40 °C ICC (uA) 20 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 29 2586N–Appendix A–AVR–08/11 Figure 2-40. ADC Current vs. VCC (AREF = AVCC) ADC CURRENT vs. VCC AREF = AVCC 0,25 105 °C 85 °C 0,2 25 °C -40 °C ICC (mA) 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4,5 5 5,5 VCC (V) Figure 2-41. Analog Comparator Current vs. VCC ANALOG COMPARATOR CURRENT vs. VCC 0,07 0,06 ICC (mA) 0,05 105 °C 85 °C 0,04 25 °C -40 °C 0,03 0,02 0,01 0 1,5 2 2,5 3 3,5 4 VCC (V) 30 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 Figure 2-42. Programming Current vs. VCC PROGRAMMING CURRENT vs. Vcc Ext Clk 10 -40 °C 9 8 7 25 °C ICC (mA) 6 5 4 85 °C 105 °C 3 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 2.10 Current Consumption in Reset and Reset Pulsewidth Figure 2-43. Minimum Reset Pulse Width vs. VCC MINIMUM RESET PULSE WIDTH vs. VCC 2500 Pulsewidth (ns) 2000 1500 1000 105 °C 85 °C 25 °C -40 °C 500 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) 31 2586N–Appendix A–AVR–08/11 3. Ordering Information Speed (MHz) 10 20 Notes: Ordering Code(1) Package(2) 1.8 - 5.5V ATtiny25V-10SN ATtiny25V-10SNR ATtiny25V-10SSN ATtiny25V-10SSNR 8S2 8S2 S8S1 S8S1 Industrial (-40°C to +105°C) 2.7 - 5.5V ATtiny25-20SN ATtiny25-20SNR ATtiny25-20SSN ATtiny25-20SSNR 8S2 8S2 S8S1 S8S1 Industrial (-40°C to +105°C) Power Supply Operational Range 1. Code indicators: – N: matte tin – R: tape & reel 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). Package Type 8S2 8-lead, 0.200" Wide, Plastic Gull-Wing Small Outline (EIAJ SOIC) S8S1 8-lead, 0.150" Wide, Plastic Gull-Wing Small Outline (JEDEC SOIC) 32 ATtiny25 2586N–Appendix A–AVR–08/11 ATtiny25 4. Revision History Revision No. History 2586A–Appendix A–AVR–06/10 Initial revision 2586B–Appendix A–AVR–07/10 Added Ordering Codes -SN and -SNR (package 8S2) 2586N–Appendix A–AVR–08/11 Removed “Preliminary” status, updated contact information 33 2586N–Appendix A–AVR–08/11 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (+81)(3) 3523-3551 Fax: (+81)(3) 3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2011 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 2586N–Appendix A–AVR–08/11