Features • • • • • • • • • • • • • • • • • 300mA/1.8V/2.5V Switching Regulator for Baseband Supply 2.8V/80mA LDO for Baseband Pad Supply Two 130mA/2.8V Low-noise, High PSRR RF LDO Voltage Regulators 130mA/2.7V/2.8V Baseband Low-noise, High PSRR Analog LDO Regulator Ultra Low-power RTC LDO Voltage Regulator Backup Battery Charger Li-Ion or Li-polymer Battery Charger Controller Buzzer and Vibrator Drivers Charging LED Driver Power Management Start-up Controller and Reset Generation SIM Level Shifters and SIM 10mA/1.8V/2.8V LDO Voltage Regulator Ultra-low Sleep Mode Current Consumption (17 µA typ) Over and Under Voltage Protections Over Temperature Protection Low-power Mode and Sleep Mode Straight and Easy Interfacing to any Baseband Controller Small 5x5mm, Forty-nine Ball FBGA Package Description The AT73C202 is a low-cost, ultra low-power, power and battery management IC designed to interface directly with state-of-the-art cellular phones, for example with 2.5G GSM phones. It includes all required power supplies tailored to be fully compatible with the sub-systems of recent mobile phone chipsets, including the RF, analog and digital (DSP, microcontroller, memories) sections. The AT73C202 integrates a step-down DC-DC converter that supplies 300 mA with internal switches and two levels of voltage programming for the baseband core (1.8V and 2.5V). A low-power mode is available in order to minimize standby current consumption during the “quiet” transmission periods. In addition, the AT73C202 includes a lowcost battery charger, using a simple external PNP transistor for Li-Ion or Li-Polymer batteries. Battery operating conditions are maintained within safe limits under hardware control during the start-up procedure (when the phone is turned on or a charger is plugged in). The battery pre-charge is also integrated and self-operated by the AT73C202. On completion the fast charge and end-of-charge procedure is transferred to the baseband software. Power Management for Mobiles (PM) AT73C202 Power and Battery Management Unit for Cellular Phone Preliminary The AT73C202 integrates 7 low-dropout linear regulators specifically designed to supply RF (x2), analog, memories, etc. It also includes a back-up battery charger and an ultra low-power regulator dedicated to the baseband real-time clock (RTC) supply during sleep mode. The hardwired start-up mechanism (power management controller state machine) ensures safe telephone operation during the wake-up and shut-down procedures, and during the multiple real-life operating conditions of a mobile phone (such charger plugin, plug-out, battery plug-in, plug-out, low or dead battery, etc.). The AT73C202 is packaged into a 49 ball (7x7 matrix), 0.65mm pitch, 5mm x 5mm outline FBGA package. 2740B–PMGMT–05/03 1 Functional Diagram Figure 1. AT73C202 Functional Diagram D3 GATE-CHG D2 CHG-IN VBAT CHG Charger Controller C3 C1 F5 E5 D4 FLASH-LED AA-GND Reset Generator BB1 EN DC-DC Converter 1.8V/2.5V 300mA EN I/O PAD LDO 2.8V/130mA ECO-MODE EN-ANA-B UP-ON-OFF C6 EN A5 A3 B2 Analog LDO 2.7V/2.8V/130mA VIN-REG2 A-GND V-BCK BAT-RTC VIN > 2.6V C7 GND-REG1 A-VCC DC-ON D6 V-CORE V-PAD ON-OFF D5 RES-B LX VIN-REG1 B5 D1 CREF VREF EN D7 V-RTC VCC-RTC 1.5V/0.5mA VIN-RF V-RF1 EN-RF1 RF1 LDO 2.8V/130mA EN-RF2 RF2 LDO 2.8V/130mA VIN-VIB EN-VIB E6 C5 G1 E4 F3 2 GND-RF V-VIB VIBRATOR LDO 2.8V/130mA BUZ-OUT BUZ-GND D-VCC SIM-EN SIM-1V8/2V8 SIM-VCC F7 G4 G7 B6 B4 A7 A6 B7 B1 A1 A2 E7 B3 CLK-IN A4 E3 SIM LDO 1.8V/2.8V/10mA RESET-IN DATA-IO G2 F6 BUZ-IN G3 F4 C2 2.4V/2.7V/2mA V-RF2 C4 E1 D-GND BAT-VOLT G6 G5 LED-OUT SIM-RST SIM Level Shifter SIM-CLK SIM-IO F1 F2 E2 AT73C202 2740B–PMGMT–05/03 AT73C202 Pin Description Table 1. AT73C202 Pin Description Signal Ball Type Description Charger Block CHG-IN D2 Power Supply AC/DC Adapter Input GATE-CHG D3 O External PNP control output CHG C3 I Charger command from Base Band chip DC-ON D6 O AC/DC Adapter detector output BAT-VOLT F5 O Resistance Divider output FLASH-LED C1 I Flash LED input LED-OUT C2 O LED output (Charging phase indicator) VBAT (VBAT1) E1 Power Supply Battery Charger Power On Block ON-OFF D5 I Key ON/OFF input UP-ON-OFF C6 I Hold the Power ON from Base Band chip RES-B F6 O Reset Open collector Output AA-GND E5 Ground Analog ground Baseband Supply Block VIN-REG1 (VBAT2) G6 Power Supply Input supply for DC/DC converter LX F7 O DC/DC converter Output Inductor ECO-MODE G5 I DC/DC converter Output (Base Band chip Core supply) V-CORE G4 O DC/DC converter Output (Base Band chip Core supply) GND-REG1 G7 Ground VIN-REG2 (VBAT3) A5 EN-ANA-B B5 I Enable the Analog LDO A-VCC B4 O Analog LDO Output (Base Band chip Analog supply) A-GND A7 Ground V-PAD B6 O Digital LDO Output (Base Band chip Digital PAD supply) V-RTC B7 O Base Band RTC supply output V-BCK A6 O Back-up Battery RTC charger Ground of DC/DC Converter Input supply for Base Band LDO Ground of A-VCC, V-PAD and RTC LDO RF Supply Block VIN-RF (V BAT4) A3 Power Supply EN-RF1 B2 I Enable LDO RF1 EN-RF2 C4 I Enable LDO RF2 V-RF1 B1 O RF1 LDO Output GND-RF A2 Ground V-RF2 A1 O Input supply for RF LDO Ground of RF1 & RF2 LDO RF2 LDO Output 3 2740B–PMGMT–05/03 Table 1. AT73C202 Pin Description (Continued) Signal Ball Type Description Vibrator and Buzzer Driver Block VIN-VIB (VBAT5) D7 Power Supply EN-VIB E6 I Vibrator driver input (from Base Band chip) V-VIB E7 O Vibrator LDO Output BUZ-IN C5 I Buzzer driver input (from Base Band chip) BUZ-OUT B3 O Buzzer output (connected to the buzzer) BUZ-GND A4 Ground Input Vibrator LDO Ground of Buzzer Output SIM Interface Block D-VCC G1 Power Supply Digital supply for SIM Base Band chip Interface SIM-EN G3 I Input to Power ON the SIM SIM-1V8/2V8 F4 I Input to select the SIM Level (1.8V or 2.8V) RESET-IN E4 I Reset Input from base band chip CLK-IN F3 I Clock Input from base band chip DATA-IO G2 IO Data Input/Output from base band chip SIM-VCC E3 O SIM Power Supply (1.8V or 2.8V) SIM-RST F1 O SIM Reset Output SIM-CLK F2 O SIM Clock Output SIM-IO E2 IO SIM Data Input/Output Miscellaneous CREF C7 IO D-GND D1 Ground BB1 D4 I 4 Band gap decoupling Ground for Digital (Charger, SIM & Vibrator) Chip Configuration: BB1 = 0: First Platform BB1 = 1: Second Platform AT73C202 2740B–PMGMT–05/03 AT73C202 Application Schematic Figure 2. AT73202 Application Schematic T001 Charging Device VBATTERY Protection Circuit D3 GATE-CH BB1 Reset Generator G6 VIN-REG1 G5 ECO-MODE EN B5 C012 VBATTERY UP-ON-OFF D6 DC-ON EN I/O PAD LDO 2.8V/130mA EN Analog LDO 2.7V/2.8V/130mA VIN-REG2 C7 CREF A3 VIN-RF VREF EN G4 GND-REG1 G7 V-PAD B6 A-VCC B4 A-GND A7 V-BCK A6 V-RTC B7 V-RF1 B1 V-RF2 A1 GND-RF A2 V-VIB E7 BAT-RTC 2.4V/2.7V/2mA RTC LDO EN-RF1 C4 EN-RF2 RF2 LDO 2.8V/130mA D7 VIN-VIB EN-VIB C5 BUZ-IN G1 D-VCC G3 SIM-EN F4 SIM-1V8/2V8 E4 RESET-IN F3 CLK-IN G2 DATA-IO C011 C002 LOGIC Periphery Supply ANALOG Supply BUZ-OUT SIM LDO 1.8V/2.8V/10mA SIM Level Shifter and Regulator 1.8V/2.8V Backup Battery R003 VIBRATOR LDO 2.8V/130mA BUZ-GND VCORE or VPAD L001 VCC-RTC 1.5V/0.5mA RF1 LDO 2.8V/130mA E6 V-CORE VPAD LOGIC Core Supply C015 C6 B2 F7 B3 A4 RTC Supply RF1 Supply C006 ON-OFF VIN>2.6V C013 LX EN-ANA-B D5 A5 DC-DC Converter 1.8V/2.5V 300mA RES-B to Logic Reset Input R002 RF2 Supply C010 D4 F6 Battery Pack R001 C007 AA-GND C2 D1 D-GND VIB 32 Ohm BUZZER VBATTERY SIM-VCC E3 SIM-RST F1 SIM-CLK F2 SIM-IO E2 C009 BAT-VOLT LED-OUT C008 F5 E5 Charger Controller C001 FLASH-LED E1 C003 C014 VBATTERY CHG C1 VBAT C004 V-BCK CHG-IN C3 C005 C016 D2 SIM-VCC 5 2740B–PMGMT–05/03 External Components Specifications Table 2. External Component Specifications Symbol Parameters R001 4.7 kΩ, 1/8 W, 0603 R002 4.7 kΩ, 1/8 W, 0603 R003 2 kΩ, 1/8 W, 0603 C001, C003, C004, C005, C006, C007, C010, C012 2.2µF - X5R 6.3V/10%, 0603 C002 22 µF Tantale R, TYPEA C009, C011, C015 220 nF - X5R 10V/10%, 0603 C008, C013, C016 10 nF - X5R 10V/10%, 0402 C014 10 µF - X5R 6.3V/10% L001 10 µH T001 FMMT593 SOT23 PNP 6 AT73C202 2740B–PMGMT–05/03 AT73C202 Power ON Control Block This block generates the Power ON and Power OFF for the AT73C202. Power ON is activated when one of these conditions is true: • The AC/DC Charger is plugged (CHG-IN input): the DC-ON pin is then set to high level • ON/OFF Key is set to high level, which sets the ON-OFF pin to high level • UP-ON/OFF is set to high level To achieve all Power ON, the conditions below must be true: • Battery must be higher than normal operating voltage (VBATTERY > 3.2V) • Thermal protection is right (TJ < 120°C) When the ON/OFF Key is pressed (tied to VBAT), the POWER-EN goes to high level and activates the Base Band Chip Core Supply. As the Base Band Chip detects the ON/OFF, it must drive UP-ON/OFF to high level in order to maintain the POWER-EN at high level and the ON/OFF key can be released. When the ON/OFF key is pressed again to power off, the base band chip releases the UP-ON/OFF pin to low level. Note that UP-ON/OFF can also be generated as a wake-up alarm when the phone is in OFF mode (the UP-ON/OFF pin is supplied by the back-up battery on V-RTC (1.0V to 1.8V). Charger Controller Block There are three specific phases of battery charging: • Pre-charge when VBAT < 3.2V with 50 mA pulsed current stopped by either software or hardware if VBAT > 3.6V or the software crashes. • Fast charge with CO current by software • Pulse charging with C O current for end of charge by software. Note: CO equals 600 mA when the battery capacity equals 600mAH. Fast charging and pulse charging use only one switch. The pre-charging will be done using a pulse charging CO during 100 ms each second. Pre-charging Phase When the Base Band Chip is powered OFF and battery voltage is under 3.2V, the charge must be performed by the AT73C202. To ensure no damage occurs, the current is limited to 50 mA or nominal capacity divided by 10 (CO / 10). When the base band chip is powered ON and sets CHG at high level the pre-charge phase is finished. In case of a software crash after power on, a watchdog timer of 10s will set the RES-B to "0" and turn off the device. Pulse & Fast charging In this phase, the base band chip controls the charge through the CHG pin and monitors the battery voltage and temperature through BAT-VOLT on the AT73C202 and temperature through any available temperature sensor in the battery pack. When Battery voltage is under 4.1V, the charger is always active (CHG is high level). As soon as battery voltage exceeds 4.1V, the software enters into a pulse charging phase. The pulse charging stops when battery voltage reaches 4.2V. FLASH-LED Description During the pre-charging phase, the phone is OFF. To indicate the pre-charging is currently running, a LED driver (LED-OUT, open drain) is turned on every second for 100ms. During the fast charge and pulse charging, the Baseband can control the LED driver through the FLASH-LED pin. 7 2740B–PMGMT–05/03 Absolute Maximum Ratings Operating Temperature (Industrial).......-40°C to +85°C *NOTICE: Storage Temperature............................-55°C to + 150°C Power Supply Input VBAT and VIN-REGX Pins .........................-0.3V to +6.5V Power Supply Input CHG-IN.................... ....-0.3V to +8V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. I/O Input (all except to power supply) . -0.3V to VMAX+0.3 Recommended Operating Conditions Table 3. Recommended Operating Conditions Parameter Conditions Operating Temperature Min Maw Unit -40 85 °C Power Supply Input VBAT and V IN-REGX pins 3.0 4.5 V Power Supply Input CHG-IN 4.6 5.5 V Power Supply Current Consumption Table 4. Power Supply Current Consumption on VBAT (Fully Charged Backup Battery) Mode Condition Typ Max Unit MODE1 (sleep) 1.2V < VBAT < 2.5V 6.8 8 µA MODE2 (sleep) 2.5 V <VBAT < 3.2 V 17 28.4 µA MODE3 (sleep) 3.2 V < VBAT < 4.6 V and Power OFF 17 28.4 µA 3.2 V < VBAT < 4.6 V and Power ON 57.5 81.4 µA MODE4 (standby) (Idle without RX or TX burst) 8 AT73C202 2740B–PMGMT–05/03 AT73C202 Electrical Characteristics Charger Interface General conditions unless otherwise noted: VIN = V IN(min) to VIN(max), TAMB = -40°C to +85°C Table 5. Charger Interface Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit 25 30 45 mA 60 80 100 ms 0.9 1 1.1 s 5.5 V GATE-CHG External Transistor ISINK Sink Current Internal Timer Source (second solution) TON ON Time T Period External Transistor is Closed CHG-IN Input Supply VIN Input Voltage V-CORE DC to DC 4.6 TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified. COUT = 22 µF Tantalum, LOUT = 10 µH. Table 6. V-CORE(1) DC to DC Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit Output Voltage PWM Mode (BB1 = 1, ECO-MODE = 0) 1.80 1.90 2.0 V VOUT Output Voltage PWM Mode (BB1 = 1, ECO-MODE = 0) 2.45 2.50 2.55 V IOUT (1) Output Current PWM Mode (ECO-MODE = 0) 150 300 mA IOFF Standby Current 0.1 1 µA EFF Efficiency IOUT = 10 mA to 200 mA @1.9V 90 % ∆VDCLD Static Load Regulation PWM Mode (10% to 90% of IOUT(MAX) 50 mV ∆VTRLD transient Load Regulation PWM Mode (10% to 90% of IOUT(MAX),TR = TF = 5µs 50 mV ∆VDCLE Static Line Regulation PWM Mode (10% to 90% of IOUT(MAX), 3.2V to 4.2V) 20 mV ∆VTRLE transient Line Regulation PWM Mode (10% to 90% of IOUT(MAX), 3.2V to 4.2V) 35 mV VOUT Output Voltage LDO Mode (BB1 = 0, ECO-MODE = 1) 1.75 1.85 1.95 V VOUT Output Voltage LDO Mode (BB1 = 1, ECO-MODE = 1) 2.35 2.40 2.45 V IOUT Output Current LDO Mode (ECO-MODE = 1) 10 mA VDROP Dropout Voltage LDO Mode (ECO-MODE = 1) 400 mV VOUT (1) 9 2740B–PMGMT–05/03 Table 6. V-CORE(1) DC to DC Electrical Characteristics (Continued) Symbol Parameter Conditions IQC Quiescent Current LDO Mode (ECO-MODE = 1) ∆VDCLD Static Load Regulation ∆VTRLD Typ Max Unit 11 14 µA LDO Mode (0 to 10 mA) 50 mV transient Load Regulation LDO Mode (0 to 10 mA), TR = TF = 5µs 10 mV ∆VDCLE Static Line Regulation LDO Mode (3.2V to 4.2V) 8 mV ∆VTRLE transient Line Regulation LDO Mode (3.2V to 4.2V) 15 mV PSRR Ripple Rejection LDO Mode up to 1 KHz ∆VLPFP Overshoot Voltage Voltage drop from LDO (LP) to DC-DC(FP) ∆VFPLP Undershoot Voltage Voltage drop from DC-DC (FP) to LDO (LP) Note: Min 40 45 0 -15 dB 10 0 mV mV 1. VOUT and IOUT refer to V-CORE. Table 7. V-CORE DC to DC External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR LOUT Output Inductor Value LESR Output Inductor ESR 10 Conditions Min Typ Max Unit 17 22 26 µF 100 mΩ 12 µH 1.1 Ω 8 At 100 KHz 10 AT73C202 2740B–PMGMT–05/03 AT73C202 A-VCC – Analog TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified. Table 8. A-VCC(1)– Analog Electrical Characteristics Symbol Parameter Conditions VBAT Operating Supply Voltage All VIN, All T °C, Line, Load Output Voltage BB1 = 0 2.65 VOUT Output Voltage BB1 = 1 2.75 VINT Internal Supply Voltage IOUT (1) Output Current IQC Quiescent Current DVOUT Line Regulation VBAT: 3V to 3.4V, IOUT = 130 mA 3 mV DVPEAK Line Regulation Transient Same as above, TR = TF = 5 µs 4 mV DVOUT Load Regulation 10% - 90% IOUT, VBAT = 3V 10 mV 10% - 90%IOUT, VBAT = 5.0V 15 mV 10% - 90% IOUT, VBAT = 5.5V 15 mV VOUT (1) Min Typ Max Unit 5.5 V 2.7 2.75 V 2.80 2.85 V 2.6 V 80 130 mA 195 236 µA 3 2.4 DVPEAK Load Regulation Transient Same as above, TR = TF = 5 µs 15 mV PSRR Ripple rejection F = 217Hz – VBAT = 3.6V 70 dB VN Output Noise BW: 10 Hz to 100 kHz 29 µVRMS TR Rise Time 100% IOUT, 10% - 90% VOUT TF Fall Time ISD Shut Down Current Note: 50 µs 1 µA 1. VOUT and IOUT refer to A-VCC. Table 9. A-VCC – Analog External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR Conditions 100 KHz Min Typ Max Unit 1.98 2.2 2.42 µF 50 mΩ 11 2740B–PMGMT–05/03 V-PAD – PAD Supply TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified. Table 10. V-PAD(1)– PAD Supply Electrical Characteristics Symbol VOUT IOUT Parameter (1) Conditions Output Voltage Full Power Mode (1) Min Typ Max Unit 2.74 2.8 2.86 V 50 80 mA 10 mA Output Current Full Power Mode IOUT Output Current Low Power Mode IQC Quiescent Current FP Mode 25 30 36 µA IQC Quiescent Current LP Mode 9.75 11.5 13.75 µA DVOUT Line Regulation FP Mode 1 mV DVPEAK Line Regulation Transient FP Mode VBAT: from 5V to 5.4V and from 3.4V to 3V, IOUT = 80 mA, TR = TF = 5 µs 3 mV DVOUT Line Regulation LP Mode 3 mV DVPEAK Line Regulation Transient LP Mode VBAT: from 5V to 5.4V and from 3.4V to 3V, IOUT = 5 mA, TR = TF = 5 µs 4 mV DVOUT Load Regulation FP Mode 5 (4 at 5.5V) mV DVPEAK Load Regulation Transient FP Mode from 0 to IOUT(MAX) & from 90% to 10% IOUT(MAX), TR = TF = 5 µs, VBAT = 3.4V 23 mV DVOUT Load Regulation LP Mode from 0 to 80mA & from 90% to 10% IOUT(MAX), VBAT = 3.4V 5 (10 at 5.5V) mV PSRR Ripple Rejection F = 217Hz VN Output Noise FP mode BW: 10 Hz to 100 kHz 80 µVRMS VN Output Noise LP Mode BW: 10 Hz to 100 kHz 300 µVRMS TR Rise Time FP IOUT = IOUT(MAX) 70 130 µs TR Rise Time LP IOUT = IOUT(MAX) 50 170 µs ISD Shut Down Current 1 µA VBAT Operating Supply Voltage 5.5 V VSAUV Internal Operating Supply Voltage 2.8 2.86 V ISC Short Circuit Current 50 80 mA Min Typ Max Unit 1.98 2.2 2.42 µF 50 mΩ Note: VBAT: 3.4V to 3V, IOUT = 80 mA VBAT: 3.4V to 3V, IOUT = 5 mA from 0 to 80mA & from 90% to 10% IOUT(MAX), V BAT = 3.4V 40 45 3 2.74 dB 1. VOUT and IOUT refer to V-PAD. Table 11. V-PAD – PAD Supply External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR 12 Conditions 100 KHz AT73C202 2740B–PMGMT–05/03 AT73C202 Backup Battery LDO (V-BCK) TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified. Table 12. Backup Battery LDO (V-BCK)(1) Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit VOUT (1) Output Voltage BB1 = 0 2.4 2.45 2.50 V VOUT (1) Output Voltage BB1 = 1 2.65 2.7 2.75 V 2 5 mA 50 mV 9.7 µA IOUT (1) Output Current VDROP Dropout Voltage IQC Quiescent Current PSRR Ripple Rejection TR Rise Time Note: 4.8 6.6 40 110 dB 320 µs 1. VOUT and IOUT refer to V-BCK. Table 13. Backup Battery LDO (V-BCK) External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR RTC LDO (V-RTC) Conditions Min Typ Max Unit 1.98 2.2 2.42 µF 100 mΩ 100 KHz TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified. Table 14. RTC LDO (V-RTC)(1) Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit Output Voltage BB1 = 0 1.45 1.50 1.55 V Output Current 0.5 mA VDROP Dropout Voltage 50 mV IQC Quiescent Current 6.6 9.7 µA ISD Shutdown Current 0.1 1 µA PSRR Ripple Rejection 40 TR Rise time VOUT (1) BB1 = 1 (not used) IOUT (1) Note: 4.8 110 dB 320 µs 1. VOUT and IOUT refer to V-RTC Table 15. RTC LDO (V-RTC) External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR Conditions 100 KHz Min Typ Max Unit 198 220 242 nF 100 mΩ 13 2740B–PMGMT–05/03 RF LDOs (V-RF1 and V-RF2) Table 16. RF LDOs (V-RF1 and V-RF2)(1) Electrical Characteristics Symbol Parameter Conditions VBAT Operating Supply Voltage All VIN, All T°C, Line, Load VINT Min Typ 3 Max Unit 5.5 V Operating Internal Supply Voltage 2.4 2.5 2.6 V Output Voltage 2.74 2.8 2.86 V Output Current 80 130 mA IQC Quiescent Current 195 236 µA DVOUT Line Regulation VBAT: 3V to 3.4V, IOUT = 130 mA 3 2 mV DVPEAK Line Regulation Transient Same as above, TR = TF = 5 µs 4 2.85 mV DVOUT Load Regulation 10% - 90% IOUT, VBAT = 3V 10 1 mV 10% - 90% IOUT, VBAT = 5.0V 15 1 mV 10% - 90% IOUT, VBAT = 5.5V 15 1 mV 1.2 2.4 mV VOUT IOUT (1) (1) DVPEAK Load Regulation Transient Same as above, TR = TF = 5 µs PSRR Ripple Rejection F=217Hz – VBAT = 3.6V VN Output Noise BW: 10 Hz to 100 kHz TR Rise Time 100% IOUT, 10% - 90% VOUT ISD Note: 70 73 29 Shut Down Current dB 37 µVRMS 50 µs 1 µA 1. VOUT and IOUT refer to V-RF1/V-RF2. Table 17. RF LDOs (V-RF1 and V-RF2) External Components Symbol Parameter COUT Output Capacitor Value CESR Output Capacitor ESR 14 Conditions 100 KHz Min Typ Max Unit 1.98 2.2 2.42 µF 50 mΩ AT73C202 2740B–PMGMT–05/03 AT73C202 Buzzer Open Drain General Conditions (unless otherwise noted): VIN = V IN(min) to VIN(max), TA = -40°C to +85°C Table 18. Buzzer Open Drain Electrical Characteristics(1) Symbol Parameter Conditions VOL(1) Low Output Voltage IOL = 100 mA (1) IOL TON (1) TOFF (1) Note: Min Typ Max Unit 0.4 V Low Output Current 100 mA Turn-on Time 10 µs Turn-off Time 10 µs 1. VOL, IOL, IOH, TON and TOFF refer to Buz-Out. Vibrator General Conditions (unless otherwise noted): VIN = V IN(min) to VIN(max), TA = -40°C to +85°C, COUT = 2.2µF to Y5V. Table 19. Vibrator Electrical Characteristics(1) Symbol VOUT IOUT (1) (1) VDROP IQC Note: Parameter Output Voltage Output Current Conditions Min Typ Max Unit 2.74 2.80 2.86 V 100 Dropout Voltage Quiescent Current 195 mA 280 mV 236 µA 1. VOUT and IOUT refer to V-VIB. 15 2740B–PMGMT–05/03 Digital Pin Parameters Conditions: TAMB = -20°C to 85°C, VBAT = 3V to 4.2V unless otherwise specified Table 20. Digital Pins. Symbol Parameter Conditions Min Typ Max Unit DC-ON VOL Output Low Voltage GND VOH Output High Voltage V-PAD IOH Output Current 1 mA IOL Output Current 1 mA IOH Leakage Current 1 µA ON/OFF VIH High input voltage IIH(Max) = 20 µA VIL Low input voltage IIL(Max) = 20 µA IIL IIH 0.7x VBAT VBAT GND V 0.3 x VBAT V Low input current 0.1 µA High input current 0.1 µA UP-ON/OFF VIH High input voltage IIH(Max) = 20 µA VIL Low input voltage IIL(Max) = 20 µA IIL IIH 0.7x VRTC V-BCK GND V 0.3x VRTC V Low input current 0.1 µA High input current 0.1 µA ECO-MODE VIH High input voltage VIL Low input voltage IIL Low input current IIH High input current 1.5 IIL(Max) = 20 µA V-PAD GND RES-B V 0.6 V 0.1 µA 0.1 µA 0.2 V 1 µA 1 mA 100 ms (1) VOL Output Low Voltage IOH Output Leakage Current IOL Output Current TRESET Output Delay Time ISS Supply Current 4 5 µA IOFF Standby Current 0.1 1 µA GND 0.6 V IOL=1 mA and VPAD = VPAD(MAX) 0.1 20 CHG VIL Input Low Voltage VIH Input High Voltage IIL Input Low Current 0.1 µA IIH Input High Current 0.1 µA RDOWN Pull-down resistance 1.8 MΩ 16 1.5 CHG pin 1 V-PAD 1.5 V AT73C202 2740B–PMGMT–05/03 AT73C202 Table 20. Digital Pins. (Continued) Symbol Parameter Conditions Min Typ Max Unit 60 80 100 ms 0.9 1 1.1 s 0.4 V FLASH-LED & LED-OUT Pins TON ON Time T Period VOL Low Output Voltage IOL Low Output Current 5 mA IOH Leakage Current 1 µA VIL Low Input Voltage 0.4 V VIH High Input Voltage IIL Input Low Current 0.1 µA IIH Input High Current 0.1 µA RDOWN Pull-down resistance 1.8 MΩ External Transistor is closed IOUT = 5 mA 1.5 FLASH-LED pin V 1 1.5 0.7 x VCORE V-PAD EN-RF1, EN-RF2 VIH High input voltage IIH(Max) = 20 µA VIL Low input voltage IIL(Max) = 20 µA IIL GND V 0.3 x VCORE V Low input current 0.1 µA IIH High input current 0.1 µA RDOWN Pull-down resistance 1.8 MΩ 1 1.5 1.5 V-PAD BUZ-IN VIH High Input Voltage IIH(Max) = 20 µA VIL Low Input Voltage IIL(Max) = 20 µA IIH High input current IIL RDOWN GND V 0.6 V BUZ-IN pin 0.1 µA Low input current BUZ-IN pin 0.1 µA Pull-down resistance BUZ-IN pin 1.8 MΩ 1 1.5 1.5 V-PAD EN_VIB VIH High input voltage IIH(Max) = 20 µA (EN-VIB) VIL Low input voltage IIL(Max) = 20 µA (EN-VIB) IIL Low input current IIH RDOWN Note: GND V 0.6 V (EN-VIB) 0.1 µA High input current (EN-VIB) 0.1 µA Pull-down resistance EN-VIB pin 1.8 MΩ 1 1.5 1. VIN = 1.2V to V PAD(MAX). The reset generator has an open collector output. It is enabled only when VCORE is active. 17 2740B–PMGMT–05/03 SIM Interface Conditions are DVCC = 1.8V or 2.8V, tA = -40°C to +85°C, C DVCC = 100 nF, CSIM-VCC = 100 nF Table 21. SIM Interface Electrical Characteristics. Symbol Parameter Conditions Min Typ Max Unit Power Supply DVCC Digital Supply Voltage Mandatory IDVCC DVCC Operating Current CLK_IN at 3.25 MHz VSIM-VCC SIM-VCC Output Voltage ISIM-VCC < 10 mA SIM-EN = DVCC SIM-1V8/2V8 = DVCC VSIM-VCC SIM-VCC Output Voltage ISIM-VCC < 10mA SIM-EN = DVCC SIM-1V8/2V8 = GND ISIM-VCC SIM-VCC Operating Current ISHDN 1.65 3.0 V 2.5 10 µA 1.71 1.8 1.89 V 2.74 2.8 2.86 V ISIM-VCC -> SIM card = 0 ISIM-CLK = 3.25 MHz 25 100 µA Total Shutdown Current ISIM-VCC + IDVCC with SIM-EN = GND 0.1 1 µA IQC SIM_LDO Quiescent Current Low-power Mode 8 9.5 µA IQC SIM_LDO Quiescent Current Full-power Mode 60 µA IOUT Output Current ISC Short Circuit Current 10 mA 40 mA Digital Interface (RESET-IN, CLOCK-IN, DATA-IO) IIH , IIL Input current CLK-IN, RST-IN, SIM-EN, SIM1V8/2V8 -0.1 0.1 µA IIH Input current DATA-IO -20 20 µA IIL Input current DATA-IO 1 mA VIH High input voltage CLK-IN, RST-IN, DATA-IO, SIM-EN, SIM-1V8/2V8 VIL Low input voltage CLK-IN, RST-IN, DATA-IO, SIM-EN, SIM-1V8/2V8 VOH High output voltage DATA-IO, source current = 20 µA 0.7x DVCC V VOH High output voltage DATA-IO, source current = 5 µA 0.8x DVCC V VOL Low output voltage DATA-IO, sink current = 200 µA RDATA-IO Pull-up resistance Between DATA-IO and DVCC TR TF Rise and fall time DATA-IO loaded with 30 pF 18 0.7x DVCC V 0.3x DVCC 13 V 0.4 V 20 28 kΩ 1.3 2 µs AT73C202 2740B–PMGMT–05/03 AT73C202 Table 21. SIM Interface Electrical Characteristics. (Continued) Symbol Parameter Conditions Min Typ Max Unit SIM Interface (SIM-RST, SIM-CLK, SIM-DATA) (1) VIH High input voltage SIM-DATA with IIH(Max) = ± 20 µA VIL Low input voltage SIM-DATA with IIL(Max) = 1 mA VOH High output voltage SIM-DATA, source current = 20 µA VOL Low output voltage SIM-DATA, sink current = 200 µA VOH High output voltage SIM-RST, SIM-CLK with source current = 20µA (1) VOL Low output voltage SIM-RST, SIM-CLK with sink current = 200 µA 0.4 V IIH High input current SIM-DATA 20 µA IIL Low input current SIM-DATA 1 mA VSD Shutdown output voltage SIM-DATA, SIM-CLK, SIM-RST, SIM-VCC with SIM-EN = GND, with sink current = 200 µA 0.4 V RSIM-DATA Pull-up resistance Between SIM-DATA and SIM-VCC 14 kΩ T R, T F Rise and fall time SIM-DATA, SIM-RST loaded with 50 pF 1 µs T R, T F Rise and fall time SIM-CLK loaded with 50 pF 18 ns Maximum frequency SIM-CLK loaded with 50 pF 5 MHz FSIM-CLK Note: 0.7xSVCC V 0.3 (1) 0.8xSVCC V 0.4 0.9xSVCC 6.5 V V V 10 1. SIM-VCC = SVCC 19 2740B–PMGMT–05/03 Package Outline (Top View) Figure 3. Forty-nine Ball FBGA Package (Top VIew) 1 2 V-RF2 3 GND-RF VIN-RF 4 5 6 BUZ-GND VIN-REG2 4 5 7 V-BCK A-GND A 1 2 3 EN-RF1 V-RF1 BUZ-OUT A-VCC 6 EN-ANA-B 7 V-PAD V-RTC B 1 2 FLASH-LED 3 LED-OUT 4 CHG 5 EN-RF2 6 BUZ-IN 7 UP-ON-OFF CREF C 1 2 D-GND 3 CHG-IN 4 GATE-CHG 5 BB1 6 ON-OFF 7 DC-ON VIN-VIB D 1 2 VBAT 3 SIM-IO 4 SIM-VCC 5 RESET-IN 6 AA-GND 7 EN-VIB V-VIB E 1 2 SIM-RST 3 SIM-CLK 4 CLK-IN 5 SIM-1V8/2V8 6 BAT-VOLT 7 RES-B LX F 1 2 D-VCC DATA-IO 3 4 SIM-EN 5 V-CORE ECO-MODE 6 VIN-REG1 7 GND-REG1 G 20 AT73C202 2740B–PMGMT–05/03 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 e-mail [email protected] Web Site http://www.atmel.com Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems. © Atmel Corporation 2003. All rights reserved. Atmel ® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. 2740B–PMGMT–05/03 0M