Data Sheet

Document Number: MMRF1016H
Rev. 0, 7/2014
Freescale Semiconductor
Technical Data
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
MMRF1016HR5
This 600 W RF power LDMOS transistor is designed primarily for wideband
RF power amplifiers with frequencies up to 500 MHz. This device is unmatched
and is suitable for use in high power military applications.
 Typical DVB--T OFDM Performance: VDD = 50 Vdc, IDQ = 2600 mA,
Pout = 125 W Avg., f = 225 MHz, Channel Bandwidth = 7.61 MHz,
Input Signal PAR = 9.3 dB @ 0.01% Probability on CCDF.
Power Gain — 25 dB
Drain Efficiency — 28.5%
ACPR @ 4 MHz Offset — --61 dBc @ 4 kHz Bandwidth
 Typical Pulse Performance: VDD = 50 Vdc, IDQ = 2600 mA,
Pout = 600 W Peak, f = 225 MHz, Pulse Width = 100 sec, Duty
Cycle = 20%
Power Gain — 25.3 dB
Drain Efficiency — 59%
 Capable of Handling 10:1 VSWR @ 50 Vdc, 225 MHz, 600 W Peak Power,
Pulse Width = 100 sec, Duty Cycle = 20%
Features
2--500 MHz, 600 W, 50 V
BROADBAND
RF POWER MOSFET
 Characterized with Series Equivalent Large--Signal Impedance Parameters
PART IS PUSH--PULL
NI--1230H--4S
 CW Operation Capability with Adequate Cooling




Qualified Up to a Maximum of 50 VDD Operation
Integrated ESD Protection
Designed for Push--Pull Operation
Greater Negative Gate--Source Voltage Range for Improved Class C
Operation
 In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.
Gate A 3
1 Drain A
Gate B 4
2 Drain B
(Top View)
Note: The backside of the package is the
source terminal for the transistors.
Figure 1. Pin Connections
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +120
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
C
Case Operating Temperature
TC
150
C
Operating Junction Temperature (1,2)
TJ
225
C
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 99C, 125 W CW, 225 MHz, 50 Vdc, IDQ = 2600 mA
Case Temperature 64C, 610 W CW, 352.2 MHz, 50 Vdc, IDQ = 150 mA
Case Temperature 81C, 610 W CW, 88--108 MHz, 50 Vdc, IDQ = 150 mA
C/W
RJC
0.20
0.14
0.16
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1016HR5
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
IV
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IGSS
—
—
10
Adc
V(BR)DSS
120
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Gate Threshold Voltage (1)
(VDS = 10 Vdc, ID = 800 Adc)
VGS(th)
1
1.65
3
Vdc
Gate Quiescent Voltage (2)
(VDD = 50 Vdc, ID = 2600 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.7
3.5
Vdc
Drain--Source On--Voltage (1)
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.25
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.7
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
101
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
287
—
pF
Characteristic
Off Characteristics
(1)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(ID = 150 mA, VGS = 0 Vdc)
On Characteristics
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg., f = 225 MHz, DVB--T
OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ 4 MHz Offset.
Power Gain
Gps
24
25
27
dB
Drain Efficiency
D
27
28.5
—
%
ACPR
—
--61
--59
dBc
IRL
—
--18
--9
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performance — 352.2 MHz (In Freescale 352.2 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW
Power Gain
Gps
—
22
—
dB
Drain Efficiency
D
—
68
—
%
Input Return Loss
IRL
—
--15
—
dB
Typical Performance — 88--108 MHz (In Freescale 88--108 MHz Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 150 mA,
Pout = 600 W CW
Gps
—
24.5
—
Drain Efficiency
D
—
74
—
%
Input Return Loss
IRL
—
--5
—
dB
Power Gain
dB
1. Each side of device measured separately.
2. Measurement made with device in push--pull configuration.
MMRF1016HR5
2
RF Device Data
Freescale Semiconductor, Inc.
VBIAS
B1
+
+
+
C16
C15
C14
L3
R1
L2
L4
C13
C12
C11
C9
C8
C7
C10
C6
C19
Z9
Z5
RF
INPUT
Z1
VSUPPLY
Z2
L1
Z3
Z11 Z13
C2
Z15
C20
C3
C4
C23
C24 C25
Z16
Z20
RF
OUTPUT
J2
Z8
Z10 Z12 Z14
1.049 x 0.080 Microstrip
0.143 x 0.080 Microstrip
0.188 x 0.080 Microstrip
0.192 x 0.133 Microstrip
0.418 x 0.193 Microstrip
0.217 x 0.518 Microstrip
0.200 x 0.518 Microstrip
0.375 x 0.214 Microstrip
C22
+
Z17
C5
Z18
T1
Z1
Z2*
Z3*
Z4
Z5, Z6
Z7, Z8
Z9, Z10
Z11, Z12
C21
Z19
DUT
Z6
C18
+
Z7
Z4
J1
C1
C17
+
T2
Z13, Z14
Z15*, Z16*
Z17, Z18
Z19
Z20
PCB
0.224 x 0.253 Microstrip
0.095 x 0.253 Microstrip
0.052 x 0.253 Microstrip
0.053 x 0.080 Microstrip
1.062 x 0.080 Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030, r = 2.55
* Line length includes microstrip bends
Figure 2. MMRF1016HR5 Test Circuit Schematic
Table 5. MMRF1016HR5 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
95 , 100 MHz Long Ferrite Bead
2743021447
Fair--Rite
C1
47 pF Chip Capacitor
ATC100B470JT500XT
ATC
C2, C4
43 pF Chip Capacitors
ATC100B430JT500XT
ATC
C3
100 pF Chip Capacitor
ATC100B101JT500XT
ATC
C5
10 pF Chip Capacitor
ATC100B7R5CT500XT
ATC
C6, C9
2.2 F, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C7, C13, C20
10K pF Chip Capacitors
ATC200B103KT50XT
ATC
C8
220 nF, 50 V Chip Capacitor
C1812C224J5RAC
Kemet
C10, C17, C18
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C11, C22
0.1 F, 50 V Chip Capacitors
CDR33BX104AKYS
Kemet
C12, C21
20K pF Chip Capacitors
ATC200B203KT50XT
ATC
C14
10 F, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C15
22 F, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C16
47 F, 50 V Electrolytic Capacitor
476KXM050M
Illinois Cap
C19
2.2 F, Chip Capacitor
2225X7R225KT3AB
ATC
C23, C24, C25
470 F 63V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
J1, J2
Jumpers from PCB to T1 & T2
Copper Foil
L1
17.5 nH, 6 Turn Inductor
B06T
L2
8 Turn, #20 AWG ID = 0.125 Inductor, Hand Wound
Copper Wire
L3
82 nH, Inductor
1812SMS--82NJ
L4*
9 Turn, #18 AWG Inductor, Hand Wound
Copper Wire
R1
20 , 3 W Axial Leaded Resistor
5093NW20R00J
Vishay
T1
Balun
TUI--9
Comm Concepts
T2
Balun
TUO--4
Comm Concepts
CoilCraft
CoilCraft
*L4 is wrapped around R1.
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
3
--
B1
C23
C13
C12
C11
C16
+
C15
C14
C22
C21
C20
L3
--
C25
--
C18
C9
C8
C7
L2
C10
T2
T1
J1
C2
C4
CUT OUT AREA
L1
C19
C17
C6
C1
C24
L4, R1*
J2
C5
C3 (on side)
* L4 is wrapped around R1.
Figure 3. MMRF1016HR5 Test Circuit Component Layout
MMRF1016HR5
4
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
1000
100
ID, DRAIN CURRENT (AMPS)
Coss
100
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Crss
10
1
10
20
40
30
10
TC = 25_C
50
1
100
10
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
Note: Each side of device measured separately.
Figure 4. Capacitance versus Drain--Source Voltage
Figure 5. DC Safe Operating Area
26.5
64
80
Gps
VDD = 50 Vdc, IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 sec
Duty Cycle = 20%
25
24.5
50
40
D
24
30
23.5
20
23
10
22.5
10
62
Pout, OUTPUT POWER (dBm)
60
25.5
P2dB = 59.1 dBm (827 W)
60
P1dB = 53.3 dBm (670 W)
Actual
58
56
54
VDD = 50 Vdc, IDQ = 2600 mA, f = 225 MHz
Pulse Width = 12 sec, Duty Cycle = 1%
52
27
0
1000
100
Ideal
P3dB = 59.7 dBm (938 W)
70
D, DRAIN EFFICIENCY (%)
26
Gps, POWER GAIN (dB)
TJ = 175_C
TJ = 150_C
1
0
28
29
30
31
32
33
34
35
36
Figure 6. Power Gain and Drain Efficiency
versus Output Power
Figure 7. CW Output Power versus Input Power
27
Gps, POWER GAIN (dB)
25
50 V
24
45 V
40 V
VDD = 50 Vdc
IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 sec
Duty Cycle = 20%
22
21
0
38
Pin, INPUT POWER (dBm)
28
23
37
Pout, OUTPUT POWER (WATTS) PEAK
26
Gps, POWER GAIN (dB)
TJ = 200_C
100
200
35 V
26
25
24
23
22
VDD = 30 V
300
400
500
600
700
21
10
80
Gps
TC = --30_C
70
60
25_C
50
85_C
40
VDD = 50 Vdc, IDQ = 2600 mA
f = 225 MHz
Pulse Width = 100 sec
Duty Cycle = 20%
D
30
20
D, DRAIN EFFICIENCY (%)
C, CAPACITANCE (pF)
Ciss
10
1000
100
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 8. Power Gain versus Output Power
Figure 9. Power Gain and Drain Efficiency
versus Output Power
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
5
TYPICAL CHARACTERISTICS — TWO--TONE
--10
VDD = 50 Vdc, IDQ = 2600 mA, f1 = 222 MHz
f2 = 228 MHz, Two--Tone Measurements
--30
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
--20
--40
3rd Order
--50
5th Order
--60
7th Order
--70
5
10
100
700
--30
3rd Order
--40
5th Order
--50
7th Order
--60
0.1
Figure 10. Intermodulation Distortion
Products versus Output Power
Figure 11. Intermodulation Distortion
Products versus Tone Spacing
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ = 2600 mA
2300 mA
25
2000 mA
1800 mA
24
10
1
TWO--TONE SPACING (MHz)
--20
25.5
Gps, POWER GAIN (dB)
--20
Pout, OUTPUT POWER (WATTS) PEP
26
24.5
VDD = 50 Vdc, Pout = 500 W (PEP), IDQ = 2600 mA
Two--Tone Measurements
1300 mA
23.5
VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz
Two--Tone Measurements, 6 MHz Tone Spacing
100
20
Pout, OUTPUT POWER (WATTS) PEP
Figure 12. Two--Tone Power Gain versus
Output Power
VDD = 50 Vdc, f1 = 222 MHz, f2 = 228 MHz
Two--Tone Measurements, 6 MHz Tone Spacing
--25
--30
IDQ = 1300 mA
--35
--40
2600 mA
1800 mA
--45
2000 mA
--50
700
40
20
2300 mA
100
700
Pout, OUTPUT POWER (WATTS) PEP
Figure 13. Third Order Intermodulation
Distortion versus Output Power
MMRF1016HR5
6
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — OFDM
100
--20
7.61 MHz
--30
10
--50
8K Mode DVB--T OFDM
64 QAM Data Carrier Modulation
5 Symbols
0.01
--90
--110
0
2
4
6
8
10
12
2000 mA
1800 mA
24.8
1300 mA
VDD = 50 Vdc, f = 225 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
30
100
200
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
--1
0
1
2
3
4
--56
VDD = 50 Vdc, f = 225 MHz
8K Mode OFDM, 64 QAM Data Carrier
Modulation, 5 Symbols
--58
--60
--62
IDQ = 1300 mA
--64
1800 mA
--66
2000 mA
2300 mA
--68
2600 mA
100
20
Pout, OUTPUT POWER (WATTS) AVG.
Figure 16. Single--Carrier DVB--T OFDM Power
Gain versus Output Power
Figure 17. Single--Carrier DVB--T OFDM ACPR
versus Output Power
D, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) AVG.
45
25_C
40
--30_C
ACPR
--60
D
30
25_C
25
85_C
20
15
30
--56
--58
85_C
35
5
--62
TC = --30_C
Gps
--64
VDD = 50 Vdc, IDQ = 2600 MHz
f = 225 MHz, 8K Mode OFDM
--66
64 QAM Data Carrier Modulation
5 Symbols
--68
100
400
200
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
Gps, POWER GAIN (dB)
--2
Figure 15. 8K Mode DVB--T OFDM Spectrum
25.2
24.2
--3
Figure 14. Single--Carrier DVB--T OFDM
2300 mA
24.4
--4
f, FREQUENCY (MHz)
25.4
24.6
--5
PEAK--TO--AVERAGE (dB)
IDQ = 2600 mA
25
8K Mode DVB--T OFDM
64 QAM Data Carrier Modulation, 5 Symbols
--100
25.8
25.6
4 kHz BW
ACPR Measured at 4 MHz Offset
from Center Frequency
--70
--80
0.001
0.0001
4 kHz BW
--60
0.1
(dB)
PROBABILITY (%)
--40
1
Pout, OUTPUT POWER (WATTS) AVG.
Figure 18. Single--Carrier DVB--T OFDM ACPR Power
Gain and Drain Efficiency versus Output Power
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
7
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 125 W Avg., and D = 28.5%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 19. MTTF versus Junction Temperature -- CW
MMRF1016HR5
8
RF Device Data
Freescale Semiconductor, Inc.
Zsource
f = 225 MHz
Zo = 10 
Zload
f = 225 MHz
VDD = 50 Vdc, IDQ = 2600 mA, Pout = 125 W Avg.
f
MHz
Zsource

Zload

225
1.42 + j8.09
4.45 + j1.16
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 20. Series Equivalent Source and Load Impedance
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
9
COAX1
C16
C18
+
C14
C15
C17
+
C1
+
J1
C3
B1
C5
L1
L3
T1
L4
C2
CUT OUT AREA
C4
R1
C9
C7
C8
C10
L2
C6
C11
C12
COAX3
C13
88--108 MHz
COAX2
Figure 21. MMRF1016HR6 Test Circuit Component Layout — 88--108 MHz
Table 6. MMRF1016HR6 Test Circuit Component Designations and Values — 88--108 MHz
Part
Description
Part Number
Manufacturer
B1
95 , 100 MHz Long Ferrite Bead
2743021447
Fair--Rite
C1
6.8 F, 50 V Chip Capacitor
C4532X7R1H685K
TDK
C2
30 pF Chip Capacitor
ATC100B300JT500XT
ATC
C3, C13, C14
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C4, C5, C6
1 F, 100 V Chip Capacitors
GRM31CR72A105KA01L
Murata
C7, C8, C9, C10,
C11, C12
3900 pF Chip Capacitors
ATC700B392JT50X
ATC
C15
4.7 F, 100 V Chip Capacitor
GRM55ER72A475KA01B
Murata
C16, C17
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
C18
220 F, 100 V Electrolytic Capacitor
MCGPR100V227M16X26--RH
Multicomp
J1
Jumper with Copper Tape
L1
82 nH Inductor
1812SMS--82NJ
CoilCraft
L2
8 Turn, #14 AWG ID=0.250 Inductor, Hand Wound
Copper Wire
Freescale
L3, L4
8 nH Inductors
A03TKLC
CoilCraft
R1
15 , 1/4 W Chip Resistor
CRCW120615R0FKEA
Vishay
T1
Balun Transformer
TUI--LF--9
Comm Concepts
Coax1, Coax2
25 , Semi Rigid RF Cable, 3 mm Line, 16 cm Length
UT--141C--25
Micro--Coax
Coax3
25 , Semi Rigid RF Cable, 3 mm Line, 15 cm Length
UT--141C--25
Micro--Coax
PCB
0.030, r = 2.55
GX0300--55--22
Arlon
MMRF1016HR5
10
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 88--108 MHz
29
Gps, POWER GAIN (dB)
28
26
88 MHz
Gps
98 MHz
25
80
98 MHz
108 MHz
27
85
108 MHz
VDD = 50 Vdc, IDQ = 150 mA
70
65
60
88 MHz
24
75
55
23
50
D
22
45
D DRAIN EFFICIENCY (%)
30
40
21
20
100
200
300
400
35
500 600 700 800
Pout, OUTPUT POWER (WATTS)
Figure 22. Broadband CW Power Gain and Drain
Efficiency versus Output Power — 88--108 MHz
26
Gps, POWER GAIN (dB)
82
VDD = 50 Vdc, IDQ = 150 mA
Pout = 600 W, CW
25.5
81
80
79
Gps
25
78
24.5
77
24
76
23.5
75
D
23
74
73
22.5
22
D, DRAIN EFFICIENCY (%)
27
26.5
86
90
94
98
102
106
72
110
f, FREQUENCY (MHz)
Figure 23. CW Power Gain and Drain Efficiency
versus Frequency — 88--108 MHz
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
11
f = 88 MHz
f = 108 MHz
Zsource
Zo = 25 
Zload
f = 108 MHz
f = 88 MHz
VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W Avg.
f
MHz
Zsource

Zload

88
3.20 + j14.50
10.35 + j2.80
98
4.20 + j15.00
9.50 + j3.00
108
4.00 + j15.00
8.90 + j3.50
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 24. Series Equivalent Source and Load Impedance — 88--108 MHz
MMRF1016HR5
12
RF Device Data
Freescale Semiconductor, Inc.
--
--
C9
C11
C20
B1
C7
C5
L3
C18
L1
COAX1
COAX3
C1 C3*
C4*
L2
C16
COAX4
C19
C6
--
C8
C12
C15
C17
L4
B2 C10
C14
C13
CUT OUT AREA
C2
C24*
COAX2
C22
--
C21
C23
*Mounted on side
Figure 25. MMRF1016HR6 Test Circuit Component Layout — 352.2 MHz
Table 7. MMRF1016HR6 Test Circuit Component Designations and Values — 352.2 MHz
Part
Description
Part Number
Manufacturer
B1, B2
47 , 100 MHz Short Ferrite Beads
2743019447
Fair--Rite
C1, C2
100 pF Chip Capacitors
ATC100B101JT500XT
ATC
C3*, C24*
22 pF Chip Capacitors
ATC100B221JT300XT
ATC
C4*
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
C5, C6
2.2 F Chip Capacitors
C1825C225J5RAC--TU
Kemet
C7, C8
220 nF Chip Capacitors
C1812C224K5RAC--TU
Kemet
C9, C10
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C11, C12
47 F, 50 V Electrolytic Capacitors
476KXM050M
Illinois Cap
C13
39 pF, 500 V Chip Capacitor
MCM01--009DD390J--F
CDE
C14, C15, C16,
C17
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C18, C19
2.2 F Chip Capacitors
G2225X7R225KT3AB
ATC
C20, C21, C22,
C23
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26--RH
Multicomp
Coax1, 2, 3, 4
25 , Semi Rigid Coax, 2.2 Shield Length
UT141--25
Precision Tube Company
L1, L2
2.5 nH, 1 Turn Inductors
A01TKLC
Coilcraft
L3, L4
10 Turn, #16 AWG ID=0.160 Inductors, Hand Wound
Copper Wire
Freescale
*Mounted on side
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
13
TYPICAL CHARACTERISTICS — 352.2 MHz
VDD = 50 Vdc
IDQ = 150 mA
f = 352.2 MHz
Gps, POWER GAIN (dB)
22
21
80
Gps
70
60
20
50
D
19
40
18
30
17
20
16
10
15
10
100
D, DRAIN EFFICIENCY (%)
23
0
1000
Pout, OUTPUT POWER (WATTS) CW
Figure 26. CW Power Gain and Drain Efficiency
versus Output Power
MMRF1016HR5
14
RF Device Data
Freescale Semiconductor, Inc.
Zo = 10 
f = 352.2 MHz
Zsource
f = 352.2 MHz
Zload
VDD = 50 Vdc, IDQ = 150 mA, Pout = 600 W CW
f
MHz
Zsource

Zload

352.2
1.10 + j3.80
2.26 + j3.57
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
+
Z
load
Figure 27. Series Equivalent Source and Load Impedance — 352.2 MHz
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
15
PACKAGE DIMENSIONS
MMRF1016HR5
16
RF Device Data
Freescale Semiconductor, Inc.
MMRF1016HR5
RF Device Data
Freescale Semiconductor, Inc.
17
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software
& Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
July 2014
Description
 Initial Release of Data Sheet
MMRF1016HR5
18
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2014 Freescale Semiconductor, Inc.
MMRF1016HR5
Document
Number:
RF Device
DataMMRF1016H
Rev.
0, 7/2014Semiconductor,
Freescale
Inc.
19