ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) Multi-Channel Sigma-Delta Analog Front End DATASHEET Description ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) are multi-channel analog front end devices which integrate three, four or seven simultaneously sampled Sigma-Delta A/D converters, a high-precision voltage reference with up to 10 ppm/°C temperature stability (H-versions), a programmable current signal amplification, a temperature sensor and an SPI interface. When used in data acquisition and energy measurement applications in combination with the Atmel® ATSAM4C device family that features a dedicated Cortex ® -M4 processor and metrology library and a variety of sensors i n c l u d i n g S h u n t , C T a n d R o g o w s k i c oi l s , t h e A T S E N S E - 1 0 1 / A T S E N S E 201(H)/ATSENSE-301(H) exceeds ANSI C12.20-2002 and IEC 62053-22 metering accuracy classes of up to 0.2% over 3000:1 current range. Features Analog Front End Single-phase (ATSENSE-101), Dual-phase (ATSENSE-201(H)) or Polyphase (ATSENSE-301(H)) Energy Metering Analog Front End Suitable for Atmel MCUs and Metrology Library Compliant with Class 0.2 Standards (ANSI C12.20-2002 and IEC 6205322) Three, Four or Seven Sigma-Delta ADC Measurement Channels: One, Two or Three Voltages, Two or Four Currents, 102 dB Dynamic Range Current Channels with Pre-Gain (x1, x2, x4, x8) Supports Shunt, Current Transformer and Rogowski Coils Dedicated Current Channel for Anti-tamper Measurement Integrated SINC Decimation Filters. Output Data Rate: 16 kSps typical Integrated 2.8V LDO Regulator to Supply Analog Functions 3.0V to 3.6V Operation, Ultra Low Power: < 2.5 mW typical/Channel @ 3.3V Specified for TJ = [-40°C; +100°C] Precision Voltage Reference Standard 1.2V Output Voltage with Possible External Bypass Temperature Drift: 50 ppm typical (ATSENSE-101/ATSENSE201/ATSENSE-301) Temperature Drift: 10 ppm typical (ATSENSE-201H/ATSENSE-301H) Factory-measured Temperature Drift and Die Temperature Sensor to Perform Software Correction 11219B–ATSENSE–20-Feb-14 Digital Interface 8 MHz Serial Peripheral Interface (SPI) Compatible Mode 1 (8-bit) for ADC Data and AFE Controls Interrupt Output Line Signaling ADC End-of-Conversion, Underrun and Overrun Package 32-lead TQFP, 7 x 7 x 1.4 mm 20-lead SOIC, 12.8 x 7.5 x 2.3 mm ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 2 Block Diagrams VD D G A N D VR A EF ATSENSE-301(H) Functional Block Diagram VDDA VP3 ΣΔ ADC VN VD D G A N D VR A EF Decimator VDDIN Decimator ΣΔ ADC PGA 2.8V LDO ADCI3 <23:0> IP3 IN3 GNDA ADCV3 <23:0> Die Temperature sensor VREF Voltage Reference 500Ω VD D G A N D VR A EF GNDREF VTEMP VP2 ΣΔ ADC VN VD D G A N D VR A EF Decimator IN2 SPCK Serial Peripheral Interface ADCI2 <23:0> IP2 Decimator ΣΔ ADC PGA ADCV2 <23:0> NPCS MISO MOSI Control Registers D G A N D VR A EF Interrupt Controller VP1 ΣΔ ADC VN D G A N D VR A EF Decimator VD PGA ITOUT ROM (Calibration Data) ADCI1 <23:0> IP1 IN1 ADCV1 <23:0> Decimator ΣΔ ADC VDDT VDDIO FS_CLK (MCLK/OSR) ADC_CLK (MCLK/2) D G A N D VR A EF IP0 VD Figure 1-1. VD 1. PGA ΣΔ ADC GNDD MCLK ADCI0 <23:0> IN0 DIFF MUX 2:1 Power Clock Generator On Reset Decimator VTEMP ATSENSE-301(H) ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 3 ATSENSE-201(H) Functional Block Diagram VDDIN 2.8V LDO VDDA Die Temperature sensor Voltage Reference GNDA 500Ω VD D G A N D VR A EF VTEMP VP2 ΣΔ ADC Decimator VREF GNDREF ADCV2 <23:0> VN SPCK VD D G A N D VR A EF Serial Peripheral Interface VP1 ΣΔ ADC VN Decimator VD D G A N D VR A EF PGA MISO MOSI Control Registers ADCI1 <23:0> IP1 IN1 ADCV1 <23:0> NPCS Decimator ΣΔ ADC Interrupt Controller ITOUT ROM (Calibration Data) IP0 VD D G A N D VR A EF Figure 1-2. VDDT ADCI0 <23:0> IN0 DIFF MUX 2:1 PGA ΣΔ ADC Decimator VDDIO FS_CLK (MCLK/OSR) ADC_CLK (MCLK/2) Power Clock Generator On Reset GNDD VTEMP MCLK ATSENSE-201(H) ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 4 ATSENSE-101 Functional Block Diagram VDDIN 2.8V LDO VDDA Die Temperature sensor Voltage Reference GNDA 500Ω VREF VTEMP GNDREF VD D G A N D VR A EF SPCK VP1 ΣΔ ADC VN Decimator VD D G A N D VR A EF ADCI1 <23:0> IP1 PGA IN1 Serial Peripheral Interface ADCV1 <23:0> NPCS MISO MOSI Control Registers Decimator ΣΔ ADC Interrupt Controller IP0 VDDT ADCI0 <23:0> IN0 DIFF MUX 2:1 VTEMP PGA ΣΔ ADC ITOUT ROM (Calibration Data) VD D G A N D VR A EF Figure 1-3. Decimator VDDIO FS_CLK (MCLK/OSR) ADC_CLK (MCLK/2) Power Clock Generator On Reset GNDD MCLK ATSENSE-101 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 5 2. Package and Pinout 2.1 ATSENSE-201(H) / ATSENSE-301(H) Table 2-1. 24 23 22 21 20 19 18 17 GNDD VDDIO - - - - - - 32-lead LQFP Package 25 ITOUT 26 SPCK 27 MOSI 28 MISO 29 NPCS 30 MCLK 31 VDDT 32 VDDIN VP2 VP1 VN VREF GNDREF GNDA VDDA ATSENSE-201(H) ATSENSE-301(H) VP3 Figure 2-1. 1 2 3 4 5 6 7 8 IP0 16 IN0 15 IP1 14 IN1 13 IP2 12 IN2 11 IP3 10 IN3 9 ATSENSE-201(H) / ATSENSE-301(H) Pin Description Pin Name I/O Pin Number Type (1) Function VP3 Input 1 Analog Voltage channel 3, positive input VP2 Input 2 Analog Voltage channel 2, positive input VP1 Input 3 Analog Voltage channel 1, positive input VN Input 4 Analog Voltage channels negative input VREF In / Out 5 Analog Voltage reference output and ADCs reference buffer input GNDREF Ground 6 Ground Voltage reference ground pin GNDA Ground 7 Ground Ground pin for low noise analog circuits and low noise negative ADC reference VDDA In / Out 8 Analog 2.8V LDO output and analog circuits power supply input (1) Input 9 Analog Current channel 3, negative input (1) Input 10 Analog Current channel 3, positive input (1) IN2 Input 11 Analog Current channel 2, negative input IP2(1) Input 12 Analog Current channel 2, positive input IN1 Input 13 Analog Current channel 1, negative input IP1 Input 14 Analog Current channel 1, positive input IN0 Input 15 Analog Current channel 0 (Tamper), negative input IP0 Input 16 Analog Current channel 0 (Tamper), positive input - 17 .. 22 - VDDIO Input 23 Power Power supply input pin for digital I/O and digital core circuits GNDD Ground 24 Ground Ground pin for digital I/O and digital core circuits IN3 IP3 - Not connected. Connect to ground ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 6 Table 2-1. Pin Name ATSENSE-201(H) / ATSENSE-301(H) Pin Description (Continued) I/O Pin Number Type Function ITOUT Output 25 Digital Interrupt output line. Open-drain SPCK Input 26 Digital SPI port: serial clock MOSI Input 27 Digital SPI port: master output slave input MISO Output 28 Digital SPI port: master input slave output NPCS Input 29 Digital SPI port: active-low chip select MCLK Input 30 Digital Master clock input VDDT Input 31 Power Pin reserved for test. Connect to VDDIN / VDDIO plane VDDIN Input 32 Power 2.8V LDO power supply input pin Note: 1. Only in ATSENSE-301(H) devices. In ATSENSE-201(H) devices, these pins are not internally connected and Atmel recommends to connect them to ground. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 7 ATSENSE-101 17 13 12 11 IP1 18 14 IP0 15 19 IN0 16 20 MOSI 17 SPCK 18 ITOUT 19 VDDIO 20 GNDD 20-lead SOIC Package MISO Figure 2-2. NPCS 2.2 Table 2-2. Pin Name MCLK VDDT VDDIN VP1 VN VREF GNDREF GNDA VDDA IN1 ATSENSE-101 1 2 3 4 5 6 7 8 9 10 ATSENSE-101 Pin Description I/O Pin Number Type Function MCLK Input 1 Digital Master clock Input VDDT Input 2 Power Pin reserved for test. Connect to VDDIN / VDDIO plane VDDIN Input 3 Power 2.8V LDO Power supply input pin VP1 Input 4 Analog Voltage channel 1, positive input VN Input 5 Analog Voltage channel negative input VREF In / Out 6 Analog Voltage reference output and ADCs reference buffer input GNDREF Ground 7 Ground Voltage reference ground pin GNDA Ground 8 Ground Ground pin for low noise analog circuits and low noise negative ADC reference VDDA In / Out 9 Analog 2.8V LDO output and analog circuits power supply input IN1 Input 10 Analog Current channel 1, negative input IP1 Input 11 Analog Current channel 1, positive input IN0 Input 12 Analog Current channel 0 (Tamper), negative input IP0 Input 13 Analog Current channel 0 (Tamper), positive input MOSI Input 14 Digital SPI port: master output slave input SPCK Input 15 Digital SPI port: serial clock ITOUT Output 16 Digital Interrupt output line. open drain VDDIO Input 17 Power Power supply input pin for digital I/O and digital core circuits GNDD Ground 18 Ground Ground pin for digital I/O and digital core circuits MISO Output 19 Digital SPI port: master input slave output NPCS Input 20 Digital SPI port: active-low chip select ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 8 C.T 2000:1 C.T 2000:1 L2 C.T 2000:1 L3 N Shunt 150μR 3k 3k 3.3nF 3.3nF 3.3nF 1.5 3k 3.3nF 1.5 3k 165k (x10) 1k 3.3nF 3k 3.3nF 1.5 1k 1.5 3k 165k (x10) 3.3nF 3k 3.3nF 1.5 1k 1.5 3k 165k (x10) 2.2k 2.2k 2.2k 3.3nF 3.3nF 3.3nF IN0 IP0 IN1 IP1 VN VP1 IN2 IP2 VN VP2 IN3 IP3 VN VP3 VTEMP A A D ND EF VD G VR DIFF MUX 2:1 PGA A A D ND EF VD G VR A A D ND EF VD G VR ΣΔ ADC A A D ND EF VD G VR Decimator Decimator Decimator Decimator Decimator Decimator Decimator ADCI0 <23:0> ADCI1 <23:0> ADCV1 <23:0> ADCI2 <23:0> ADCV2 <23:0> ADCI3 <23:0> ADCV3 <23:0> FS_CLK (MCLK/2) ADC_CLK (MCLK/OSR) Interrupt Controller Control Registers Serial Peripheral Interface Voltage Reference VREF VDDIN VDDT MCLK GNDD VDDIO ATSENSE-301(H) Power Clock Generator On Reset ITOUT MOSI MISO NPCS SPCK GNDREF 500Ω ROM (Calibration Data) VTEMP Die Temperature sensor 2.8V LDO VDDA GNDA 1μF 1μF Typical 200A (Imax), 3-phase, 4-Wire Smart Meter based on Atmel Metrology Solution PGA ΣΔ ADC A A D ND EF VD G VR ΣΔ ADC ΣΔ ADC PGA A A D ND EF VD G VR ΣΔ ADC ΣΔ ADC PGA ΣΔ ADC A A D ND EF VD G VR 1μF VARh 100 PIOs SPI Wh 100 32.768kHz Atmel MCU VDDIO VDD 3.3V Figure 3-1. L1 3. Application Block Diagram ATSENSE-301(H) Typical Application Block Diagram ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 9 C.T 2000:1 C.T 2000:1 L2 N 3.3nF 1.5 3.3k 3.3nF 1.5 3.3k 3.3nF 1.5 3.3k 3.3nF 1.5 3.3k 165k (x10) 165k (x10) 2.2k 1k 2.2k 1k 3.3nF 3.3nF IN0 IP0 IN1 IP1 VN VP1 VN VP2 VTEMP VD D G A ΣΔ ADC N D VR A EF DIFF MUX 2:1 PGA N D VR A EF VD D G A ΣΔ ADC Decimator Decimator Decimator Decimator 2.8V LDO VDDIN ADCI0 <23:0> ADCI1 <23:0> ADCV1 <23:0> ADCV2 <23:0> FS_CLK Clock Power Generator On Reset MCLK GNDD VDDIO VDDT ITOUT MOSI MISO NPCS SPCK GNDREF ATSENSE-201(H) (MCLK/2) ADC_CLK GNDA VDDA 500Ω VREF ROM (Calibration Data) Interrupt Controller Control Registers Serial Peripheral Interface Voltage Reference (MCLK/OSR) VTEMP Die Temperature sensor Typical 100A (Imax), Dual-phase Smart Meter based on Atmel Metrology Solution PGA ΣΔ ADC ΣΔ ADC VD D G A N D VR A EF L1 VD D G A N D VR A EF 1μF 1μF 1μF VARh 100 PIOs SPI Wh 100 32.768 kHz Atmel MCU VDDIO VDD 3.3V Figure 3-2. ATSENSE-201(H) Typical Application Block Diagram ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 10 C.T 2000:1 L N Shunt 150uR 3.3k 3.3k 3.3nF 3.3nF 3.3nF 1.5 3.3k 3.3nF 1.5 3.3k 165k (x10) 2.2k 1k 3.3nF IN0 IP0 IN1 IP1 VN VP1 PGA ΣΔ ADC A A D ND EF VD G VR ΣΔ ADC A A D ND EF VD G VR Decimator Decimator Decimator ADCI0 <23:0> ADCI1 <23:0> ADCV1 <23:0> FS_CLK (MCLK/2) ADC_CLK 500Ω VREF SPCK MCLK GNDD VDDIO VDDT ITOUT MOSI MISO NPCS ATSENSE-101 Power Clock Generator On Reset VDDA GNDA GNDREF ROM (Calibration Data) Interrupt Controller Control Registers Serial Peripheral Interface Voltage Reference (MCLK/OSR) VTEMP Die Temperature sensor 1μF 1μF 1μF VARh 100 PIOs SPI Typical 100A (Imax), Single-phase with anti-tamper Smart Meter based on Atmel Metrology Solution VTEMP DIFF MUX 2:1 PGA ΣΔ ADC A A D ND EF VD G VR 2.8V LDO VDDIN Wh 100 32.768 kHz Atmel MCU VDDIO VDD 3.3V Figure 3-3. ATSENSE-101 Typical Application Block Diagram ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 11 4. Functional Description 4.1 Conversion Channels ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) devices feature three types of acquisition channels: Voltage channels Current channels Tamper and temperature channels All these channels are built around the same Sigma-Delta A/D converter. The voltage reference of this converter is the VREF pin voltage referred to ground (GNDA pin). This reference voltage can be internally or externally sourced. The converter sampling rate is MCLK/4, typically 1.024 MHz. An external low-pass filter, typically a passive R-C network, is required at each ADC input to reject frequency images around this sampling frequency (anti-alias). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) analog inputs are designed to sample 0V centered signals. As these inputs have internal ESD protection devices connected to GNDA, the maximum input signal level defined in the electrical characteristics, typically ±0.25V, must be respected to avoid leakage in these devices. Refer to Figure 4-1, "Analog Inputs: Recommended Input Range". Figure 4-1. Analog Inputs: Recommended Input Range VDDA +0.25V E.S.D IPx V(IPx,GND) (0.5Vpp) E.S.D -0.25V GNDA +0.5V V(IPx,VINx) (1Vpp) VDDA +0.25V -0.5V “Current” Acquisition Channel E.S.D INx V(INx,GND) (0.5Vpp) E.S.D -0.25V GNDA VDDA +0.25V E.S.D VPx V(VPx,GND) (0.5Vpp) E.S.D -0.25V GNDA +0.25V V(VPx,VN) (0.5Vpp) VDDA -0.25V “Voltage” Acquisition Channel E.S.D VN GND E.S.D GNDA Voltage channels have single-ended inputs referred to the VN pin. The VN pin must be connected to a low noise ground. The user must take care that no voltage drop on the ground net is sampled by the ADC by non-optimum connection of the VN pin. Current channels and the tamper channel have a programmable gain amplifier (PGA) to accommodate low input signals. The PGA improves the dynamic range of the channel as the input referred noise is reduced when gain increases. The PGA does not introduce any delay or bandwidth limitation on the current channels compared to the voltage channels. The channels (voltage or current) are always sampled synchronously. The input impedance of the PGA depends on the programmed gain. The tamper channel features an input multiplexer to perform both the neutral current measurement and the die temperature measurement. The tamper channel has a PGA to accommodate low output level current sensors. Programmed gain can be changed when switching from the tamper to the die temperature sensor source. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 12 4.2 Voltage Reference, Die Temperature Measurement and Calibration Registers 4.2.1 Voltage Reference ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) embed an analog voltage reference with a typical output voltage of 1.144V. The temperature drift of the voltage reference can be approximated by a linear fit. For H grade parts, the temperature drift is measured during manufacturing and stored in the calibration registers (ROM). Two measurements are made: one at a low temperature, TL, and another at a high temperature, TH. At both temperatures TL and TH, VREF voltage and ADC_TEMP_OUT (ADC I0 reading of the temperature sensor) parameters are saved. From the data obtained, the user can implement a software compensation of the voltage reference. 4.2.2 Die Temperature Sensor To measure the internal die temperature, ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) devices embed a dedicated analog die temperature sensor that is multiplexed on the tamper channel (ADC I0). By measuring the die temperature periodically and by using the calibration bits, channel gain drifts over temperature due to the voltage reference can be corrected. To set the ADC to measure the temperature sensor, the user must set the TEMPMEAS bit in ADC I0 control register and ensure that the channel gain is set to x1 (0dB). Once the temperature measurement is selected, the ADC starts to output samples corresponding to the temperature sensor. The first four samples account for internal digital filters settling and must be ignored. Then, in order to have a repeatable temperature acquisition, the user must average the ADC output over a minimum of 64 samples. By following this procedure, the temperature acquisition set measurement exhibits a standard deviation of less than 0.25°C in repeatability. To calculate the real die temperature from the ADC acquisition, the following formula applies: TJ(°C) = ( (ADC_TEMP_OUT / 2 24) x 1.144 - 0.110) / 0.00049 where ADC_TEMP_OUT is the 24-bit output of ADC I0, averaged over 64 samples. Example: If ADC_TEMP_OUT = 1777345, the corresponding die temperature is TJ = 22.8°C. Because the temperature sensor is not offset-calibrated, the absolute temperature reading exhibits a large deviation (typically ±15°C). 4.2.3 Calibration Registers The registers used in the voltage reference compensation are listed in Table 4-1. The four parameters stored, VREF and ADC_TEMP_OUT at TL and TH, are: REF_TL[11:0] and REF_TH[11:0] TEMP_TL[11:0] and TEMP_TH[11:0] The following rule applies to recover the real values of VREF from the 12-bit coded values in the product registers: VREF(TL) = 1.120V + REF_TL[11:0] * 25µV VREF(TH) = 1.120V + REF_TH[11:0] * 25µV Note: REF_TL[11:0] and REF_TH[11:0] are unsigned 12-bit integers. The following rule applies to recover the real values of ADC_TEMP_OUT from the 12-bit coded values in the product registers: ADC_TEMP_OUT[23:0](TL) = TEMP_TL[11:0] << 12 ADC_TEMP_OUT[23:0](TH) = TEMP_TH[11:0] << 12 Note: TEMP_TL[11:0] and TEMP_TH[11:0] are signed 12-bit integers. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 13 Table 4-1. Offset Calibration Register Mapping Register Name Access Reset 0x41 Voltage Reference Value at TL: MSB REF_TL_11_8 Read-only 0x-0 0x42 Voltage Reference Value at TL: LSB REF_TL_7_0 Read-only 0x00 0x43 Temperature Sensor Value (read by ADC) at TL: MSB TEMP_TL_11_8 Read-only 0x-0 0x44 Temperature Sensor Value (read by ADC) at TL: LSB TEMP_TL_7_0 Read-only 0x00 0x45 Voltage Reference Value at TH: MSB REF_TH_11_8 Read-only 0x-0 0x46 Voltage Reference Value at TH: LSB REF_TH_7_0 Read-only 0x00 0x47 Temperature Sensor Value (read by ADC) at TH: MSB TEMP_TH_11_8 Read-only 0x-0 0x48 Temperature Sensor Value (read by ADC) at TH: LSB TEMP_TH_7_0 Read-only 0x00 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 14 4.3 Voltage Reference Value at TL: MSB Name: REF_TL_11_8 Access: Read-only 7 — 6 — 5 — 4 — 3 2 1 0 1 0 REF_TL[11:8] • REF_TL[11:8]: 4 MSB of REF_TL[11:0] 4.4 Voltage Reference Value at TL: LSB Name: REF_TL_7_0 Access: Read-only 7 6 5 4 3 2 REF_TL[7:0] • REF_TL[7:0]: 8 LSB of REF_TL[11:0] ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 15 4.5 Temperature Sensor Value at TL: MSB Name: TEMP_TL_11_8 Access: Read-only 7 — 6 — 5 — 4 — 3 2 1 0 1 0 TEMP_TL[11:8] • TEMP_TL[11:8]: 4 MSB of TEMP_TL[11:0] 4.6 Temperature Sensor Value at TL: LSB Name: TEMP_TL_7_0 Access: Read-only 7 6 5 4 3 2 TEMP_TL[7:0] • TEMP_TL[7:0]: 8 LSB of TEMP_TL[11:0] ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 16 4.7 Voltage Reference Value at TH: MSB Name: REF_TH_11_8 Access: Read-only 7 — 6 — 5 — 4 — 3 2 1 0 1 0 REF_TH[11:8] • REF_TH[11:8]: 4 MSB of REF_TH[11:0] 4.8 Voltage Reference Value at TH: LSB Name: REF_TH_7_0 Access: Read-only 7 6 5 4 3 2 REF_TH[7:0] • REF_TH[7:0]: 8 LSB of REF_TH[11:0] ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 17 4.9 Temperature Sensor Value at TH: MSB Name: TEMP_TH_11_8 Access: Read-only 7 — 6 — 5 — 4 — 3 2 1 TEMP_TH[11:8] 0 3 2 0 • TEMP_TH[11:8]: 4 MSB of TEMP_TH[11:0] 4.10 Temperature Sensor Value at TH: LSB Name: TEMP_TH_7_0 Access: Read-only 7 6 5 4 1 TEMP_TH[7:0] • TEMP_TH[7:0]: 8 LSB of TEMP_TH[11:0] ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 18 4.11 Correction Algorithm For H-grade products, it is possible to compensate the drift of the voltage reference by using the calibration registers described above. The following formula is used to estimate VREF at a given temperature: ( ADC_TEMP_OUT-TEMP_TL ) VREF ( ADC_TEMP_OUT ) = VREF ( TL ) + -------------------------------------------------------------------------------- ⋅ ( VREF ( TH ) – VREF ( TL ) ) ( TEMP_TH-TEMP_TL ) where: VREF(ADC_TEMP_OUT): Estimated VREF value when the temperature sensor reading is ADC_TEMP_OUT VREF(TL): VREF value at temperature TL retrieved from REF_TL[11:0] VREF(TH): VREF value at temperature TH retrieved from REF_TH[11:0] TEMP(TL): ADC_TEMP_OUT value at temperature TL retrieved from TEMP_TL[11:0] TEMP(TH): ADC_TEMP_OUT value at temperature TH retrieved from TEMP_TL[11:0] ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 19 5. SPI Controller 5.1 Description The SPI controller is an interface between the serial peripheral interface communication port the decimation filter output data in 2’s complement format the analog functions (ADC, LDO and reference voltage) The SPI port provides read/write access to internal registers (Table 4-1 on page 14). This serial port features a burst transmission mode with variable data size that captures up to 7 x 32-bit ADC output results into one single access. 5.2 SPI Serial Port 5.2.1 Description The SPI interface protocol permits writing to and/or reading registers. Moreover, a burst mode allows the fast acquisition of multiple registers or a write on multiple registers. With this function, the size of the data can easily vary. For example, two adjacent registers can be accessed at the same time by addressing the first register (lowest address value) and extending the quantity of serial clock edges. The SPI interface is compatible with SPI modes 1 and 2. Data are latched on falling edges of SCLK while they are generated on the rising edges of SCLK. The idle state of SCLK can be either high or low. 5.2.2 Protocol A transfer occurs when the NPCS signal is low. The incoming stream on MOSI is decoded on SCLK falling edge. The first received bit indicates the direction of the operation, where 0 indicates a write and 1 a read. The seven subsequent bits contain the address of the register to read or write. The following bytes are data which are either emitted on the MISO line in case of a read operation, or decoded on the MOSI line in case of a write operation. The first data address corresponds to the first decoded address. The address pointer is then incremented each time a new byte is read or written. The operation ends when NPCS goes high. If NPCS goes high before the end of a byte transfer, the current byte operation is cancelled. For a read operation, no further data are sent on the MISO line. For a write operation, no data is written into the currently decoded address. All previous byte operations are valid. Figure 5-1. MODE 1 Multi-Byte Write Operation NPCS SCLK MOSI Write A6 A0 D7 D0 D7 D0 MISO address: A[6:0] Byte to write @A[6:0] Byte to write @A[6:0]+1 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 20 Figure 5-2. MODE 2 Multi-Byte Write Operation NPCS SCLK MOSI Write A6 A0 D7 D0 D7 D0 MISO address: A[6:0] Figure 5-3. Byte to write @A[6:0] Byte to write @A[6:0]+1 MODE 1 Multi-Byte Read Operation NPCS SCLK MOSI Read A6 A0 MISO D7 address: A[6:0] Figure 5-4. D0 D7 reg(A[6:0]) D0 reg(A[6:0]+1) MODE 2 Multi-Byte Read Operation NPCS SCLK MOSI Read A6 A0 MISO D7 address: A[6:0] D0 reg(A[6:0]) D7 D0 reg(A[6:0]+1) ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 21 6. Interrupt Controller The Interrupt Controller generates three interrupts: ADC ready interrupt Overrun interrupt Underrun interrupt The interrupts can be detected by either polling the Interrupt Status register (ITSR) and/or by configuring the ITOUT output line. Because it is open-drain, this output needs to be pulled-up to VDDIO. When activated, the ITOUT line goes low when an interrupt event occurs. It goes into Hi-Z state as soon as the interrupt source has been reset. Refer to “Output Interrupt Line Control Register” on page 43, “Interrupt Control Register” on page 44 and “Interrupt Status Register” on page 45 for more information on the interrupt line configuration 6.1 ADC Ready The ADC_RDY interrupt rises at each new conversion frame, thus when an ADC is enabled, it reports that a new set of data is available. It is reset either on the read of at least one ADC register (addresses from ADCI0_TAG to ADCV3_7_0) or on the read of the status register. As the user may not need all converted values of the ADCs, only the first access to an ADC data is taken into account to reset this interrupt. 6.2 Overrun If ADC data acquisition registers are accessed twice within the same conversion period, the OVRES interrupt rises. It is reset on the read of the status register. 6.3 Underrun If two synchronous signals occur without any ADC data acquisition, the UNDES interrupt rises. It is reset on the read of the status register. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 22 7. SPI Controller User Interface Table 7-1. Register Mapping Offset 0x00 Register (2) ADCI0 TAG Register (1) Name Access Reset ADCI0_TAG Read-only 0x01 0x01 (0x00 ) ADCI0 Output Bits 23 to 16 Read Register ADCI0_23_16 Read-only 0x00 0x02 (0x01(1)) ADCI0 Output Bits 15 to 8 Read Register ADCI0_15_8 Read-only 0x00 ADCI0 Output Bits 7 to 0 Read Register ADCI0_7_0 Read-only 0x00 ADCI1 TAG Register ADCI1_TAG Read-only 0x02 0x03 (2) 0x04 (2) (1) 0x05 (0x02 ) ADCI1 Output Bits 23 to 16 Read Register ADCI1_23_16 Read-only 0x00 0x06 (0x03(1)) ADCI1 Output Bits 15 to 8 Read Register ADCI1_15_8 Read-only 0x00 ADCI1 Output Bits 7 to 0 Read Register ADCI1_7_0 Read-only 0x00 ADCV1_TAG Read-only 0x03 0x07 (2) 0x08 (2) ADCV1_TAG Register (1) 0x09 (0x04 ) ADCV1 Output Bits 23 to 16 Read Register ADCV1_23_16 Read-only 0x00 0x0a (0x05(1)) ADCV1 Output Bits 15 to 8 Read Register ADCV1_15_8 Read-only 0x00 ADCV Output Bits 7 to 0 Register ADCV1_7_0 Read-only 0x00 ADCI2_TAG Read-only 0x04 ADCI2_23_16 Read-only 0x00 ADCI2_15_8 Read-only 0x00 ADCI2_7_0 Read-only 0x00 ADCV2_TAG Read-only 0x05 ADCV2_23_16 Read-only 0x00 ADCV2_15_8 Read-only 0x00 ADCV2_7_0 Read-only 0x00 ADCI3_TAG Read-only 0x06 ADCI3_23_16 Read-only 0x00 ADCI3_15_8 Read-only 0x00 ADCI3_7_0 Read-only 0x00 ADCV3_TAG Read-only 0x07 ADCV3_23_16 Read-only 0x00 ADCV3_15_8 Read-only 0x00 ADCV3_7_0 Read-only 0x00 0x0b 0x0c (2) (2) (3) ADCI2_TAG Register (1) (3) 0x0d (0x06 ) ADCI2 Output Bits 23 to 16 Read Register 0x0e (0x07(1)) ADCI2 Output Bits 15 to 8 Read Register(3) 0x0f (2) 0x10 ADCI2 Output Bits 7 to 0 Read Register (2) ADCV2_TAG Register (1) (3) (3) (3) 0x11 (0x08 ) ADCV2 Output Bits 23 to 16 Read Register 0x12 (0x09(1)) ADCV2 Output Bits 15 to 8 Read Register(3) 0x13 (2) 0x14 (2) ADCV2 Output Bits 7 to 0 Read Register (3) (3) ADCI3_TAG Register (1) (3) 0x15 (0x0a ) ADCI3 Output Bits 23 to 16 Read Register 0x16 (0x0b(1)) ADCI3 Output Bits 15 to 8 Read Register(3) 0x17 (2) 0x18 (2) ADCI3 Output Bits 7 to 0 Read Register ADCV3_TAG Register (1) (3) (3) (3) 0x19 (0x0c ) ADCV3 Output Bits 23 to 16 Read Register 0x1a (0x0d(1)) ADCV3 Output Bits 15 to 8 Read Register(3) 0x1b (2) ADCV3 Output Bits 7 to 0 Read Register (3) 0x20 ADCI0 Controls Register SDI0 Read/Write 0x00 0x21 ADCI1 Controls Register SDI1 Read/Write 0x00 0x22 ADCV1 Controls Register SDV1 Read/Write 0x00 SDI2 Read/Write 0x00 SDV2 Read/Write 0x00 SDI3 Read/Write 0x00 SDV3 Read/Write 0x00 0x23 0x24 ADCI2 Controls Register (3) ADCV2 Controls Register (3) (3) 0x25 ADCI3 Controls Register 0x26 ADCV3 Controls Register(3) ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 23 Table 7-1. Offset Register Mapping Register Name Access Reset ANA_CTRL Read/Write 0x00 ATCFG Read/Write 0x03 ATSR Read-only — ITOUTCR Read/Write 0x04 0x27 Analog Controls Register 0x28 ATSENSE Configuration Register 0x29 ATSENSE Status Register 0x2a Output Interrupt Line Control Register 0x2b Interrupt Control Register ITCR Read/Write 0x00 0x2c Interrupt Status Register ITSR Read-only 0x00 0x2d Software Reset Register SOFT_NRESET Write-only 0x00 Notes: 1. Address value if the MSB mode is activated (see Section 7.37 ”ATSENSE Configuration Register”). 2. This register cannot be read if the MSB mode is activated (see Section 7.37 ”ATSENSE Configuration Register”). 3. Only for ATSENSE-201(H)/ATSENSE-301(H). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 24 7.1 ADCI0 TAG Register Name: ADCI0_TAG Access: Read-only 7 – 6 – 5 DATA_VALID 4 TEMPMEAS 3 2 1 0 TAGI0 • TAGI0: TAG of the Anti-tamper ADC Channel TAGI0 is equal to 1. • TEMPMEAS: Temperature Measurement Status 0: The external input of the TAMPER ADC is measured. 1: The temperature sensor input of the TAMPER ADC is measured. • DATA_VALID: I0 Channel Data Validity Status 0: The current data is not valid. 1: The current data is valid. When the source of the ADCI0 channel switches, the decimation filter needs a few samples to stabilize its response (group delay of the filter). Data acquired while DATA_VALID is null are not valid. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 25 7.2 ADCI0 Output Bits 23 to 16 Read Register Name: ADCI0_23_16 Access: Read-only 7 6 5 4 3 2 1 0 ADCI0[23:16] • ADCI0_23_16: Bits 23 to 16 of the Anti-tamper ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.3 ADCI0 Output Bits 15 to 8 Read Register Name: ADCI0_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCI0[15:8] • ADCI0_15_8: Bits 15 to 8 of the Anti-tamper ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.4 ADCI0 Output Bits 7 to 0 Read Register Name: ADCI0_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCI0[7:0] • ADCI0_7_0: Bits 7 to 0 of the Anti-tamper ADC Channel This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 26 7.5 ADCI1 TAG Register Name: ADCI1_TAG Access: Read-only 7 6 5 4 3 2 1 0 1 0 TAGI1 • TAGI1: TAG of the I1 ADC Channel TAGI1 is equal to 2. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.6 ADCI1 Output Bits 23 to 16 Read Register Name: ADCI1_23_16 Access: Read-only 7 6 5 4 3 2 ADCI1[23:16] • ADCI1_23_16: Bits 23 to 16 of the I1 ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.7 ADCI1 Output Bits 15 to 8 Read Register Name: ADCI1_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCI1[15:8] • ADCI1_15_8: Bits 15 to 8 of the I1 ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.8 ADCI1 Output Bits 7 to 0 Read Register Name: ADCI1_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCI1[7:0] • ADCI1_7_0: bits 7 to 0 of the I1 ADC channel This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 27 7.9 ADCV1 TAG Register Name: ADCV1_TAG Access: Read-only 7 6 5 4 3 2 1 0 1 0 TAGV1 • TAGV1: TAG of the V1 ADC Channel TAGV1 is equal to 3. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.10 ADCV1 Output Bits 23 to 16 Read Register Name: ADCV1_23_16 Access: Read-only 7 6 5 4 3 2 ADCV1[23:16] • ADCV1_23_16: Bits 23 to 16 of the V1 ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.11 ADCV1 Output Bits 15 to 8 Read Register Name: ADCV1_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCV1[15:8] • ADCV1_15_8: Bits 15 to 8 of the V1 ADC Channel The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.12 ADCV1 Output Bits 7 to 0 Read Register Name: ADCV1_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCV1[7:0] • ADCV1_7_0: Bits 7 to 0 of the V1 ADC Channel This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 28 7.13 ADCI2 TAG Register Name: ADCI2_TAG Access: Read-only 7 6 5 4 3 2 1 0 TAGI2 • TAGI2: TAG of the I2 ADC Channel TAGI2 is equal to 4. This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.14 ADCI2 Output Bits 23 to 16 Read Register Name: ADCI2_23_16 Access: Read-only 7 6 5 4 3 2 1 0 ADCI2[23:16] • ADCI2_23_16: Bits 23 to 16 of the I2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.15 ADCI2 Output Bits 15 to 8 Read Register Name: ADCI2_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCI2[15:8] • ADCI2_15_8: Bits 15 to 8 of the I2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.16 ADCI2 Output Bits 7 to 0 Read Register Name: ADCI2_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCI2[7:0] • ADCI2_7_0: Bits 7 to 0 of the I2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 29 7.17 ADCV2 TAG Register Name: ADCV2_TAG Access: Read-only 7 6 5 4 3 2 1 0 1 0 TAGV2 • TAGV2: TAG of the V2 ADC Channel TAGV2 is equal to 5. This register is available only in ATSENSE-201(H)/ATSENSE-301(H). This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.18 ADCV2 Output Bits 23 to 16 Read Register Name: ADCV2_23_16 Access: Read-only 7 6 5 4 3 2 ADCV2[23:16] • ADCV2_23_16: Bits 23 to 16 of the V2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.19 ADCV2 Output Bits 15 to 8 Read Register Name: ADCV2_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCV2[15:8] • ADCV2_15_8: Bits 15 to 8 of the V2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.20 ADCV2 Output Bits 7 to 0 Read Register Name: ADCV2_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCV2[7:0] • ADCV2_7_0: Bits 7 to 0 of the V2 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 30 7.21 ADCI3 TAG Register Name: ADCI3_TAG Access: Read-only 7 6 5 4 3 2 1 0 TAGI3 • TAGI3: TAG of the I3 ADC Channel TAGI3 is equal to 6. This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.22 ADCI3 Output Bits 23 to 16 Read Register Name: ADCI3_23_16 Access: Read-only 7 6 5 4 3 2 1 0 ADCI3[23:16] • ADCI3_23_16: Bits 23 to 16 of the I3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.23 ADCI3 Output Bits 15 to 8 Read Register Name: ADCI3_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCI3[15:8] • ADCI3_15_8: Bits 15 to 8 of the I3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.24 ADCI3 Output Bits 7 to 0 Read Register Name: ADCI3_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCI3[7:0] • ADCI3_7_0: Bits 7 to 0 of the I3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 31 7.25 ADCV3 TAG Register Name: ADCV3_TAG Access: Read-only 7 6 5 4 3 2 1 0 TAGV3 • TAGV3: TAG of the V3 ADC Channel TAGV3 is equal to 7. This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). 7.26 ADCV3 Output Bits 23 to 16 Read Register Name: ADCV3_23_16 Access: Read-only 7 6 5 4 3 2 1 0 ADCV3[23:16] • ADCV3_23_16: Bits 23 to 16 of the V3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.27 ADCV3 Output Bits 15 to 8 Read Register Name: ADCV3_15_8 Access: Read-only 7 6 5 4 3 2 1 0 ADCV3[15:8] • ADCV3_15_8: Bits 15 to 8 of the V3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. The address value of this register depends on the value of the MSB_MODE bit (see Table 7-1 on page 23). 7.28 ADCV3 Output Bits 7 to 0 Read Register Name: ADCV3_7_0 Access: Read-only 7 6 5 4 3 2 1 0 ADCV3[7:0] • ADCV3_7_0: Bits 7 to 0 of the V3 ADC Channel This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. This register is not accessible if the MSB_MODE bit is enabled (see Section 7.37 on page 41). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 32 7.29 ADCI0 Controls Register Name: SDI0 Access: Read/Write 7 – 6 – 5 4 GAIN 3 – 2 – 1 TEMPMEAS 0 ONADC • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. • TEMPMEAS: Temperature Measurement Activation 0: The external input of the TAMPER ADC is measured. 1: The temperature sensor input of the TAMPER ADC is measured. This register must not be modified as long as the DATA_VALID bit is low (see “ADCI0 TAG Register” on page 25). • GAIN: Gain Configuration of the ADC Value Name Description 0 ADC_GAINX1 Input stage of the ADC has a gain of 1 1 ADC_GAINX2 Input stage of the ADC has a gain of 2 2 ADC_GAINX4 Input stage of the ADC has a gain of 4 3 ADC_GAINX8 Input stage of the ADC has a gain of 8 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 33 7.30 ADCI1 Controls Register Name: SDI1 Access: Read/Write 7 – 6 – 5 4 GAIN 3 – 2 – 1 – 0 ONADC • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. • GAIN: Gain Configuration of the ADC Value Name Description 0 ADC_GAINX1 Input stage of the ADC has a gain of 1 1 ADC_GAINX2 Input stage of the ADC has a gain of 2 2 ADC_GAINX4 Input stage of the ADC has a gain of 4 3 ADC_GAINX8 Input stage of the ADC has a gain of 8 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 34 7.31 ADCV1 Controls Register Name: SDV1 Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 ONADC • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 35 7.32 ADCI2 Controls Register Name: SDI2 Access: Read/Write 7 – 6 – 5 4 GAIN 3 – 2 – 1 – 0 ONADC This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. • GAIN: Gain Configuration of the ADC Value Name Description 0 ADC_GAINX1 Input stage of the ADC has a gain of 1 1 ADC_GAINX2 Input stage of the ADC has a gain of 2 2 ADC_GAINX4 Input stage of the ADC has a gain of 4 3 ADC_GAINX8 Input stage of the ADC has a gain of 8 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 36 7.33 ADCV2 Controls Register Name: SDV2 Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 ONADC This register is available only in ATSENSE-201(H)/ATSENSE-301(H). • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 37 7.34 ADCI3 Controls Register Name: SDI3 Access: Read/Write 7 – 6 – 5 4 GAIN 3 – 2 – 1 – 0 ONADC This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. • GAIN: Gain Configuration of the ADC Value Name Description 0 ADC_GAINX1 Input stage of the ADC has a gain of 1 1 ADC_GAINX2 Input stage of the ADC has a gain of 2 2 ADC_GAINX4 Input stage of the ADC has a gain of 4 3 ADC_GAINX8 Input stage of the ADC has a gain of 8 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 38 7.35 ADCV3 Controls Register Name: SDV3 Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 ONADC This register is available only in ATSENSE-201(H)/ATSENSE-301(H). In ATSENSE-201(H), it should be ignored. • ONADC: ADC Enable 0: ADC is disabled. 1: ADC is enabled. When set, this bit can be read at one only after 768 µs. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 39 7.36 Analog Controls Register Name: ANA_CTRL Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 ONLDO 1 ONREF 0 ONBIAS • ONBIAS: Enable of the Current Bias Generator 0: The current bias generator is disabled. 1: The current bias generator is enabled. • ONREF: Enable of the Voltage Reference 0: The voltage reference is disabled. 1: The voltage reference is enabled. When set, this bit can be read at one after 768 µs. • ONLDO: Enable of the Internal LDO 0: The LDO is disabled. 1: The LDO is enabled. When set, this bit can be read at one after 928 µs. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 40 7.37 ATSENSE Configuration Register Name: ATCFG Access: Read/Write 7 – 6 – 5 – 4 MSB_MODE 3 – 2 – 1 0 OSR • OSR: OSR of the Decimation Filters Value Name Description 0 OSR8 OSR of the system is 8 1 OSR16 OSR of the system is 16 2 OSR32 OSR of the system is 32 3 OSR64 OSR of the system is 64 The oversampling ratio (OSR) is the ratio between the input sampling rate FSin(ADC sampling rate, typically 1.024 MHz) and the output sampling rate FSout of the decimation filter. . F Sin F Sout = ----------OSR The OSR must be set before switching on any ADC. Its value must not be changed if any of the ADCs are operating. • MSB_MODE: Selection Between 32-bit or 16-bit ADC Mode Value Name Description 0 32BITS_MODE The interface sends an 8-bit tag followed by the 24 bits of the ADC conversion (ADCx_TAG, ADCx_23_16, ADCx_15_8 and ADCx_7_0 registers). 1 16BITS_MODE The interface sends the 16 MSB of the ADC conversion (ADCx_23_16 and ADCx_15_8 registers). The addresses of these registers are modified while ADCx_TAG and ADCx_7_0 are no longer readable. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 41 7.38 ATSENSE Status Register Name: ATSR Access: Read-only 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 SYSRDY • SYSRDY: System Ready 0: The system is not ready. 1: The system is ready. Each time a soft or a hard reset is performed, the system operates initialization operations. ATSR indicates the end of these operations. While ATSR is not high, no write access is possible in the registers. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 42 7.39 Output Interrupt Line Control Register Name: ITOUTCR Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 ADC_RDY_OUT 1 UNDES_OUT 0 OVRES_OUT • OVRES_OUT: Overrun Output Enable 1: The OVRES interrupt activates the ITOUT output. 0: The OVRES interrupt does not activate the ITOUT output. • UNDES_OUT: Underrun Output Enable 1: The UNDES interrupt activates the ITOUT output. 0: The UNDES interrupt does not activate the ITOUT output. • ADC_RDY_OUT: ADC Ready Output Enable 1: The ADC_RDY interrupt activates the ITOUT output. 0: The ADC_RDY interrupt does not activate the ITOUT output. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 43 7.40 Interrupt Control Register Name: ITCR Access: Read/Write 7 – 6 – 5 – 4 – 3 – 2 ADC_RDY_EN 1 UNDES_EN 0 OVRES_EN • OVRES_EN: Overrun Interrupt Enable 0: The generation of the overrun interrupt is disabled. 1: The generation of the overrun interrupt is enabled. The ovres status generation should be disabled in case of access to data registers through multiple SPI accesses (not simultaneously with the burst mode). In this case, the interrupt is generated as soon as the second access is performed. • UNDES_EN: Underrun Interrupt Enable 0: The generation of the underrun interrupt is disabled. 1: The generation of the underrun interrupt is enabled. • ADC_RDY_EN: ADC Ready Interrupt Enable 0: The generation of the ADC ready interrupt is disabled. 1: The generation of the ADC ready interrupt is enabled. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 44 7.41 Interrupt Status Register Name: ITSR Access: Read-only 7 – 6 – 5 – 4 – 3 – 2 ADC_RDY 1 UNDES 0 OVRES • OVRES: Overrun Status An overrun occurs when the host reads the data registers twice without updating the register values. The ovres status generation should be disabled if data registers are read by multiple SPI accesses (not at once with the burst mode). In this case, the interrupt will be generated as soon as the second read access is performed. This register is reset on read. • UNDES: Underrun Status An underrun occurs when two data register updates occur without read operation. This register is reset on read. • ADC_RDY: ADC Ready Status ADC ready interrupt is generated as soon as one ADC conversion is performed. This register is reset on read. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 45 7.42 Software Reset Register Name: SOFT_NRESET Access: Write-only 7 – 6 – 5 – 4 – 3 – 2 – 1 – 0 NRESET • NRESET: Chip Reset When low, the entire chip is in reset state except the SPI interface and the SOFT_NRESET register. When high, the reset state is released. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 46 8. Software Example This section details the steps to power up the ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) devices. 1. Power the VDDIO / VDDIN plane with a 3.3V voltage. 2. If internal VDDA regulator is not used, power the VDDA pin with a 2.8V voltage. 3. If internal voltage reference is not used, power the VREF pin with a 1.2V standard voltage reference. 4. Release the internal reset: 5. – SPI_WRITE 0x01 @ 0x2D [SOFT_NRESET]. If used, start the VDDA regulator: 6. – SPI_WRITE 0x04 @ 0x27 [ANA_CTRL]. Start the analog BIAS generator: 7. – SPI_WRITE 0x05 @ 0x27. If used, start the voltage reference: 8. – SPI_WRITE 0x07 @ 0x27. Wait 100 ms to account for VREF settling. Enable the interrupts: 9. – SPI_WRITE 0x07 @ 0x2A [ITCR], Enable the output interrupt line: – SPI_WRITE 0x07 @ 0x2B [ITOUTCR], 10. Start the converters: – SPI_WRITE 0x31 @ 0x20 [SDI0], channel I0 ON with gain x8, – SPI_WRITE 0x31 @ 0x21 [SDI1], channel I1 ON with gain x8, – SPI_WRITE 0x01 @ 0x22 [SDV1], channel V1 ON, – SPI_WRITE 0x31 @ 0x23 [SDI2], channel I2 ON with gain x8,(2) – SPI_WRITE 0x01 @ 0x24 [SDV2], channel V2 ON,(1) – SPI_WRITE 0x31 @ 0x25 [SDI3], channel I3 ON with gain x8,(2) – SPI_WRITE 0x01 @ 0x26 [SDV3], channel V3 ON.(2) 11. Upon interrupt line ITOUT negative edge, read the ADC conversion results in registers ranging from address 0x00 to 0x1B. Notes: 1. 2. Only for ATSENSE-201(H)/ATSENSE-301(H). Only for ATSENSE-301(H). ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 47 9. Electrical Characteristics 9.1 Absolute Maximum Ratings Table 9-1. Absolute Maximum Ratings* Storage temperature . . . . . . . . . . . . . . . . . . .-55°C to +150°C *NOTICE: Power Supply Input on VDDIO, VDDIN . . . . . . -0.3V to +4.0V Digital I/O Input Voltage . . . . . . . . . . . . . . . . . . -0.3V to +4.0V Analog Input Voltage on VPx, VN, IPx, INx . . . -2.0V to +4.0V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +4.0V Maximum Output Current per Pin. . . . . . . . . . . . . . . . 100 mA ESD (all pins) . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 KV HBM(1) Notes: 1. According to specifications MIL-883-Method 3015.7 (HBM - Human Body Model) 9.2 Recommended Operating Conditions Table 9-2. Recommended Operating Conditions Parameter Condition Min Max Units Operating Ambient Temperature – -40 85 °C Power Supply Input VVDDIO ,VVDDIN 3.0 3.6 V Digital I/O Input Voltage – -0.3 VVDDIO + 0.3 V Analog Inputs Voltage Range On IP{0,1,2,3}, IN{0,1,2,3} and VP{1,2,3} -0.25 0.25 V 9.3 Current Consumption Table 9-3. Current Consumption Symbol Parameter Comments Min Typ Max Units IDD_OFF Device not started. Master Clock not running. VVDDIO = VVDDIN = 3.3V – 1 2 µA IDD_ON_k.ADC k Channels ON (k≥1), Voltage Reference ON, LDO regulator ON. Master Clock @ 4.096 MHz, VVDDIO = VVDDIN = 3.3V – 1.4 + k × 0.75 1.9 + k × 1.1 mA ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 48 9.4 Power-On-Reset Thresholds Table 9-4. Power-On-Reset Thresholds Symbol Parameter Comments Min Typ Max Units VT_RISE VVDDIO Rising Threshold DC level 2.5 2.6 2.8 V VT_FALL VVDDIO Falling Threshold DC level 2.35 2.5 2.65 V VT_HYST VT_RISE - VT_FALL – 90 120 180 mV 9.5 Digital I/Os DC Characteristics Table 9-5. Digital I/Os Characteristics Symbol Parameter Comments Min Typ Max Units VVDDIO Operating Supply Voltage – 3.0 – 3.6 V VIL Input Low-Level Voltage – -0.3 – 0.3 × VVDDIO V VIH Input High-Level Voltage – 0.7 × VVDDIO – VVDDIO + 0.3 V VOL Output Low-Level Voltage IO max. – – 0.25 × VVDDIO V VOH Output Low-Level Voltage IO max. 0.75 × VVDDIO – – V IO Output Current (sink or source) – – – 8 mA ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 49 9.6 Measurement Channels Unless otherwise specified: External components according to Section 3. ”Application Block Diagram”: CVREF = 1 µF and CVDDA = 1 µF, MCLK = 4.096 MHz, VDDIN = VDDIO = 3.3V, Noise Bandwidth = [30Hz, 2kHz], TJ = [-40°C ; +100°C] Table 9-6. Measurement Channel Electrical Characteristics Symbol Parameter Comments Min Typ Max Units VVDDA Operating Supply Voltage – 2.7 2.8 2.9 V Channel Supply Current(1) in VDDIO and VDDA OFF – – 1 µA IVDD ON – 0.75 1 mA fMCLK Master Clock Input Frequency – 3.9 4.096 4.3 MHz DutyMCLK Master Clock Input Duty Cycle – 48 – 52 % VIND_FS A/D Converter Input Referred Full Scale Voltage(2) VREF = 1.2V VIND = VVPx or VIND = VIPx - VINx G: Channel Gain = {1, 2, 4 or 8} – 1.2 / G – VPP VCM_IN Common Mode Input Voltage Range (VIPx + VINx) / 2 -20 – 20 mV ZIN0 Common Mode Input Impedance at TJ0 = 23°C G: Channel Gain = {1, 2, 4 or 8} On VPx , VIPx , VINx pins. FMCLK = 4.096 MHz 400 / G 480 / G 560 / G kΩ Gain = 1, VIND = 1.000 VPP – 84 – Gain = 1, VIND = 0.500 VPP(3) – 78 – Gain = 2, VIND = 0.500 VPP – 84 – Gain = 4, VIND = 0.250 VPP – 82 – Gain = 8, VIND = 0.125 VPP – 81 – Gain = 1 – 21 – Gain = 2 – 10 – Gain = 4 – 6 – Gain = 8 – 3.3 – Gain = 1 – 470 – Gain = 2 – 220 – Gain = 4 – 130 – Gain = 8 – 73 – SINADPEAK EN SN Peak Signal to Noise and Distortion Ratio FIN = 45 to 66Hz BW = [30 Hz, 2 kHz] Input Referred Noise Voltage integrated over [30 Hz, 2 kHz] Input Referred Noise Voltage Density at fundamental frequency. (Between 45 and 66 Hz) dB µVRMS nV/√Hz EG0 Gain Error TJ0 = 23°C. VREF = 1.2V -3 – 3 % TCG Channel Gain drift with temperature(4) -40°C < TJ < 100°C, VREF = 1.2V RSOURCE = 3kΩ – -5 – ppm /°C VOS0 Input Referred Offset TJ0 = 23°C -5 / G – 5/G mV TCVOS VOS drift with temperature -40°C < TJ < 100°C -2 – +2 µV/°C Notes: 1. Current consumption per measurement channel. 2. VIND may be limited by the recommended input voltage on analog input pins (±0.25V, See Table 9-2, “Recommended Operating Conditions” ). 3. Corresponds to the maximum signal on the voltage channel(s). 4. Includes the input impedance drift with temperature. ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 50 9.7 Voltage Reference and Die Temperature Sensor Unless otherwise specified: External components according to Section 3. ”Application Block Diagram”: CVREF=1 µF and CVDDA =1 µF, MCLK = 4.096 MHz, VVDDIN = VVDDIO = 3.3V, TJ = [-40°C; +100°C]. Table 9-7. Voltage Reference and Die Temperature Sensor Electrical Characteristics Symbol Parameter Comments Min Typ Max Units VVDDA Operating Supply Voltage – 2.7 2.8 2.9 V OFF – – 0.1 IVDDA Supply Current ON – 70 100 VREF0 Output voltage initial accuracy 1.142 1.144 1.146 Uncompensated – 50 – Using factory programmed calibration registers. – 10 – TCVREF_U TCVREF_C VREF drift with temperature(1) µA At TJ0 = 23°C V ppm /°C ROUT VREF output resistance – 200 500 800 Ω DTEMP_Lin Die Temperature Sensor, Digital Reading Linearity – – +/-2 – °C IVREF_OFF Current in VREF pin when internal voltage reference is OFF – -100 – 100 nA Note: 1. TC is defined using the box method: TC = (VREF_MAX - VREF_MIN) / (VREF0 x (TMAX - TMIN) ) 9.8 VDDA LDO Regulator Unless otherwise specified: External components according to Section 3. ”Application Block Diagram”: CVREF = 1 µF and CVDDA = 1 µF, MCLK = 4.096 MHz, VDDIN = VDDIO = 3.3V, TJ = [-40°C; +100°C]. Table 9-8. VDDA LDO Regulator Symbol Parameter Comments Min Typ Max Units VVDDIN Operating Supply Voltage – 3.0 3.3 3.6 V OFF – – 0.1 IVDDIN Supply Current ON – – 250 IO Output Current – – – 15 mA VO DC Output Voltage IO = 0mA 2.75 2.8V 2.85 V dVO / dIO Static Load Regulation IO: 0 to IOMAX -5 – – mV/mA dVO/ dVVDDIN Static Line Regulation VDDIN: 3.0V to 3.6VV -5 – +5 mV/V f = DC to 2000 Hz – 40 – PSRR Power Supply Rejection Ratio f = 1 MHz – 40 – VO from 0 to 95% of final value. IO= 0mA – – 1 ms Capacitive 0.5 1 4.7 µF Resistive 5 10 300 mΩ tSTART Start-Up time CO Stable Output Capacitor Range µA dB ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 51 10. Mechanical Characteristics Figure 10-1. 20-lead SOIC Package ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 52 Figure 10-2. 32-lead TQFP Package Sept 20, 2012. GPC TITLE Thin Quad Flat Pack (TQFP), 32 Pins Body: 7 x 7 x 1.0 mm Pitch 0.8 mm AUT DRAWING NO. REV. R-TQ032_E ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 A 53 11. Ordering Information Table 11-1. Ordering Information Ordering Code Package Carrier Type ATSENSE101A-SUR SOIC20 Tape & Reel ATSENSE101A-SU SOIC20 Tube TQFP32 Tape & Reel TQFP32 Tray TQFP32 Tape & Reel TQFP32 Tray Package Type Temperature Operating Range Green Industrial (-40°C to +85°C) ATSENSE201A-AUR ATSENSE201HA-AUR ATSENSE201A-AU ATSENSE201HA-AU ATSENSE301A-AUR ATSENSE301HA-AUR ATSENSE301A-AU ATSENSE301HA-AU ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 54 12. Revision History In the table that follows, the most recent version of the document appears first. Table 12-1. Doc. Date ATSENSE-101/-201(H)/-301(H) Datasheet Rev. 11219B Revision History Changes Removed preliminary status. ATSENSE-201(H) device added to the datasheet in “Description” and“Features”. Figure 3-2 “ATSENSE-201(H) Typical Application Block Diagram” added. Section 2. “Package and Pinout”: added ATSENSE-201(H) Updated register descriptions for use with ATSENSE-201(H) from “ADCI2 TAG Register” to “ADCV3 Output Bits 7 to 0 Read Register” and from “ADCI2 Controls Register” to “ADCV3 Controls Register”. 20-Feb-14 Section 9.6 “Measurement Channels”, Section 9.7 “Voltage Reference and Die Temperature Sensor” and Section 9.8 “VDDA LDO Regulator”: In introduction text, corrected CVREFand CVDDA units to µF. Table 9-6 “Measurement Channel Electrical Characteristics”: Added condition with typ value for SINADPEAK Table 9-8 “VDDA LDO Regulator”: Updated min, typ and max values and modified units for parameters Static Load Regulation and Static Line Regulation. Changed typ value for parameter Power Supply Rejection Ration for condition f = 1 MHz. Table 11-1 “Ordering Information”: added ATSENSE-201(H) ordering codes. Added ATSENSE101A-SUR. Table 12-2. ATSENSE-101/-301(H) Datasheet Rev. 11219A 15-Oct-13 Revision History Doc. Date Changes 15-Oct-13 First Issue ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 55 Table of Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Package and Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 2.2 ATSENSE-201(H) / ATSENSE-301(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ATSENSE-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3. Application Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Conversion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Voltage Reference, Die Temperature Measurement and Calibration Registers 13 Voltage Reference Value at TL: MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Voltage Reference Value at TL: LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Temperature Sensor Value at TL: MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Temperature Sensor Value at TL: LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Voltage Reference Value at TH: MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Voltage Reference Value at TH: LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Temperature Sensor Value at TH: MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Temperature Sensor Value at TH: LSB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Correction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5. SPI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 5.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI Serial Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6. Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.1 6.2 6.3 ADC Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Overrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Underrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7. SPI Controller User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 ADCI0 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ADCI0 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADCI0 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADCI0 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADCI1 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADCI1 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADCI1 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADCI1 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADCV1 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADCV1 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADCV1 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADCV1 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ADCI2 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ADCI2 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ADCI2 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ADCI2 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 56 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 7.40 7.41 7.42 ADCV2 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ADCV2 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ADCV2 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ADCV2 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ADCI3 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ADCI3 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ADCI3 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ADCI3 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ADCV3 TAG Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ADCV3 Output Bits 23 to 16 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ADCV3 Output Bits 15 to 8 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ADCV3 Output Bits 7 to 0 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ADCI0 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ADCI1 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ADCV1 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ADCI2 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ADCV2 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ADCI3 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ADCV3 Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Analog Controls Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ATSENSE Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ATSENSE Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Output Interrupt Line Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8. Software Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-On-Reset Thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital I/Os DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Reference and Die Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . VDDA LDO Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 48 48 49 49 50 51 51 10. Mechanical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 11. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 57 ATSENSE-101/ATSENSE-201(H)/ATSENSE-301(H) [DATASHEET] 11219B–ATSENSE–20-Feb-14 58 Atmel Corporation 1600 Technology Drive Atmel Asia Limited Unit 01-5 & 16, 19F Atmel Munich GmbH Business Campus Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2014 Atmel Corporation. All rights reserved. / Rev.: 11219B–ATSENSE–20-Feb-14 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Cortex® is a registered trademark of ARM Ltd. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.