Document Number: MMRF1016H Rev. 0, 7/2014 Freescale Semiconductor Technical Data RF Power LDMOS Transistor N--Channel Enhancement--Mode Lateral MOSFET MMRF1016HR5 This 600 W RF power LDMOS transistor is designed primarily for wideband RF power amplifiers with frequencies up to 500 MHz. This device is unmatched and is suitable for use in high power military applications. Typical DVB--T OFDM Performance: VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz, Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF. Power Gain — 25 dB Drain Efficiency — 28.5% ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth Typical Pulse Performance: VDD = 50 Vdc, IDQ = 2600 mA, Pout = 600 W Peak, f = 225 MHz, Pulse Width = 100 sec, Duty Cycle = 20% Power Gain — 25.3 dB Drain Efficiency — 59% Capable of Handling 10:1 VSWR @ 50 Vdc, 225 MHz, 600 W Peak Power, Pulse Width = 100 sec, Duty Cycle = 20% Features 2--500 MHz, 600 W, 50 V BROADBAND RF POWER MOSFET Characterized with Series Equivalent Large--Signal Impedance Parameters PART IS PUSH--PULL NI--1230H--4S CW Operation Capability with Adequate Cooling Qualified Up to a Maximum of 50 VDD Operation Integrated ESD Protection Designed for Push--Pull Operation Greater Negative Gate--Source Voltage Range for Improved Class C Operation In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel. Gate A 3 1 Drain A Gate B 4 2 Drain B (Top View) Note: The backside of the package is the source terminal for the transistors. Figure 1. Pin Connections Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +120 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg -- 65 to +150 C Case Operating Temperature TC 150 C Operating Junction Temperature (1,2) TJ 225 C Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 99C, 125 W CW, 225 MHz, 50 Vdc, IDQ = 2600 mA Case Temperature 64C, 610 W CW, 352.2 MHz, 50 Vdc, IDQ = 150 mA Case Temperature 81C, 610 W CW, 88--108 MHz, 50 Vdc, IDQ = 150 mA C/W RJC 0.20 0.14 0.16 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. Freescale Semiconductor, Inc., 2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MMRF1016HR5 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2 Machine Model (per EIA/JESD22--A115) A Charge Device Model (per JESD22--C101) IV Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) Symbol Min Typ Max Unit IGSS — — 10 Adc V(BR)DSS 120 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Gate Threshold Voltage (1) (VDS = 10 Vdc, ID = 800 Adc) VGS(th) 1 1.65 3 Vdc Gate Quiescent Voltage (2) (VDD = 50 Vdc, ID = 2600 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.7 3.5 Vdc Drain--Source On--Voltage (1) (VGS = 10 Vdc, ID = 2 Adc) VDS(on) — 0.25 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.7 — pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 101 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz) Ciss — 287 — pF Characteristic Off Characteristics (1) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (ID = 150 mA, VGS = 0 Vdc) On Characteristics Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, DVB--T OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ 4 MHz Offset. Power Gain Gps 24 25 27 dB Drain Efficiency D 27 28.5 — % ACPR — --61 --59 dBc IRL — --18 --9 dB Adjacent Channel Power Ratio Input Return Loss Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW Power Gain Gps — 22 — dB Drain Efficiency D — 68 — % Input Return Loss IRL — --15 — dB Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW Gps — 24.5 — Drain Efficiency D — 74 — % Input Return Loss IRL — --5 — dB Power Gain dB 1. Each side of device measured separately. 2. Measurement made with device in push--pull configuration. MMRF1016HR5 2 RF Device Data Freescale Semiconductor, Inc. VBIAS B1 + + + C16 C15 C14 L3 R1 L2 L4 C13 C12 C11 C9 C8 C7 C10 C6 C19 Z9 Z5 RF INPUT Z1 VSUPPLY Z2 L1 Z3 Z11 Z13 C2 Z15 C20 C3 C4 C23 C24 C25 Z16 Z20 RF OUTPUT J2 Z8 Z10 Z12 Z14 1.049 x 0.080 Microstrip 0.143 x 0.080 Microstrip 0.188 x 0.080 Microstrip 0.192 x 0.133 Microstrip 0.418 x 0.193 Microstrip 0.217 x 0.518 Microstrip 0.200 x 0.518 Microstrip 0.375 x 0.214 Microstrip C22 + Z17 C5 Z18 T1 Z1 Z2* Z3* Z4 Z5, Z6 Z7, Z8 Z9, Z10 Z11, Z12 C21 Z19 DUT Z6 C18 + Z7 Z4 J1 C1 C17 + T2 Z13, Z14 Z15*, Z16* Z17, Z18 Z19 Z20 PCB 0.224 x 0.253 Microstrip 0.095 x 0.253 Microstrip 0.052 x 0.253 Microstrip 0.053 x 0.080 Microstrip 1.062 x 0.080 Microstrip Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55 * Line length includes microstrip bends Figure 2. MMRF1016HR5 Test Circuit Schematic Table 5. MMRF1016HR5 Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 95 , 100 MHz Long Ferrite Bead 2743021447 Fair--Rite C1 47 pF Chip Capacitor ATC100B470JT500XT ATC C2, C4 43 pF Chip Capacitors ATC100B430JT500XT ATC C3 100 pF Chip Capacitor ATC100B101JT500XT ATC C5 10 pF Chip Capacitor ATC100B7R5CT500XT ATC C6, C9 2.2 F, 50 V Chip Capacitors C1825C225J5RAC Kemet C7, C13, C20 10K pF Chip Capacitors ATC200B103KT50XT ATC C8 220 nF, 50 V Chip Capacitor C1812C224J5RAC Kemet C10, C17, C18 1000 pF Chip Capacitors ATC100B102JT50XT ATC C11, C22 0.1 F, 50 V Chip Capacitors CDR33BX104AKYS Kemet C12, C21 20K pF Chip Capacitors ATC200B203KT50XT ATC C14 10 F, 35 V Tantalum Capacitor T491D106K035AT Kemet C15 22 F, 35 V Tantalum Capacitor T491X226K035AT Kemet C16 47 F, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap C19 2.2 F, Chip Capacitor 2225X7R225KT3AB ATC C23, C24, C25 470 F 63V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp J1, J2 Jumpers from PCB to T1 & T2 Copper Foil L1 17.5 nH, 6 Turn Inductor B06T L2 8 Turn, #20 AWG ID = 0.125 Inductor, Hand Wound Copper Wire L3 82 nH, Inductor 1812SMS--82NJ L4* 9 Turn, #18 AWG Inductor, Hand Wound Copper Wire R1 20 , 3 W Axial Leaded Resistor 5093NW20R00J Vishay T1 Balun TUI--9 Comm Concepts T2 Balun TUO--4 Comm Concepts CoilCraft CoilCraft *L4 is wrapped around R1. MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 3 -- B1 C23 C13 C12 C11 C16 + C15 C14 C22 C21 C20 L3 -- C25 -- C18 C9 C8 C7 L2 C10 T2 T1 J1 C2 C4 CUT OUT AREA L1 C19 C17 C6 C1 C24 L4, R1* J2 C5 C3 (on side) * L4 is wrapped around R1. Figure 3. MMRF1016HR5 Test Circuit Component Layout MMRF1016HR5 4 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 1000 100 ID, DRAIN CURRENT (AMPS) Coss 100 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Crss 10 1 10 20 40 30 10 TC = 25_C 50 1 100 10 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. Note: Each side of device measured separately. Figure 4. Capacitance versus Drain--Source Voltage Figure 5. DC Safe Operating Area 26.5 64 80 Gps VDD = 50 Vdc, IDQ = 2600 mA f = 225 MHz Pulse Width = 100 sec Duty Cycle = 20% 25 24.5 50 40 D 24 30 23.5 20 23 10 22.5 10 62 Pout, OUTPUT POWER (dBm) 60 25.5 P2dB = 59.1 dBm (827 W) 60 P1dB = 53.3 dBm (670 W) Actual 58 56 54 VDD = 50 Vdc, IDQ = 2600 mA, f = 225 MHz Pulse Width = 12 sec, Duty Cycle = 1% 52 27 0 1000 100 Ideal P3dB = 59.7 dBm (938 W) 70 D, DRAIN EFFICIENCY (%) 26 Gps, POWER GAIN (dB) TJ = 175_C TJ = 150_C 1 0 28 29 30 31 32 33 34 35 36 Figure 6. Power Gain and Drain Efficiency versus Output Power Figure 7. CW Output Power versus Input Power 27 Gps, POWER GAIN (dB) 25 50 V 24 45 V 40 V VDD = 50 Vdc IDQ = 2600 mA f = 225 MHz Pulse Width = 100 sec Duty Cycle = 20% 22 21 0 38 Pin, INPUT POWER (dBm) 28 23 37 Pout, OUTPUT POWER (WATTS) PEAK 26 Gps, POWER GAIN (dB) TJ = 200_C 100 200 35 V 26 25 24 23 22 VDD = 30 V 300 400 500 600 700 21 10 80 Gps TC = --30_C 70 60 25_C 50 85_C 40 VDD = 50 Vdc, IDQ = 2600 mA f = 225 MHz Pulse Width = 100 sec Duty Cycle = 20% D 30 20 D, DRAIN EFFICIENCY (%) C, CAPACITANCE (pF) Ciss 10 1000 100 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 8. Power Gain versus Output Power Figure 9. Power Gain and Drain Efficiency versus Output Power MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 5 TYPICAL CHARACTERISTICS — TWO--TONE --10 VDD = 50 Vdc, IDQ = 2600 mA, f1 = 222 MHz f2 = 228 MHz, Two--Tone Measurements --30 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --20 --40 3rd Order --50 5th Order --60 7th Order --70 5 10 100 700 --30 3rd Order --40 5th Order --50 7th Order --60 0.1 Figure 10. Intermodulation Distortion Products versus Output Power Figure 11. Intermodulation Distortion Products versus Tone Spacing IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ = 2600 mA 2300 mA 25 2000 mA 1800 mA 24 10 1 TWO--TONE SPACING (MHz) --20 25.5 Gps, POWER GAIN (dB) --20 Pout, OUTPUT POWER (WATTS) PEP 26 24.5 VDD = 50 Vdc, Pout = 500 W (PEP), IDQ = 2600 mA Two--Tone Measurements 1300 mA 23.5 VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz Two--Tone Measurements, 6 MHz Tone Spacing 100 20 Pout, OUTPUT POWER (WATTS) PEP Figure 12. Two--Tone Power Gain versus Output Power VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz Two--Tone Measurements, 6 MHz Tone Spacing --25 --30 IDQ = 1300 mA --35 --40 2600 mA 1800 mA --45 2000 mA --50 700 40 20 2300 mA 100 700 Pout, OUTPUT POWER (WATTS) PEP Figure 13. Third Order Intermodulation Distortion versus Output Power MMRF1016HR5 6 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — OFDM 100 --20 7.61 MHz --30 10 --50 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation 5 Symbols 0.01 --90 --110 0 2 4 6 8 10 12 2000 mA 1800 mA 24.8 1300 mA VDD = 50 Vdc, f = 225 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 30 100 200 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) --1 0 1 2 3 4 --56 VDD = 50 Vdc, f = 225 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols --58 --60 --62 IDQ = 1300 mA --64 1800 mA --66 2000 mA 2300 mA --68 2600 mA 100 20 Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single--Carrier DVB--T OFDM Power Gain versus Output Power Figure 17. Single--Carrier DVB--T OFDM ACPR versus Output Power D, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) AVG. 45 25_C 40 --30_C ACPR --60 D 30 25_C 25 85_C 20 15 30 --56 --58 85_C 35 5 --62 TC = --30_C Gps --64 VDD = 50 Vdc, IDQ = 2600 MHz f = 225 MHz, 8K Mode OFDM --66 64 QAM Data Carrier Modulation 5 Symbols --68 100 400 200 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) Gps, POWER GAIN (dB) --2 Figure 15. 8K Mode DVB--T OFDM Spectrum 25.2 24.2 --3 Figure 14. Single--Carrier DVB--T OFDM 2300 mA 24.4 --4 f, FREQUENCY (MHz) 25.4 24.6 --5 PEAK--TO--AVERAGE (dB) IDQ = 2600 mA 25 8K Mode DVB--T OFDM 64 QAM Data Carrier Modulation, 5 Symbols --100 25.8 25.6 4 kHz BW ACPR Measured at 4 MHz Offset from Center Frequency --70 --80 0.001 0.0001 4 kHz BW --60 0.1 (dB) PROBABILITY (%) --40 1 Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Single--Carrier DVB--T OFDM ACPR Power Gain and Drain Efficiency versus Output Power MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 7 TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 125 W Avg., and D = 28.5%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 19. MTTF versus Junction Temperature -- CW MMRF1016HR5 8 RF Device Data Freescale Semiconductor, Inc. Zsource f = 225 MHz Zo = 10 Zload f = 225 MHz VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg. f MHz Zsource Zload 225 1.42 + j8.09 4.45 + j1.16 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 20. Series Equivalent Source and Load Impedance MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 9 COAX1 C16 C18 + C14 C15 C17 + C1 + J1 C3 B1 C5 L1 L3 T1 L4 C2 CUT OUT AREA C4 R1 C9 C7 C8 C10 L2 C6 C11 C12 COAX3 C13 88--108 MHz COAX2 Figure 21. MMRF1016HR6 Test Circuit Component Layout — 88--108 MHz Table 6. MMRF1016HR6 Test Circuit Component Designations and Values — 88--108 MHz Part Description Part Number Manufacturer B1 95 , 100 MHz Long Ferrite Bead 2743021447 Fair--Rite C1 6.8 F, 50 V Chip Capacitor C4532X7R1H685K TDK C2 30 pF Chip Capacitor ATC100B300JT500XT ATC C3, C13, C14 1000 pF Chip Capacitors ATC100B102JT50XT ATC C4, C5, C6 1 F, 100 V Chip Capacitors GRM31CR72A105KA01L Murata C7, C8, C9, C10, C11, C12 3900 pF Chip Capacitors ATC700B392JT50X ATC C15 4.7 F, 100 V Chip Capacitor GRM55ER72A475KA01B Murata C16, C17 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp C18 220 F, 100 V Electrolytic Capacitor MCGPR100V227M16X26--RH Multicomp J1 Jumper with Copper Tape L1 82 nH Inductor 1812SMS--82NJ CoilCraft L2 8 Turn, #14 AWG ID=0.250 Inductor, Hand Wound Copper Wire Freescale L3, L4 8 nH Inductors A03TKLC CoilCraft R1 15 , 1/4 W Chip Resistor CRCW120615R0FKEA Vishay T1 Balun Transformer TUI--LF--9 Comm Concepts Coax1, Coax2 25 , Semi Rigid RF Cable, 3 mm Line, 16 cm Length UT--141C--25 Micro--Coax Coax3 25 , Semi Rigid RF Cable, 3 mm Line, 15 cm Length UT--141C--25 Micro--Coax PCB 0.030, r = 2.55 GX0300--55--22 Arlon MMRF1016HR5 10 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 88--108 MHz 29 Gps, POWER GAIN (dB) 28 26 88 MHz Gps 98 MHz 25 80 98 MHz 108 MHz 27 85 108 MHz VDD = 50 Vdc, IDQ = 150 mA 70 65 60 88 MHz 24 75 55 23 50 D 22 45 D DRAIN EFFICIENCY (%) 30 40 21 20 100 200 300 400 35 500 600 700 800 Pout, OUTPUT POWER (WATTS) Figure 22. Broadband CW Power Gain and Drain Efficiency versus Output Power — 88--108 MHz 26 Gps, POWER GAIN (dB) 82 VDD = 50 Vdc, IDQ = 150 mA Pout = 600 W, CW 25.5 81 80 79 Gps 25 78 24.5 77 24 76 23.5 75 D 23 74 73 22.5 22 D, DRAIN EFFICIENCY (%) 27 26.5 86 90 94 98 102 106 72 110 f, FREQUENCY (MHz) Figure 23. CW Power Gain and Drain Efficiency versus Frequency — 88--108 MHz MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 11 f = 88 MHz f = 108 MHz Zsource Zo = 25 Zload f = 108 MHz f = 88 MHz VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W Avg. f MHz Zsource Zload 88 3.20 + j14.50 10.35 + j2.80 98 4.20 + j15.00 9.50 + j3.00 108 4.00 + j15.00 8.90 + j3.50 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz MMRF1016HR5 12 RF Device Data Freescale Semiconductor, Inc. -- -- C9 C11 C20 B1 C7 C5 L3 C18 L1 COAX1 COAX3 C1 C3* C4* L2 C16 COAX4 C19 C6 -- C8 C12 C15 C17 L4 B2 C10 C14 C13 CUT OUT AREA C2 C24* COAX2 C22 -- C21 C23 *Mounted on side Figure 25. MMRF1016HR6 Test Circuit Component Layout — 352.2 MHz Table 7. MMRF1016HR6 Test Circuit Component Designations and Values — 352.2 MHz Part Description Part Number Manufacturer B1, B2 47 , 100 MHz Short Ferrite Beads 2743019447 Fair--Rite C1, C2 100 pF Chip Capacitors ATC100B101JT500XT ATC C3*, C24* 22 pF Chip Capacitors ATC100B221JT300XT ATC C4* 20 pF Chip Capacitor ATC100B200JT500XT ATC C5, C6 2.2 F Chip Capacitors C1825C225J5RAC--TU Kemet C7, C8 220 nF Chip Capacitors C1812C224K5RAC--TU Kemet C9, C10 0.1 F Chip Capacitors CDR33BX104AKWS AVX C11, C12 47 F, 50 V Electrolytic Capacitors 476KXM050M Illinois Cap C13 39 pF, 500 V Chip Capacitor MCM01--009DD390J--F CDE C14, C15, C16, C17 240 pF Chip Capacitors ATC100B241JT200XT ATC C18, C19 2.2 F Chip Capacitors G2225X7R225KT3AB ATC C20, C21, C22, C23 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26--RH Multicomp Coax1, 2, 3, 4 25 , Semi Rigid Coax, 2.2 Shield Length UT141--25 Precision Tube Company L1, L2 2.5 nH, 1 Turn Inductors A01TKLC Coilcraft L3, L4 10 Turn, #16 AWG ID=0.160 Inductors, Hand Wound Copper Wire Freescale *Mounted on side MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 13 TYPICAL CHARACTERISTICS — 352.2 MHz VDD = 50 Vdc IDQ = 150 mA f = 352.2 MHz Gps, POWER GAIN (dB) 22 21 80 Gps 70 60 20 50 D 19 40 18 30 17 20 16 10 15 10 100 D, DRAIN EFFICIENCY (%) 23 0 1000 Pout, OUTPUT POWER (WATTS) CW Figure 26. CW Power Gain and Drain Efficiency versus Output Power MMRF1016HR5 14 RF Device Data Freescale Semiconductor, Inc. Zo = 10 f = 352.2 MHz Zsource f = 352.2 MHz Zload VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW f MHz Zsource Zload 352.2 1.10 + j3.80 2.26 + j3.57 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network + Z load Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 15 PACKAGE DIMENSIONS MMRF1016HR5 16 RF Device Data Freescale Semiconductor, Inc. MMRF1016HR5 RF Device Data Freescale Semiconductor, Inc. 17 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 July 2014 Description Initial Release of Data Sheet MMRF1016HR5 18 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Home Page: freescale.com Web Support: freescale.com/support Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2014 Freescale Semiconductor, Inc. MMRF1016HR5 Document Number: RF Device DataMMRF1016H Rev. 0, 7/2014Semiconductor, Freescale Inc. 19