Features • Integer Unit Based on SPARC V7 High-performance RISC Architecture • Optimized Integrated 32/64-bit Floating-point Unit • On-chip Peripherals • • • • • • • • • • • – EDAC and Parity Generator and Checker – Memory Interface Chip Select Generator Waitstate Generation Memory Protection – DMA Arbiter – Timers General Purpose Timer (GPT) Real-time Clock Timer (RTCT) Watchdog Timer (WDT) – Interrupt Controller with 5 External Inputs – General Purpose Interface (GPI) – Dual UART Speed Optimized Code RAM Interface 8- or 40-bit boot-PROM (Flash) Interface IEEE 1149.1 Test Access Port (TAP) for Debugging and Test Purposes Fully Static Design Performance: 20 MIPs/5 MFlops (Double Precision) at SYSCLK = 25 MHz Core Consumption: 1.0W Typ. at 20 MIPs/0.7W typ. at 10 MIPs Operating Range: 4.5V to 5.5V(1) -55°C to +125°C Tested up to Total Dose of 300 KRADs (Si) according to MIL STD 883 Method 1019 SEU Event Rate Better than 3 E-8 Error/Component/Day (Worst Case) No Single Event Latch-up below an LET Threshold of 80 MeV/mg/cm 2 Quality Grades: ESCC with 9512/003 and QML-Q or V with 5962-00540 Package: 256 MQFPF; Bare Die Note: Rad-Hard 32-bit SPARC Embedded Processor TSC695F 1. For 3.3V capability see the TSC695FL datasheet on the Atmel site. Description The TSC695F (ERC32 Single-Chip) is a highly integrated, high-performance 32-bit RISC embedded processor implementing the SPARC architecture V7 specification. It has been developed with the support of the ESA (European Space Agency), and offers a full development environment for embedded space applications. The processor is manufactured using the Atmel 0.5 µm radiation tolerant (≥ 300 KRADs (Si)) CMOS enhanced process (RTP). It has been specially designed for space, as it has on-chip concurrent transient and permanent error detection. The TSC695F includes an on-chip Integer Unit (IU), a Floating Point Unit (FPU), a Memory Controller and a DMA arbiter. For real-time applications, the TSC695F offers a high security watchdog, two timers, an interrupt controller, parallel and serial interfaces. Fault tolerance is supported using parity on internal/external buses and an EDAC on the external data bus. The design is highly testable with the support of an On-Chip Debugger (OCD), and a boundary scan through JTAG interface. Rev. 4118J–AERO–08/04 Block Diagram Figure 1. TSC695F Block Diagram 32-bit Integer Unit TAP 32/64-bit Floating-Point Unit Parity Gen./Chk. Clock & Parity Reset Managt Gen./Chk. Error Managt General Purpose Timer Real Time Clock Timer General Purpose Interface UART B UART A GPI bits RxD, TxD Pin Descriptions Watch Dog Interrupt Controller DMA Arbiter DMA Ctrl Access Controller Mem Ctrl Wait State Controller Ready/Busy Address Interface Add.+Size+ASI EDAC Data+Check bits Parity Gen./Check. Parities Interrupts For pin assignment, refer to package section. Table 1. Pin Descriptions Signal Type Active Description RA[31:0] I/O, RAPAR I/O RASI[3:0] I/O 4-bit registered address space identifier - RSIZE[1:0] I/O 2-bit registered bus transaction size - RASPAR I/O High Registered ASI and SIZE parity - CPAR I/O High Control bus parity - D[31:0] I/O 32-bit data bus - High 32-bit registered address bus Output buffer: 400 pF Registered address bus parity - CB[6:0] I/O DPAR I/O High 7-bit check-bit bus - Data bus parity - RLDSTO I/O High Registered atomic load-store - ALE O Low Address latch enable - DXFER I/O High Data transfer - LOCK I/O High Bus lock - RD I/O High Read access - WE I/O Low Write enable - WRT I/O High Advanced write MHOLD+FHOLD +BHOLD+FCCV MHOLD O Low Memory bus hold MDS O Low Memory data strobe - MEXC O Low Memory exception - PROM8 I Low Select 8-bit wide PROM - BA[1:0] O Latched address used for 8-bit wide boot PROM - ROMCS O Low PROM chip select ROMWRT I Low ROM write enable MEMCS[9:0] O Low Memory chip select Output buffer: 400 pF MEMWR O Low Memory write strobe Output buffer: 400 pF 2 - TSC695F 4118J–AERO–08/04 TSC695F Table 1. Pin Descriptions (Continued) Signal Type Active Description OE O Low Memory output enable BUFFEN O Low Data buffer enable Output buffer: 400 pF - DDIR O High Data buffer direction - DDIR O Low Data buffer direction - IOSEL[3:0] O Low I/O chip select - IOWR O Low I/O and exchange memory write strobe - EXMCS O Low Exchange memory chip select - BUSRDY I Low Bus ready - BUSERR I Low Bus error - DMAREQ I Low DMA request - DMAGNT O Low DMA grant - DMAAS I High DMA address strobe - DRDY O Low Data ready during DMA access - IUERR O Low IU error CPUHALT O Low Processor (IU & FPU) halt and freeze - SYSERR O Low System error - SYSHALT I Low System halt - SYSAV O High System availability - NOPAR I Low No parity - INULL O High Integer unit nullify cycle INST O High Instruction fetch FPU instruction flush FLUSH O High DIA O High Delay instruction annulled RTC O High Real Time Clock Counter output Used to check the execute stage of IU instruction pipeline - RxA/RxB I Receive data UART ’A’ and ’B’ TxA/TxB O Transmit data UART ’A’ and ’B’ GPI[7:0] I/O GPI input/output GPIINT O EXTINT[4:0] I EXTINTACK O High External interrupt acknowledge - IWDE I High Internal watch dog enable - EWDINT I High External watch dog input interrupt WDCLK I Watch dog clock - CLK2 I Double frequency clock - SYSCLK O System clock - RESET O Low Output reset SYSRESET I Low System input reset Input trigger Factory test mode Functional mode=00 High Software debug mode - Test (JTAG) clock - Test (JTAG) reset pull-up ≈ 37 kΩ High GPI interrupt External interrupt Input trigger Input trigger Input trigger Input trigger - TMODE[1:0] I DEBUG I TCK I TRST I TMS I Test (JTAG) mode select pull-up ≈ 37 kΩ TDI I Test (JTAG) data input pull-up ≈ 37 kΩ TDO O Low Test (JTAG) data output - VCCI/VSSI Main internal power - VCCO/VSSO Output driver power - Note: If not specified, the output buffer type is 150 pF, the input buffer type is TTL. 3 4118J–AERO–08/04 System Architecture The TSC695F is to be used as an embedded processor requiring only memory and application specific peripherals to be added to form a complete on-board computer. All other system support functions are provided by the core. Figure 2. System Architecture Based on TSC695F DMA Unit Boot PROM Ax[31:0] Xtd PROM Master Xchg Mem Glue Logic Local Memory Xtd RAM I/O 0 to I/O 3 DMAGNT DMAREQ DMAAS DPAR (BUFFEN, DDIR) CB[6:0] Xtd I/O (ROMCS, EXMCS, IOSEL[3:0], MEMWR, IOWR, OE, BUSRDY,...) Xtd general RA[31:0] MEMCtrl Memory Interface FPU RAMCtrl DMA A[31:0] IU DMA Peripherals RAM Memory D[31:0] SYSCLK ALE (MEMCS[9:0], MEMWR, OE) (0 WS) User Application TSC695F 4 TSC695F 4118J–AERO–08/04 TSC695F Product Description Integer Unit The Integer Unit (IU) is designed for highly dependable space and military applications, and includes support for error detection. The RISC architecture makes the creation of a processor that can execute instructions at a rate approaching one instruction per processor clock possible. To achieve that rate of execution, the IU employs a four-stage instruction pipeline that permits parallel execution of multiple instructions. • Fetch - The processor outputs the instruction address to fetch the instruction. • Decode - The instruction is placed in the instruction register and is decoded. The processor reads the operands from the register file and computes the next instruction address. • Execute - The processor executes the instruction and saves the results in temporary registers. Pending traps are prioritized and internal traps are taken during this stage. • Write - If no trap is taken, the processor writes the result to the destination register. All four stages operate in parallel, working on up to four different instructions at a time. A basic ‘single-cycle’ instruction enters the pipeline and completes infour cycles. By the time it reaches the write stage, three more instructions have entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle instruction exits the pipeline and a single-cycle instruction enters the pipeline on every cycle. Of course, a ’single-cycle’ instruction actually takes four cycles to complete, but they are called single cycle because with this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay. Floating-point Unit The FLoating Point Unit (FPU) is designed to provide execution of single and doubleprecision floating-point instructions concurrently with execution of integer instructions by the IU. The FPU is compliant to the ANSI/IEEE-754 (1985) floating-point standard. The FPU is designed for highly dependable space and military applications, and includes support for concurrent error detection and testability. The FPU uses a four stage instruction pipeline consisting of fetch, decode, execute and write stages (F, D, E and W). The fetch unit captures instructions and their addresses from the data and address buses. The decode unit contains logic to decode the floatingpoint instruction opcodes. The execution unit handles all instruction execution. The execution unit includes a floating-point queue (FP queue), which contains stored floatingpoint operate (FPop) instructions under execution and their addresses. The execution unit controls the load unit, the store unit, and the datapath unit. The FPU depends upon the IU to access all addresses and control signals for memory access. Floating-point loads and stores are executed in conjunction with the IU, which provides addresses and control signals while the FPU supplies or stores the data. Instruction fetch for integer and floating-point instructions is provided by the IU. The FPU provides three types of registers: f registers, FSR, and the FP queue. The FSR is a 32-bit status and control register. It keeps track of rounding modes, floating-point trap types, queue status, condition codes, and various IEEE exception information. The floating-point queue contains the floating-point instruction currently under execution, along with its corresponding address. 5 4118J–AERO–08/04 Instruction Set TSC695F instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer, read/write control register, floating-point, and miscellaneous. Please refer to SPARC V7 Instruction-set Manual. Note: The execution of IFLUSH will cause an illegal instruction trap. On-chip Peripherals Memory Interface The TSC695F is designed to allow easy interfacing to internal/external memory resources. Table 2. Memory Mapping Memory Contents Boot PROM Extended PROM Start Address 0x 0000 0000 0x 0100 0000 Size (bytes) 128K → 16M Max: 15M Data Size and Parity Options 8-bit mode No parity/-No EDAC/-Only byte write 40-bit mode Parity + EDAC mandatory/-Only word write 8-bit mode No parity/-No EDAC/-Only byte write 40-bit mode Parity + EDAC mandatory/-Only word write Exchange Memory 0x 01F0 0000 4k → 512k Parity + EDAC option/-Only word write System Registers 0x 01F8 0000 512K (124 used) Parity/-Only word read/write access RAM (8 blocks) 0x 0200 0000 8*32K → 8*4M Parity + EDAC option/-All data sizes allowed Extended RAM 0x 0400 0000 Max: 192M I/O Area 0 0x 1000 0000 0 → 16M I/O Area 1 0x 1100 0000 0 → 16M I/O Area 2 0x 1200 0000 0 → 16M I/O Area 3 0x 1300 0000 0 → 16M Extended I/O Area 0x 1400 0000 Max: 1728M Extended General 0x 8000 0000 Max: 2G System Registers Parity option/-All data sizes allowed No parity/-All data sizes allowed The system registers are only writable by IU in the supervisor mode or by DMA during halt mode. Table 3. System Registers Address Map System Register Name 6 Address System Control Register SYSCTR 0x 01F8 0000 Software Reset SWRST 0x 01F8 0004 Power Down PDOWN 0x 01F8 0008 System Fault Status Register SYSFSR 0x 01F8 00A0 Failing Address Register FAILAR 0x 01F8 00A4 Error & Reset Status Register ERRRSR 0x 01F8 00B0 Test Control Register TESCTR 0x 01F8 00D0 TSC695F 4118J–AERO–08/04 TSC695F Table 3. System Registers Address Map (Continued) System Register Name Wait-state and Time-out Generator Address Memory Configuration Register MCNFR 0x 01F8 0010 I/O Configuration Register IOCNFR 0x 01F8 0014 Waitstate Configuration Register WSCNFR 0x 01F8 0018 Access Protection Segment 1 Base Register APS1BR 0x 01F8 0020 Access Protection Segment 1 End Register APS1ER 0x 01F8 0024 Access Protection Segment 2 Base Register APS2BR 0x 01F8 0028 Access Protection Segment 2 End Register APS2ER 0x 01F8 002C Interrupt Shape Register INTSHR 0x 01F8 0044 Interrupt Pending Register INTPDR 0x 01F8 0048 Interrupt Mask Register INTMKR 0x 01F8 004C Interrupt Clear Register INTCLR 0x 01F8 0050 Interrupt Force Register INTFCR 0x 01F8 0054 Watchdog Timer Register WDOGTR 0x 01F8 0060 Watchdog Timer Trap Door Set WDOGST 0x 01F8 0064 Real Time Clock Timer <Counter> Register RTCCR 0x 01F8 0080 Real Time Clock Timer <Scaler> Register RTCSR 0x 01F8 0084 General Purpose Timer <Counter> Register GPTCR 0x 01F8 0088 General Purpose Timer <Scaler> Register GPTSR 0x 01F8 008C Timers Control Register TIMCTR 0x 01F8 0098 General Purpose Interface Configuration Register GPICNFR 0x 01F8 00A8 General Purpose Interface Data Register GPIDATR 0x 01F8 00AC UART ’A’ Rx & Tx Register UARTAR 0x 01F8 00E0 UART ’B’ Rx & Tx Register UARTBR 0x 01F8 00E4 UART Status Register UARTSR 0x 01F8 00E8 It is possible to control the wait-state generation by programming a Wait-state Configuration Register. The maximum programmable number of wait-states is applied by default at reset. It is possible to program the number of wait-states for the following combinations: – RAM read and write – PROM read and write (i.e. EEPROM or Flash write) – Exchange Memory read/write – Four individual I/O peripherals read/write A bus time-out function of 256 system clock cycles is provided for the bus ready controlled memory areas, i.e., the Extended PROM, Exchange Memory, Extended RAM, 7 4118J–AERO–08/04 Extended I/O and the Extended General areas. EDAC The TSC695F includes a 32-bit EDAC (Error Detection And Correction). Seven bits (CB[6:0]) are used as check bits over the data bus. The Data Bus Parity signal (DPAR) is used to check and generate the odd parity over the 32-bit data bus. This means that altogether 40 bits are used when the EDAC is enabled. The TSC695F EDAC uses a 7-bit Hamming code which detects any double bit error on the 40-bit bus as a non-correctable error. In addition, the EDAC detects all bits stuck-atone and stuck-at-zero failure for any nibble in the data word as a non-correctable error. Stuck-at-one and stuck-at-zero for all 32 bits of the data word is also detected as a noncorrectable error. Memory and I/O Parity The TSC695F handles parity towards memory and I/O in a special way. The processor can be programmed to use no parity, only parity or parity and EDAC protection towards memory and to use parity or no towards I/O. The signal used for the parity bit is DPAR. Memory Redundancy Programming the Memory Configuration Register, the TSC695F provides chip selects for two redundant memory banks for replacement of faulty banks. Memory Access Protection • Unimplemented Areas - Access to all unimplemented memory areas are handled by the TSC695F and detected as illegal. • RAM Write Access Protection - The TSC695F can be programmed to detect and mask write accesses in any part of the RAM. The protection scheme is enabled only for data area, not for the instruction area. The programmable write access protection is based on two segments. • Boot PROM Write Protection - The TSC695F supports a qualified PROM write for an 8-bit wide PROM and/or for a 40-bit wide PROM. DMA DMA Interface The TSC695F supports Direct Memory Access (DMA). The DMA unit requests access to the processor bus by asserting the DMA request signal (DMAREQ). When the DMA unit receives the DMAGNT signal in response, the processor bus is granted. In case the processor is in the power-down mode the processor is permanent tri-stated, and a DMAREQ will directly give a DMAGNT. The TSC695F includes a DMA session time-out function. Bus Arbiter The TSC695F always has the lowest priority on the system bus. Traps A trap is a vectored transfer of control to the supervisor through a special trap table that contains the first four instructions of each trap handler. The base address of the table is established by supervisor and the displacement, within the table, is determined by the trap type. Two categories of traps can appear. 8 TSC695F 4118J–AERO–08/04 TSC695F Synchronous Traps Table 4. Synchronous Traps Trap Priority Reset 1 Trap Type (tt) Comments – Sources: SYSRESET* pin software reset watchdog reset IU or System error reset 2.1 64h Severe error requiring a re-boot TSC695F enters (if not masked) in halt or reset mode Non-restartable, precise error 2.2 62h Error not removable, PC & nPC OK TSC695F enters (if not masked) in halt or reset mode Register file error 2.3 65h Special case of non-restartable, precise error. TSC695F enters (if not masked) in halt or reset mode Restartable, late error 2.4 63h Retrying instruction but PC & nPC have to be re-adjusted TSC695F enters (if not masked) in halt or reset mode 2.5 61h Retrying instruction TSC695F enters (if not masked) in halt or reset mode 3 01h Parity error on control bus Parity error on data bus Parity error on address bus Access to protected or unimplemented area Uncorrectable error in memory Bus time out Bus error Illegal Instruction 4 02h – Privileged instruction 5 03h – FPU disabled 6 04h – 05h During SAVE instruction or trap taken 7 06h During RESTORE instruction or RETT instruction 8 07h – Hardware Error Non-restartable, imprecise error Restartable, precise error 2 Instruction access (Error on instruction fetch) Overflow Window Underflow FPU exception Memory address not aligned Non-restartable error 9.1 Severe error, cannot restart the instruction Data bus error 9.2 Parity error on FPU data bus Restartable error 9.3 Can be removed restarting the instruction Sequence error 9.4 – Unimplemented FPop 9.5 – 9.6 Invalid operation Division by zero Overflow Underflow Inexact IEEE exceptions: 9 08h 9 4118J–AERO–08/04 Table 4. Synchronous Traps (Continued) Trap Priority Trap Type (tt) Comments Data access exception (Error on data load) 10 09h Idem “instruction access” System register access violation Tag overflow 11 0Ah TADDccTV and TSUBccTV instructions Trap instructions 12 80h to FFh Trap on integer condition codes (Ticc) Table 5. Interrupts or Asynchronous Traps Trap Priority Trap Type (tt) Comments Watchdog time-out 13 1Fh Internal or external (EWDINT pin) External INT 4 14 1Eh EXTINTAK on only one of EXTINT[4:0] Real time clock timer 15 1Dh – General purpose timer 16 1Ch – External INT 3 17 1Bh EXTINTAK on only one of EXTINT[4:0] External INT 2 18 1Ah EXTINTAK on only one of EXTINT[4:0] DMA time-out 19 19h – DMA access error 20 18h – UART Error 21 17h – Correctable error in memory 22 16h Data read OK but source not updated – UART B Data ready Transmitter ready 23 15h UART A Data ready Transmitter ready 24 14h External INT 1 25 13h EXTINTAK on only one of EXTINT[4:0] External INT 0 26 12h EXTINTAK on only one of EXTINT[4:0] 11h Logical OR of: IU hardware error masked IU error mode masked System hardware error masked Masked hardware errors – 27 It is possible to mask each individual interrupt (except Watchdog time-out). The interrupts in the Interrupt Pending Register are cleared automatically when the interrupt is acknowledged. By programming the Interrupt Shape Register, it is possible to define the external interrupts to either be active low or active high and to define the external interrupts to either be edge or level sensitive. 10 TSC695F 4118J–AERO–08/04 TSC695F Timers In software debug mode the timers are controlled by a system register bit and the external pin DEBUG. General Purpose Timer The General Purpose Timer (GPT) provides, in addition to a generalized counter function, a mechanism for setting the step size in which actual time counts are performed. GPT is clocked by the internal system clock. They are possible to program to be either of single-shot type or periodical type and in both cases generate an interrupt when the delay time has elapsed. The current value of the scaler and counter of the GPT can be read. Real Time Clock Timer The only functional differences between the two timers are that the Real Time Clock Timer (RTCT) has an 8-bit scaler (16-bit scaler for GPT) and that the RTCT interrupt has higher priority than the GPT interrupt. RTCT information is available on RTC output pin. Watchdog Timer Setting the external pin IWDE to VCC enables the internal watchdog timer. Otherwise the watchdog function must be externally provided. The watchdog is supplied from a separate external input (WDCLK). After reset, the timer is enabled and starts running with the maximum range. If the timer is not refreshed (reprogrammed) before the counter reaches zero value, an interrupt is sent. Simultaneo usly, the timer starts counting a reset time -out period. If the timer is not acknowledged before the reset time-out period elapses, a reset is applied to TSC695F. UARTs Two full duplex asynchronous receiver transmitters (UART) are included. In software debug mode the UART’s are controlled by system register bits. The data format of the UART’s is eight bits. It is possible to choose between even or odd parity, or no parity, and between one and two stop bits. The UART’s provide double buffering, i.e. each UART consists of a transmitter holding register, a receiver holding register, a transmitter shift register, and a receiver shift register. Each of these registers are 8-bit wide. For each UART a RX and TX Register is provided. The UART’s generate an interrupt each time a byte has been received or a byte has been sent. There is another interrupt to indicate errors. The baud rate of both the UART’s is programmable. The clock is derived either from the system clock or can use the watchdog clock. General Purpose Interface The General Purpose Interface (GPI) is an 8-bit parallel I/O port. Each pin can be configured as an input or an output. A falling or rising edge detection is made on each selected GPI inputs. Every input transition on GPI generates an external positive pulse on GPIINT pin of two SYSCLK width. Execution Modes Reset Mode Reset mode is entered when: – The SYSRES input is asserted – Software reset which is caused by the software writing to a Software Reset Register – Watchdog reset which is caused by a Watchdog counter time-out – Error reset which is caused by a hardware parity error 11 4118J–AERO–08/04 This RESET output has a minimum of 1024 SYSCLK width to allow the usage of Flash memories. The error and Reset Status Register contain the source of the last processor reset. Run Mode In this mode the IU/FPU is executing, while all peripherals are running (if software enabled). System Halt Mode System Halt mode is entered when the SYSHALT input is asserted. In this mode, the IU and FPU are frozen, while the timers (includeing the internal watchdog timer) and UART’s are stopped. Power Down Mode This mode is entered by writing to the Power-down Register. In this mode, the IU and FPU are frozen. The TSC695F leaves the power-down mode if an external interrupt is asserted. Error Halt Mode Error Halt mode is entered under the following circumstances: – A internal hardware parity error. – The IU enters error mode. The only way to exit Error Halt Mode is through Cold Reset by asserting SYSRESET. Error Handler The TSC695F has one error output signal (SYSERR) which indicates that an unmasked error has occurred. Any error signalled on the error inputs from the IU and the FPU is latched and reflected in the Error and Reset Status Register. By default, an error leads to a processor halt. Parity Checking The TSC695F includes: – Parity checking and generation (if required) on the external data bus – Parity checking on the external address bus – Parity checking on ASI and SIZE – Parity checking and generation on all system registers – Parity generation and checking on the internal control bus to the IU All external parity checking can be disabled using the NOPAR signal. System Clock The TSC695F uses CLK2 clock input directly and creates a system clock signal by dividing CLK2 by two. It drives SYSCLK pin with a nominal 50% duty cycle for the application. It is highly recommended that only SYSCLK rising edge is used as reference as far as possible. System Availability The SYSAV bit in the Error and Reset Status Register can be used by software to indicate system availability. Test Mode The TSC695F includes a number of software test facilities such as EDAC test, Parity test, Interrupt test, Error test and a simple Test Access Port. These test functions are controlled using the Test Control Register. 12 TSC695F 4118J–AERO–08/04 TSC695F Test and Diagnostic Hardware Functions A variety of TSC695F test and diagnostic hardware functions, including boundary scan, internal scan, clock control and On-chip Debugger, are controlled through an IEEE 1149.1 (JTAG) standard Test Access Port (TAP). Test Access Port The TAP interfaces to the JTAG bus via 5 dedicated pins on the TSC695F chip. These pins are: Instruction Register Debugging • TCK (input): Test Clock • TMS (input): Test Mode Select • TDI (input): Test Data Input • TDO (output): Test Data Output • TRST (input): Test Reset Five standard instructions are supported by the TSC695F TAP. Binary Value Name of Instruction Data Register Scan Chain Accessed 00. 0000 EXTEST Boundary Scan Register Boundary scan chain 00. 0001 SAMPLE/PRELOAD Boundary Scan Register Boundary scan chain 00. 0011 INTEST Boundary Scan Register Boundary scan chain 11. 1111 BYPASS Bypass Register Bypass register 10. 0000 IDCODE Device ID Register ID register scan chain The design is highly testable with the support of an On-Chip Debugger (OCD), an internal and boundary scan through JTAG interface. 13 4118J–AERO–08/04 Electrical Characteristics Absolute Maximum Ratings Note: Stresses at or above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Military Range............................................... -55°C to +125°C Storage Temperature ..................................... -65°C to +150°C Supply Voltage................................................... -0.5V to +7.0V Input Voltage......................................................-0.5V to +7.0V DC Characteristics Table 6. DC Characteristics at VDD 5V ± 10% Symbol Parameter Min Typ Max Unit Test Conditions VIL trigger Input Low Voltage for trigger input – – 0.8 V VCC = 4.5 to 5.5V VIH trigger Input High Voltage for trigger input 3.0 – – V VCC = 4.5 to 5.5V Input Hysteresis for trigger input – 0.9 – V VCC = 4.5 to 5.5V TTL Input Low Voltage for TTL input – – 0.8 V VCC = 4.5 to 5.5V VIH TTL Input High Voltage for TTL input 2.2 – – V VCC = 4.5 to 5.5V VOL400 pF Output Low Voltage for 400 pF buffer – 0.3 0.4 V VCC = 4.5 to 5.5V IOL = 12 mA VOH 400 pF Output High Voltage for 400 pF buffer 2.4 0.3 – V VCC = 4.5 to 5.5V IOH = -16 mA VOL150 pF Output Low Voltage for 150 pF buffer – 0.3 0.4 V VCC = 4.5 to 5.5V IOL = 4 mA VOH 150 pF Output High Voltage for 150 pF buffer 2.4 4.3 – V VCC = 4.5 to 5.5V IOH = -6 mA – – 230 Icc OP Operating Supply Current for core processor – – 210 – – 170 VCC = 5.5V, f = 10 MHz – – 41 VCC = 5.5V, f = 25MHz – – 38 – – 30 ∆VT VIL IccPD 14 Power Down Supply Current for core processor VCC = 5.5V, f = 25 MHz mA mA VCC = 5.5V, f = 20 MHz VCC = 5.5V, f = 20 MHz VCC = 5.5V, f = 10 MHz TSC695F 4118J–AERO–08/04 TSC695F Capacitance Ratings Parameter Description Max CIN Input Capacitance 7 pF COUT Output Capacitance 8 pF CIO Input/Output Capacitance 8 pF AC Characteristics Table 7. AC Characteristics (SYSCLK Freq. = 25 MHz − 5V ±10%) Cload = 50 pF, Vref = 2.5V Parameter Min (ns) Max (ns) t1 20 t2 Comment Reference Edge – CLK2 period – 40 – SYSCLK period – t3 9.75 – CLK2 high and low pulse width – t4 – 6.5 RA(31:0) RAPAR RSIZE RLDSTO output delay SYSCLK+ t5 – 12.5 MEMCS*(9:0) ROMCS* EXMCS* output delay SYSCLK+ t6 – 15 DDIR DDIR* output delay SYSCLK+ t7 – 23.5 MEMWR* IOWR*output delay formula: 13.5 ns + 1/4 t2 SYSCLK- or SYSCLK+ t8 – 20.5 OE* HL output delay formula: 10.5 ns + 1/4 t2 SYSCLK+ t9_1 11.5 – Data setup time during load SYSCLK+ t9_2 9 – Data setup time during load NOPAR = 0 rpa = rec = either 1 or 0 SYSCLK+ t10 5 – Data hold time during load SYSCLK+ t11 – 28 Data output delay SYSCLK- t12 8 – Data output valid to HZ – guaranteed by design SYSCLK+ t13 – 19 CB output delay SYSCLK+ t14 – 13 ALE* output delay SYSCLK- t15 – 21 BUFFEN* HL output delay formula: 11 ns + 1/4 t2 SYSCLK+ t16 – 15 MHOLD* output delay – guaranteed by design SYSCLK+ t17 – 15 MDS* DRDY* output delay SYSCLK+ t20 – 15 MEXC* output delay SYSCLK- t21 10 – RASI(3:0) RSIZE(1:0) RASPAR setup time SYSCLK+ t22 3 – RASI(3:0) RSIZE(1:0) RASPAR hold time SYSCLK+ t23 – 13 BOOT PROM address output delay SYSCLK+ t9 15 4118J–AERO–08/04 Table 7. AC Characteristics (SYSCLK Freq. = 25 MHz − 5V ±10%) Cload = 50 pF, Vref = 2.5V (Continued) 16 Parameter Min (ns) Max (ns) t24 12 t25 Comment Reference Edge – BUSRDY* setup time SYSCLK+ 0 – BUSRDY* hold time SYSCLK+ t27 – 15 IOSEL output delay SYSCLK+ HL SYSCLK- LH t28 12 20 DMAAS setup time formula of max: 1/2 t2 SYSCLK+ t29 0 20 DMAAS hold time formula of max: 1/2 t2 SYSCLK- t30 12 – DMAREQ* setup time SYSCLK+ t31 – 15 DMAGNT* output delay SYSCLK+ t32 10 – RA(31:0) RAPAR CPAR setup time SYSCLK+ t33 3 – RA(31:0) RAPAR CPAR hold time SYSCLK+ t36 100 – TCK period - t37 10 – TMS setup time TCK+ t38 4 – TMS hold time TCK+ t39 10 – TDI setup time TCK+ t40 10 – TDI hold time TCK+ t41 – 20 TDO output delay TCK- t46 – 22 INULL output delay SYSCLK+ t48 – 22 RESET* CPUHALT* output delay SYSCLK+ t49 – 20 SYSERR* SYSAV output delay SYSCLK+ t50 – 20 IUERR* output delay SYSCLK+ t52 12 – EXTINT(4:0) setup time SYSCLK- t53 0 – EXTINT(4:0) hold time SYSCLK+ t54 – 15 EXTINTACK output delay SYSCLK+ t56 – 8.5 OE* LH output delay (no DMA mode) SYSCLK+ t57 – 9 BUFFEN* LH output delay SYSCLK+ t60 – 22 INST output delay SYSCLK+ t61 20 – Data output delay to low-Z – guaranteed by design formula: 10 ns + 1/4 t2 SYSCLK+ t80 12 t81 0 64 BUSERR* setup time SYSCLK+ BUSERR* hold time formula: 24 ns + t2 SYSCLK+ TSC695F 4118J–AERO–08/04 Figure 3. 150 pF Buffer Response (Data from simulation) 17 TSC695F 4118J–AERO–08/04 Figure 4. 400 pF Buffer Response (Data from simulation) 18 TSC695F 4118J–AERO–08/04 TSC695F Figure 5. OE*/400 pF Buffer Response (Data from simulation) 19 4118J–AERO–08/04 20 MDS* MHOLD* t17 FC1 CB [6:0] t60 FP1 DPAR INST FD1 t14 FA1 n ws D [31:0] OE* BUFFEN* MEMWR* DDIR ROMCS* MEMCS* [1] MEMCS* [0] ALE RA [31:0] SYSCLK CLK2 1 (RAM fetch) t14 t1 t8 t17 t4_1 t60 LP1 t17 t16 LC1 t9 t9 LD1 t9 LA1 n ws 2 (RAM load) t10 t10 t10 t17 t16 t56 t4_1 t2 t60 FA2 t17 FC2 FP2 FD2 n ws 3 (RAM fetch) t3 t11 t61 t7 SA1 t17 previous stored checkbyte t61 previous stored parity t11 t61 previous stored data t56 t6 t5 t5 t4_1 t13 m ws 4 (RAM store) SC1 SP1 SD1 t7 t3 t60 t12 t12 t12 t8 t6 t5 t5 t4_1 t17 FC3 FP3 FD3 FA3 n ws 5 (RAM fetch) Timing Diagrams Figure 6. RAM Fetch, RAM Load and RAM Store Sequence - n Waitstates for Read, m Waitstates for Write TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 FC1 CB [6:0] t4_2 FP1 DPAR LOCK RLDSTO INULL MDS* MHOLD* INST FD1 FA1 D [31:0] OE* BUFFEN* MEMWR* DDIR MEMCS* [1] MEMCS* [0] ALE* RA [31:0] SYSCLK 1 (RAM fetch) t8 t4_1 t60 t5 t5 t4_1 t56 t10 t10 t4_2 checkbyte from RAM t9 parity from RAM t9 byte from RAM t9 t10 t6 t2 t46 t16 t10 t61 checkbyte from RAM parity from RAM t10 t61 t9 t9 t56 t10 t61 t6 word from RAM t9 held to update the full word t8 t6 ALSA 2 (RAM atomic load store) t11 t11 t7 t16 checkbyte to RAM t13 parity to RAM word to RAM t7 t4_1 t46 t60 t12 t12 t12 t8 t6 t5 t5 t4_1 FC5 FP5 FD5 FA5 3 (RAM fetch) TSC695F Figure 7. RAM “Atomic-load-store” byte Sequence - 0 Waitstate 21 22 LOCK INULL MDS* MHOLD* INST CB [6:0] DPAR D [31:0] OE* BUFFEN* MEMWR* DDIR MEMCS* [1] MEMCS* [0] ALE* RA [31:0] SYSCLK FA1 1 (RAM fetch) FC1 FP1 FD1 t4_2 t60 t8 t5 t5 t4_1 LA1 t2 t9 t9 t9 LC1 LP1 LD1 t56 t4_1 2 (RAM double load) LA2 LC2 t4_2 t10 LP2 t10 LD2 t10 t8 t5 t5 t4_1 FA2 3 (RAM fetch) FC2 FP2 FD2 t56 t61 t61 t61 t6 t5 t5 t4_1 t11 t11 t7 t46 t13 SA1 t7 t16 t46 SC1 SP1 SD1 t4_1 4 (RAM double store) t11 t11 t7 t13 SA2 t16 SC2 SP2 SD2 t7 t60 t12 t12 t12 t8 t6 t5 t5 t4_1 FA3 FC3 FP3 FD3 5 (RAM fetch) Figure 8. RAM Load-double and RAM Store-double Sequence - 0 Waitstate TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 FP1 DPAR INULL INST MDS* MEXC* MHOLD* FC1 CB[6-0] t9 FD1 FA1 D[31-0] BUFFEN* OE* IOWR* MEMWR* DDIR MEMCS*[1] MEMCS*[0] RA[31-0] ALE* SYSCLK 1 (RAM fetch) t8 t60 t10 t5 t5 t4_1 LA1 t9 LC1 t10 LD1 t5 t5 t56 t4_1 t16 t60 t14 t17 FP2 FC2 FD2 t56 internal error correction 2 (RAM load correctable data) LP1 1-bit error on 40-bit data load t8 t17 t16 made inside data correction FA2 t14 t2 3 (RAM fetch) FP2 FC2 FD2 t4_1 FA3 4 (RAM fetch) FP3 FC3 FD3 TSC695F Figure 9. RAM Load with Correctable Error - 0 Waitstate 23 24 FP1 DPAR INULL INST MDS* MEXC* MHOLD* FC1 CB[6-0] t8 t9 LC1 LD1 t10 t5 t5 t56 t4_1 t60 t16 FP2 FC2 FD2 t14 internal error detection 2 (RAM load) LP1 2-bit error on 40-bit data LD1 load t4_1 t60 t5 t5 FD1 FA1 D[31-0] BUFFEN* OE* IOWR* MEMWR* DDIR MEMCS*[1] MEMCS*[0] RA[31-0] ALE* SYSCLK 1 (RAM fetch) t17 FA2 t20 FP2 FC2 FD2 t14 t8 t17 t16 exception 3 (RAM fetch) t9 t20 FP2 FC2 FD2 t46 t60 t10 t56 t4_1 t2 FA3 4 (null cycle) FP3 FC3 FD3 t46 t60 t4_1 TA1 5 (RAM fetch) TP1 TC1 TA2 TP2 TC2 TD2 6 (RAM fetch) TD1 trap Figure 10. RAM Load with Uncorrectable Error - 0 Waitstate TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 INULL INST MDS* MEXC* MHOLD* D[31-0] OE* BUFFEN* IOWR* MEMWR* DDIR MEMCS*[1] MEMCS*[0] RA[31-0] ALE* SYSCLK t2 FA1 t9 1 (RAM fetch) t60 t10 FD1 t5 t60 t16 t56 t17 no data t5 t20 t17 t8 FA2 3 (RAM fetch) internal error unimplemented address LA1 2 (RAM load) t16 t20 fetch t9 t46 t60 t10 FD2 t8 t4_1 FA3 4 (null cycle) FD3 t46 t60 t56 t4_1 TA1 5 (RAM fetch) TD1 trap TA2 TD2 6 (RAM fetch) TSC695F Figure 11. RAM Load with Unimplemented Area Access - 0 Waitstate 25 26 MDS* MHOLD* INST D[31-0] OE* BUFFEN* IOWR* MEMWR* DDIR BUSRDY* IOSEL*[0] MEMCS*[0] RA[31-0] ALE* SYSCLK t4_1 FA1 t9 1 (RAM fetch) FD1 t60 t10 t61 t56 t15 t6 t5 t4_1 start of cycle t11 t7 t16 previous stored data t27 t2 (n-1) ws t24 SA1 rdy waiting 2 (i/o store) t24 SD1 t25 t7 end of cycle t16 t27 t57 t60 t12 t8 t6 t5 t4_1 FA2 FD2 3 (RAM fetch) Figure 12. I/O Store Sequence with BUSRDY* and n Waitstates (Timing for 0 Waitstate = Timing for 1 Waitstates) TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 MDS* MHOLD* INST D[31-0] OE* BUFFEN* IOWR* MEMWR* DDIR BUSRDY* IOSEL*[0] MEMCS*[0] RA[31-0] ALE* SYSCLK t56 FA1 t9 1 (RAM fetch) FD1 t60 t10 t8 t15 t5 t4_1 start of cycle t27 t24 t16 t60 data driven by external buffers (c.f BUFFEN*) t14 t2 (n-1) ws LA1 t24 rdy waiting 2 (i/o load) t25 LD1 t17 t9 t56 t17 t57 t10 end of cycle t27 t14 t5 t8 FA2 t16 t4_1 FD2 3 (RAM fetch) TSC695F Figure 13. I/O Load Sequence with BUSRDY* and n Waitstates (Timing for 0 ws = Timing for 1 ws) 27 28 MDS* MHOLD* INST D[31-0] BUSRDY* OE* BUFFEN* IOWR* MEMWR* DDIR EXMCS* MEMCS*[0] RA[31-0] ALE* SYSCLK FA1 1 (RAM fetch) FD1 t60 t61 t56 t15 t6 t5 t5 t4_1 start of cycle t16 t24 SA1 previous stored data t2 t24 t25 in between 2 (xchgRAM store) rdy waiting t11 t7 t7 n ws t24 SD1 t25 t7 t16 t7 end of cycle t57 t60 t12 t8 t6 t5 t5 t4_1 FA2 FD2 3 (RAM fetch) Figure 14. EXCHANGE RAM Store with BUSDRY* and n Waitstates TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 MDS* MHOLD* INST D[31-0] BUSRDY* OE* BUFFEN* IOWR* MEMWR* DDIR EXMCS* MEMCS*[0] RA[31-0] ALE* SYSCLK FA1 1 (RAM fetch) FD1 t60 t56 t15 t5 t5 t4_1 t14 t2 t16 t60 start of cycle t24 t25 n ws t24 data driven by external buffers (c.f BUFFEN*) t24 LA1 rdy waiting 2 (xchgRAM load) t17 t25 t9 t14 LD1 end of cycle t8 t17 FA2 t16 t57 t10 t5 t5 t4_1 FD2 3 (RAM fetch) TSC695F Figure 15. EXCHANGE RAM Load with BUSDRY* and n Waitstates 29 30 MDS* MHOLD* INST D[7-0] D[31-8] OE* BUFFEN* MEMWR* DDIR MEMCS*[0] ROMCS* BA[0,1] RA[31-0] RSIZE[0,1] ALE* SYSCLK FA1 1 (ROM fetch) t8 t17 t60 t15 t16 t5 t4_1 t4_1 start of cycle t14 t16 t5 0 t23 1 FA2 byte 1 (n-1) ws t23 10 t2 t9 (1 = fetch, FD2-0 t10 0 = load word) t9 FD2-1 t10 2 byte 2 (n-1) ws 2 (8-bit ROM fetch or load word) data driven by external buffers (c.f BUFFEN*) byte 0 (n-1) ws t9 3 t10 FD2-2 t23 (address mod. 4) byte 3 (n-1) ws t10 t9 FD2-3 t4 0 t17 t56 t57 t23 end of cycle t8 t17 t60 t15 FA2 t16 t5 t4_1 t4_1 3 (ROM fetch) Figure 16. 8-bit BOOT PROM Fetch (or Load Word) - n Waitstates TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 MDS* MHOLD* INST D[31-0] OE* BUFFEN* IOWR* MEMWR* DDIR ROMCS* MEMCS*[0] RSIZE[0,1] BA[0,1] RA[31-0] ALE* SYSCLK 10 t9 FA1 start of cycle t60 t56 t15 t61 t6 t5 t4_1 t4_1 FD1 1 (RAM fetch) t16 t5 SA1 t11 t7 00 00 (n-1) ws 2 (8-bit ROM write) t16 byte D[7:0] SD1 t7 addr.=mod. 4 t60 t12 t8 t57 t6 t5 t5 t4_1 t4_1 t2 10 t9 FA2 3 (RAM fetch) t60 FD2 t56 t15 t61 t6 t5 t4_1 t23 t4_1 start of cycle t16 t5 SA2 t11 t7 00 01 t16 byte D[7:0] SD2 t7 addr.=mod. 4 +1 (n-1) ws 4 (8-bit ROM write) t12 t57 t6 t5 t5 t4_1 00 10 t23 t4_1 FA3 5 (RAM fetch) TSC695F Figure 17. 8-bit BOOT PROM 2x Store byte - n Waitstate 31 32 t4_1 FZ2 FS1 FZ1 RASI[3-0] RSIZE[1-0] t10 t9 FC1 DPAR CB[7-0] MHOLD* t10 t9 FP1 D[31-0] t5 t16 (pull-up on WE*) t10 t9 FD1 DDIR MEMWR* OE* DRDY* MEMCS*[9-0] WRT RD DMAAS DMAGNT* DMAREQ* t4_1 FS2 FA1 RA[31-0] t30 t4_1 FA2 ALE* SYSCLK t14 t31 t31 t31 t4_1 t4_1 t4_1 1 (RAM fetch) 2 (RAM fetch) (null cycle)lead-in t14 t33 t32 t32 t28 t33 t33 t8 t56 t17 t17 t14 t28 t32 t33 t33 t22 t6 t5 t7 t29 t21 10 (only word access) t32 t33 t7 t17 t30 t4_1 FZ2 t4_1 FS2 t4_1 FA2 FZ3 FS3 FA3 4 (RAM fetch) 5 (RAM fetch) cont' t17 t31 t31 t31 t8 t6 t5 t56 t5 early time for DMAREQ* desassertion D SAn (held to the end of RAM access) t22 t21 D SSn t32 lead-out t10 t10 t11 t12 t9 t9 t10 t9 D LD1 D LD1 FD2 D SDn (from RAM) (from TSC695F) (held to the end of RAM access) t10 t10 t11 t12 t13 t13 t9 t9 D LP1 D LP1 FP2 DSPn (from RAM) Parity generated by TSC695F if dpe =1, (from TSC695F) else, same timing as D[31-0] t10 t10 corrected parity if needed t13 t13 t9 t9 D LC1 FC2 D SCn (from RAM) t16 corrected data if needed t5 t29 t21 10 (only word access) t22 D LA1 (held to the end of RAM access) t22 t21 D LS1 t32 t14 t2 3 (DMA session) (0 cycle min) 1st DMA load (0 ws) (0 cycle min) nth DMA store (0 ws) Figure 18. DMA RAM load with or without Correctable Error and DMA RAM Store - 0 Waitstates TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 EXTINTACK EXTINT[i] INULL D[31:0] ALE* RA[31:0] SYSCLK t52 FD(-1) FA(-1) t53 FD0 FA0 FD1 FA1 Sampled FD2 FA2 Latched FD3 FA3 Prioritized FD4 FA4 Taken t54 TD0 TTA0 t54 TD1 TTA1 TSD0 TSA0 TSA2 TSD1 TSA1 TSC695F Figure 19. Edge Triggered Interrupt Timing 33 34 10 RSIZE[1:0] D[31:0] CPUHALT* SYSAV MHOLD* SYSHALT* FDn-1 09H RASI[3:0] ALE* FAn-1 RA[31:0] SYSCLK FDn 10 09H FAn t16 10 09H t14 FAn+1 t48 t49 t48 t49 t14 t16 FDn+1 10 09H FAn+1 FDn+2 10 09H FAn+2 Figure 20. Halt Timing TSC695F 4118J–AERO–08/04 4118J–AERO–08/04 D[31:0] CPUHALT* SYSAV MHOLD* SYSERR* IUERR* FDn-1 10 RSIZE[1:0] t50 09H RASI[3:0] ALE* FAn-1 RA[31:0] SYSCLK t50 10 09H FAn FDn t49 t16 t14 10 09H FAn+1 t48 t49 TSC695F Figure 21. External Error with Halt Timing 35 36 RESET* INULL ALE* RSIZE[1:0] RASI[3:0] RA[31:0] SYSRESET* SYSCLK FA n t46 t14 t48 FA n+1 t48 t14 t47 0H 4H 8H Figure 22. Reset Timing TSC695F 4118J–AERO–08/04 TSC695F Figure 23. External Error signaling with BUSERR* and BUSRDY* SYSCLK t24 BUSRDY* t80 t81 t80 BUSERR* t20 MEXC* 37 4118J–AERO–08/04 Package Drawings 256-lead MQFP-F Package 38 TSC695F 4118J–AERO–08/04 TSC695F 256-lead MQFP-F Pin Assignments Table 8. Pin Assignments Pin Signal Pin Signal Pin Signal Pin Signal 1 GPIINT 65 D[0] 129 RA[0] 193 DXFER 2 GPI[7] 66 RSIZE[1] 130 VCCO 194 MEXC 3 VCCO 67 RSIZE[0] 131 VSSO 195 VCCO 4 VSSO 68 RASI[3] 132 RAPAR 196 VSSO 5 GPI[6] 69 VCCO 133 RASPAR 197 RESET 6 GPI[5] 70 VSSO 134 DPAR 198 SYSRESET 7 GPI[4] 71 RASI[2] 135 VCCO 199 BA[1] 8 GPI[3] 72 RASI[1] 136 VSSO 200 BA[0] 9 VCCO 73 RASI[0] 137 SYSCLK 201 CB[6] 10 VSSO 74 RA[31] 138 TDO 202 CB[5] 11 GPI[2] 75 RA[30] 139 TRST 203 VCCO 12 GPI[1] 76 VCCO 140 TMS 204 VSSO 13 GPI[0] 77 VSSO 141 TDI 205 CB[4] 14 D[31] 78 RA[29] 142 TCK 206 CB[3] 15 D[30] 79 RA[28] 143 CLK2 207 CB[2] 16 VCCO 80 RA[27] 144 DRDY 208 CB[1] 17 VSSO 81 VCCO 145 DMAAS 209 VCCO 18 D[29] 82 VSSO 146 VCCO 210 VSSO 19 D[28] 83 RA[26] 147 VSSO 211 CB[0] 20 VCCI 84 RA[25] 148 DMAGNT 212 ALE 21 VSSI 85 RA[24] 149 EXMCS 213 VCCI 22 D[27] 86 VCCI 150 VCCI 214 VSSI 23 D[26] 87 VSSI 151 VSSI 215 PROM8 24 VCCO 88 VCCO 152 DMAREQ 216 ROMCS 25 VSSO 89 VSSO 153 BUSERR 217 MEMCS[9] 26 D[25] 90 RA[23] 154 BUSRDY 218 VCCO 27 D[24] 91 RA[22] 155 ROMWRT 219 VSSO 28 D[23] 92 RA[21] 156 NOPAR 220 MEMCS[8] 29 D[22] 93 VCCO 157 SYSHALT 221 MEMCS[7] 30 VCCO 94 VSSO 158 CPUHALT 222 MEMCS[6] 31 VSSO 95 RA[20] 159 VCCO 223 MEMCS[5] 32 D[21] 96 RA[19] 160 VSSO 224 MEMCS[4] 33 D[20] 97 RA[18] 161 SYSERR 225 MEMCS[3] 34 D[19] 98 VCCO 162 SYSAV 226 VCCO 35 D[18] 99 VSSO 163 EXTINT[4] 227 VSSO 39 4118J–AERO–08/04 Table 8. Pin Assignments (Continued) 40 Pin Signal Pin Signal Pin Signal Pin Signal 36 VCCO 100 RA[17] 164 EXTINT[3] 228 MEMCS[2] 37 VSSO 101 RA[16] 165 EXTINT[2] 229 MEMCS[1] 38 D[17] 102 RA[15] 166 EXTINT[1] 230 MEMCS[0] 39 D[16] 103 VCCO 167 EXTINT[0] 231 VCCI 40 VCCI 104 VSSO 168 VCCI 232 VSSI 41 VSSI 105 RA[14] 169 VSSI 233 OE 42 D[15] 106 VCCI 170 EXTINTACK 234 VCCO 43 D[14] 107 VSSI 171 IUERR 235 VSSO 44 VCCO 108 RA[13] 172 VCCO 236 MEMWR 45 VSSO 109 RA[12] 173 VSSO 237 BUFFEN 46 D[13] 110 VCCO 174 CPAR 238 DDIR 47 D[12] 111 VSSO 175 TXA 239 VCCO 48 D[11] 112 RA[11] 176 RXA 240 VSSO 49 D[10] 113 RA[10] 177 RXB 241 DDIR 50 VCCO 114 RA[9] 178 TXB 242 MHOLD 51 VSSO 115 VCCO 179 IOWR 243 MDS 52 D[9] 116 VSSO 180 IOSEL[3] 244 WDCLK 53 D[8] 117 RA[8] 181 VCCO 245 IWDE 54 D[7] 118 RA[7] 182 VSSO 246 EWDINT 55 D[6] 119 RA[6] 183 IOSEL[2] 247 TMODE[1] 56 VCCO 120 VCCO 184 IOSEL[1] 248 TMODE[0] 57 VSSO 121 VSSO 185 IOSEL[0] 249 DEBUG 58 D[5] 122 RA[5] 186 WRT 250 INULL 59 D[4] 123 RA[4] 187 WE 251 DIA 60 D[3] 124 RA[3] 188 VCCO 252 VCCO 61 D[2] 125 VCCO 189 VSSO 253 VSSO 62 VCCO 126 VSSO 190 RD 254 FLUSH 63 VSSO 127 RA[2] 191 RLDSTO 255 INST 64 D[1] 128 RA[1] 192 LOCK 256 RTC TSC695F 4118J–AERO–08/04 TSC695F Ordering Information Table 9. Possible Order Entries Temperature Supply Voltage Range Maximum Speed (MHz) Packaging Quality Flow TSC695F-25MA-E 5V 25°C 25 MQFP-F256 Engineering Samples TSC695F-25MA 5V -55° to +125°C 25 MQFP-F256 Standard Mil. 5962-0054001QXC 5V -55° to +125°C 25 MQFP-F256 QML-Q 5962-0054001VXC 5V -55° to +125°C 25 MQFP-F256 QML-V 5962R0054001VXC 5V -55° to +125°C 25 MQFP-F256 QMLV-RHA 951200301 5V -55° to +125°C 25 MQFP-F256 ESCC B TSC695F-25MB-E 5V 25°C 25 Die Engineering Samples 5962-0054001Q9A 5V -55° to +125°C 25 Die QML-Q 5962-0054001V9A 5V -55° to +125°C 25 Die QML-V Part-Number 41 4118J–AERO–08/04 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 e-mail [email protected] Web Site http://www.atmel.com Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. © Atmel Corporation 2004. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. 4118J–AERO–08/04 /xM