Freescale Semiconductor Technical Data Document Number: MWE6IC9080N Rev. 0, 4/2010 RF LDMOS Wideband Integrated Power Amplifiers The MWE6IC9080N wideband integrated circuit is designed with on--chip matching that makes it usable from 865 to 960 MHz. This multi--stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations. • Typical GSM Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 = 630 mA, Pout = 80 Watts CW Frequency Gps (dB) PAE (%) 920 MHz 29.0 49.7 940 MHz 28.8 51.6 960 MHz 28.5 52.3 • Capable of Handling 10:1 VSWR, @ 32 Vdc, 940 MHz, Pout = 128 Watts CW (3 dB Input Overdrive from Rated Pout), Designed for Enhanced Ruggedness • Stable into a 5:1 VSWR. All Spurs Below --60 dBc @ 1 mW to 80 Watts CW Pout • Typical Pout @ 1 dB Compression Point ≃ 90 Watts CW • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ1 = 230 mA, IDQ2 = 630 mA, Pout = 35 Watts Avg. Frequency Gps (dB) PAE (%) SR1 @ 400 kHz (dBc) SR2 @ 600 kHz (dBc) EVM (% rms) 920 MHz 30.0 37.0 --62 --75 0.8 940 MHz 30.0 37.8 --62 --75 1.2 960 MHz 29.5 38.0 --62 --75 1.5 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 865--960 MHz, 80 W CW, 28 V GSM, GSM EDGE RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618--02 TO--270 WB--14 PLASTIC MWE6IC9080NR1 CASE 1621--02 TO--270 WB--14 GULL PLASTIC MWE6IC9080GNR1 CASE 1617--02 TO--272 WB--14 PLASTIC MWE6IC9080NBR1 Features • Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source Scattering Parameters • On--Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. VDS1 VGS2 VGS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 VDS1 Figure 1. Functional Block Diagram NC VDS1 VGS2 VGS1 NC RFin RFin NC VGS1 VGS2 VDS1 NC 1 2 3 4 5 6 7 8 9 10 11 12 14 RFout /VDS2 13 RFout /VDS2 (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987. © Freescale Semiconductor, Inc., 2010. All rights reserved. RF Device Data Freescale Semiconductor MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDSS --0.5, +66 Vdc Gate--Source Voltage VGS --0.5, +6 Vdc Storage Temperature Range Tstg --65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Input Power Pin 20.5 dBm Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case RθJC °C/W GSM Application (Case Temperature 80°C, Pout = 80 W CW, 940 MHz) Stage 1, 28 Vdc, IDQ1 = 230 mA Stage 2, 28 Vdc, IDQ2 = 630 mA 3.5 0.52 GSM EDGE Application (Case Temperature 80°C, Pout = 40 W CW, 940 MHz) Stage 1, 28 Vdc, IDQ1 = 230 mA Stage 2, 28 Vdc, IDQ2 = 630 mA 3.6 0.54 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1B (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 33 μAdc) VGS(th) 1.5 2 3.5 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ1 = 230 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ1 = 230 mAdc, Measured in Functional Test) VGG(Q) 15 17 19 Vdc Characteristic Stage 1 — Off Characteristics Stage 1 — On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. (continued) MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 66 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 270 μAdc) VGS(th) 1.5 2 3.5 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ2 = 630 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (VDD = 28 Vdc, IDQ2 = 630 mAdc, Measured in Functional Test) VGG(Q) 16.5 18.5 20.5 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1 Adc) VDS(on) 0.1 0.45 0.8 Vdc Characteristic Stage 2 — Off Characteristics Stage 2 — On Characteristics Functional Tests (1) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 80 W CW, IDQ1 = 230 mA, IDQ2 = 630 mA, f = 960 MHz Power Gain Gps 27.0 28.5 30.5 dB Power Added Efficiency PAE 48.0 52.3 — % Input Return Loss IRL — --28 --10 dB Typical Broadband Performance (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 80 W CW, IDQ1 = 230 mA, IDQ2 = 630 mA Frequency Gps (dB) PAE (%) IRL (dB) 920 MHz 29.0 49.7 --24 940 MHz 28.8 51.6 --28 960 MHz 28.5 52.3 --28 Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 230 mA, IDQ2 = 630 mA, 920--960 MHz Bandwidth Characteristic Pout @ 1 dB Compression Point, CW Symbol Min Typ Max Unit P1dB — 90 — W — 28 — 30 — MHz — % IMD Symmetry @ 100 W PEP, Pout where IMD Third Order Intermodulation 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — ∆IQT — Gain Flatness in 40 MHz Bandwidth @ Pout = 80 W CW GF — 0.7 — dB Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.039 — dB/°C ∆P1dB — 0.008 — dBm/°C Quiescent Current Accuracy over Temperature (2) with 4.12 kΩ Gate Feed Resistors (--30 to 85°C) Output Power Variation over Temperature (--30°C to +85°C) Stage 1 Stage 2 MHz 2.6 2.6 1. Part internally matched both on input and output. 2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987. (continued) MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 3 Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 35 W Avg., IDQ1 = 230 mA, IDQ2 = 630 mA, 920--960 MHz EDGE Modulation Frequency Gps (dB) PAE (%) SR1 @ 400 kHz (dBc) SR2 @ 600 kHz (dBc) EVM (% rms) 920 MHz 30.0 37.0 --62 --75 0.8 940 MHz 30.0 37.8 --62 --75 1.2 960 MHz 29.5 38.0 --62 --75 1.5 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 4 RF Device Data Freescale Semiconductor VDS1 C22 C17 C7 C8 VDS2 C20 C11 MWE6IC9080N Rev. 2 C1 C24 C23 C3 C13 R1 C15 C12 C19 VGS1 C16 CUT OUT AREA C14 C4 C5 C2 C6 C25 VDS2 C21 R2 C10 VGS2 C9 C18 VDS1 *C6 is mounted vertically. Figure 3. MWE6IC9080NR1(GNR1)(NBR1) Test Circuit Component Layout Table 6. MWE6IC9080NR1(GNR1)(NBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2 6.8 pF Chip Capacitors ATC100B6R8CT500XT ATC C3, C4 4.7 pF Chip Capacitors ATC100B4R7CT500XT ATC C5, C7, C8, C9, C10, C11, C12, C13, C14 33 pF Chip Capacitors ATC100B330JT500XT ATC C6 4.3 pF Chip Capacitor ATC100B4R3CT500XT ATC C15, C16, C17, C18, C19, C20, C21 10 μF, 50 V Chip Capacitors GRM55DR61H106KA88L Murata C22, C23 470 μF, 63 V Electrolytic Capacitors, Radial MCGPR63V477M13X26--RH Multicomp C24 0.1 pF Chip Capacitor ATC100B0R1BT500XT ATC C25 1.0 pF Chip Capacitor ATC100B1R0BT500XT ATC R1, R2 4.12 KΩ, 1/4 W Chip Resistors CRCW12064K12FKEA Vishay PCB 0.030″, εr = 2.8 IS680–280 Isola MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 64 Gps, POWER GAIN (dB) 60 Gps 56 29 52 PAE 28 48 27 44 26 40 IRL 25 36 32 24 23 PAE, POWER ADDED EFFICIENCY (%) 31 30 VDD = 28 Vdc, Pout = 80 W CW IDQ1 = 230 mA, IDQ2 = 630 mA 22 820 840 860 880 28 900 920 940 960 --20 --22 --24 --26 --28 24 980 --30 IRL, INPUT RETURN LOSS (dB) 32 f, FREQUENCY (MHz) 31 40 Gps, POWER GAIN (dB) 30 35 Gps 29 30 VDD = 28 Vdc, Pout = 35 W Avg. IDQ1 = 230 mA, IDQ2 = 630 mA EDGE Modulation 28 PAE 27 26 25 22 820 1 EVM 23 840 860 2 1.5 IRL 24 25 2.5 0.5 880 900 920 940 960 0 980 --20 --22 --24 --26 --28 IRL, INPUT RETURN LOSS (dB) 45 EVM, ERROR VECTOR MAGNITUDE (% rms) 32 PAE, POWER ADDED EFFICIENCY (%) Figure 4. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 80 Watts CW --30 f, FREQUENCY (MHz) Figure 5. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 35 Watts Avg. IM3--U --30 IM3--L --40 IM7--L 60 30 Gps, POWER GAIN (dB) IMD, INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, Pout = 100 W (PEP), IDQ1 = 230 mA IDQ2 = 630 mA, Two--Tone Measurements --20 (f1 + f2)/2 = Center Frequency of 940 MHz IM5--U IM5--L --50 Gps 50 920 MHz 940 MHz 960 MHz 29 40 VDD = 28 Vdc IDQ1 = 230 mA IDQ2 = 630 mA 28 30 960 MHz 27 20 940 MHz 26 920 MHz PAE 10 IM7--U 25 --60 0.1 1 10 100 1 100 10 TWO--TONE SPACING (MHz) Pout, OUTPUT POWER (WATTS) CW Figure 6. Intermodulation Distortion Products versus Two--Tone Spacing Figure 7. Power Gain and Power Added Efficiency versus Output Power PAE, POWER ADDED EFFICIENCY (%) 31 --10 0 300 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 4 Pout = 60 W Avg. 3 50 W Avg. 2 35 W Avg. 1 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 630 mA EDGE Modulation --45 --50 --55 920 MHz --60 --65 --70 --75 900 920 940 980 960 0 EVM, ERROR VECTOR MAGNITUDE (% rms) VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 630 mA EDGE Modulation --60 940 MHz 960 MHz --70 920 MHz --75 --80 --85 0 20 40 60 80 100 120 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 630 mA EDGE Modulation 8 48 960 MHz 6 36 960 MHz 940 MHz 4 940 MHz 920 MHz ηD 2 920 MHz 24 12 EVM 0 1 10 100 0 300 Pout, OUTPUT POWER (WATTS) AVG. Figure 10. Spectral Regrowth at 600 kHz versus Output Power Figure 11. EVM and Drain Efficiency versus Output Power 0 36 --5 30 GAIN (dB) 120 60 10 Pout, OUTPUT POWER (WATTS) Gain 24 --10 18 --15 12 --20 VDD = 28 Vdc Pin = 0 dBm --25 IDQ1 = 230 mA IDQ2 = 630 mA --30 1050 1100 1150 IRL 6 0 750 100 Figure 9. Spectral Regrowth at 400 kHz versus Output Power --50 --65 80 Pout, OUTPUT POWER (WATTS) Figure 8. EVM versus Frequency --55 60 40 20 ηD, DRAIN EFFICIENCY (%) 0 880 f, FREQUENCY (MHz) SPECTRAL REGROWTH @ 600 kHz (dBc) 940 MHz 960 MHz 800 850 900 950 1000 IRL (dB) 5 --40 VDD = 28 Vdc IDQ1 = 230 mA, IDQ2 = 630 mA EDGE Modulation SPECTRAL REGROWTH @ 400 kHz (dBc) EVM, ERROR VECTOR MAGNITUDE (% rms) 6 f, FREQUENCY (MHz) Figure 12. Broadband Frequency Response MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 7 GSM TEST SIGNAL --10 Reference Power --20 VWB = 30 kHz Sweep Time = 70 ms RBW = 30 kHz --30 --40 (dB) --50 --60 400 kHz --70 --80 --90 400 kHz 600 kHz 600 kHz --100 --110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 13. EDGE Spectrum VDD = 28 Vdc, IDQ1 = 230 mA, IDQ2 = 630 mA, Pout = 80 W CW f MHz Zin Ω Zload Ω 820 56.91 -- j7.34 1.22 -- j0.47 840 52.38 -- j6.36 1.26 -- j0.26 860 49.30 -- j5.92 1.35 -- j0.58 880 45.68 -- j4.07 1.44 + j0.14 900 44.22 -- j2.13 1.54 + j0.33 920 42.43 -- j0.62 1.62 + j0.49 940 41.50 + j1.76 1.74 + j0.66 960 42.19 + j3.25 1.91 + j0.82 43.07 + j3.14 2.08 + j0.94 980 Zin = Device input impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in Z load Figure 14. Series Equivalent Input and Load Impedance MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 8 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 9 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 10 RF Device Data Freescale Semiconductor MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 11 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 12 RF Device Data Freescale Semiconductor MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 13 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 14 RF Device Data Freescale Semiconductor MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 15 MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 16 RF Device Data Freescale Semiconductor MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RF Device Data Freescale Semiconductor 17 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Apr. 2010 Description • Initial Release of Data Sheet MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 18 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved. MWE6IC9080NR1 MWE6IC9080GNR1 MWE6IC9080NBR1 RFDocument DeviceNumber: Data MWE6IC9080N Rev. 0, 4/2010 Freescale Semiconductor 19