TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A High merit factor (1.15 MHz for 45 μA) CMOS op amps Datasheet - production data Related products • See TSV631, TSV632, TSV634 series for lower minimum supply voltage (1.5 V) • See LMV821, LMV822, LMV824 series for higher gain bandwidth products (5.5 MHz) SC70-5 Applications • Battery powered applications • Portable devices • Automotive signal conditioning DFN8 2x2 MiniSO8 • Active filtering • Medical instrumentation Description QFN16 3x3 The TSV52x and TSV52xA series of operational amplifiers offer low voltage operation and rail-torail input and output. The TSV521 device is the single version, the TSV522 device the dual version, and the TSV524 device the quad version, with pinouts compatible with industry standards. TSSOP14 Features • Gain bandwidth product: 1.15 MHz typ. at 5 V • Low power consumption: 45 µA typ. at 5 V • Rail-to-rail input and output The TSV52x and TSV52xA series offer an outstanding speed/power consumption ratio, 1.15 MHz gain bandwidth product while consuming only 45 µA at 5 V. The devices are housed in the smallest industrial packages. These features make the TSV52x, TSV52xA family ideal for sensor interfaces, battery supplied and portable applications. The wide temperature range and high ESD tolerance facilitate their use in harsh automotive applications. • Low input bias current: 1 pA typ. • Supply voltage: 2.7 to 5.5 V • Low offset voltage: 800 µV max. • Unity gain stable on 100 pF capacitor Table 1. Device summary • Automotive grade Benefits • Increased lifetime in battery powered applications • Easy interfacing with high impedance sensors January 2014 This is information on a product in full production. Standard Vio Enhanced Vio Single TSV521 TSV521A Dual TSV522 TSV522A Quad TSV524 TSV524A DocID022743 Rev 1 1/27 www.st.com Contents TSV52x, TSV52xA Contents 1 Package pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 4.1 Operating voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Common-mode voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Rail-to-rail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 Rail-to-rail output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.5 Driving resistive and capacitive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Input offset voltage drift over temperature . . . . . . . . . . . . . . . . . . . . . . . . 15 4.7 Long term input offset voltage drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.8 PCB layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Macromodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 SC705 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 DFN8 2x2 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.3 MiniSO8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.4 QFN16 3x3 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.5 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2/27 DocID022743 Rev 1 TSV52x, TSV52xA Package pin connections Figure 1. Pin connections for each package (top view) IN+ 1 VCC- 2 IN- 3 5 VCC+ 4 OUT TSV521 SC70-5 OUT1 1 IN1- 2 8 VCC+ OUT1 1 8 VCC+ 7 OUT2 IN1- 2 7 OUT2 NC IN1+ 3 6 IN2- IN1+ 3 6 IN2IN2 VCC- 4 5 IN2+ VCC VCC- 4 5 IN2 IN2+ TSV522 MiniSO8 IN1+ 1 VCC VCC+ 2 IN1- OUT1 OUT4 IN4- TSV522 DFN8 16 15 14 13 12 IN4+ 11 VCC VCC- NC NC IN2+ 4 9 IN3+ 5 6 7 8 IN3- 10 OUT3 3 OUT2 NC IN2- 1 Package pin connections TSV524 TSSOP14 TSV524 QFN16 1. The exposed pads of the DFN8 (2x2) and QFN16 (3x3) can be connected to VCC- or left floating. DocID022743 Rev 1 3/27 27 Absolute maximum ratings and operating conditions 2 TSV52x, TSV52xA Absolute maximum ratings and operating conditions Table 2. Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin Tstg Rthja Tj Parameter Supply voltage (2) ±VCC V (3) VCC- - 0.2 to VCC++ 0.2 (4) 10 mA -65 to +150 °C Input voltage Storage temperature Thermal resistance junction-to-ambient SC70-5 DFN8 2x2 QFN16 3x3 MiniSO8 TSSOP14 (5)(6) 205 57 45 190 100 Maximum junction temperature HBM: human body MM: machine ESD Unit 6 Differential input voltage Input current Value (1) model(7) model(8) model(9) °C/W 150 °C 4 kV 300 V CDM: charged device (all packages except SC70-5 and DFN8) 1.5 CDM: charged device model (SC70-5 and DFN8)(9) 1.3 Latch-up immunity 200 kV mA 1. All voltage values, except differential voltages are with respect to network ground terminal. 2. Differential voltages are the non inverting input terminal with respect to the inverting input terminal. 3. VCC - Vin must not exceed 6 V, Vin must not exceed 6 V. 4. Input current must be limited by a resistor in series with the inputs. 5. Short-circuits can cause excessive heating and destructive dissipation. 6. Rth are typical values. 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground. Table 3. Operating conditions Symbol 4/27 Parameter VCC Supply voltage Vicm Common-mode input voltage range Toper Operating free air temperature range Value 2.7 to 5.5 DocID022743 Rev 1 VCC- - 0.1 to VCC+ + 0.1 -40 to +125 Unit V °C TSV52x, TSV52xA 3 Electrical characteristics Electrical characteristics Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSV52xA, T = 25 °C 800 TSV52xA, -40 °C < T < 125 °C 2600 TSV52x, T = 25 °C 1.5 TSV52x, -40 °C < T < 125 °C 3.3 Input offset voltage drift -40 °C < T < 125 °C(1) 3 18 Iio Input offset current (Vout = VCC/2) T = 25 °C 1 10(3) -40° C < T < 125 °C 1 100(3) Iib Input bias current (Vout = VCC/2) T = 25 °C 1 10(3) -40 °C < T < 125 °C 1 100(3) ΔVio/ΔT Common-mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC+0.1V, Vout = VCC/2, RL = 1 MΩ T = 25 °C 50 -40 °C < T < 125 °C 46 Large signal voltage gain Vout = 0.5 V to (VCC - 0.5V), RL = 1 MΩ T = 25 °C 90 Avd -40 °C < T < 125 °C 60 VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 3 35 50 Low level output voltage T = 25 °C -40 °C < T < 125 °C 6 35 50 CMR VOL Isink Iout Isource ICC µV mV µV/°C pA 72 dB Vout = VCC, T = 25 °C 12 Vout = VCC, -40 °C < T < 125 °C 8 Vout = 0 V, T = 25 °C 12 Vout = 0 V, -40 °C < T < 125 °C 8 Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C 105 mV 22 mA 18 30 51 30 51 µA AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate 0.62 RL = 10 kΩ, CL = 100 pF RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V DocID022743 Rev 1 1 MHz 900 kHz 55 degrees 7 dB 0.74 V/µs 5/27 27 Electrical characteristics TSV52x, TSV52xA Table 4. Electrical characteristics at VCC+ = +2.7 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol en THD+N Parameter Conditions Equivalent input noise voltage f = 1 kHz f = 10 kHz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp Min. Typ. Max. Unit 61 43 nV -----------Hz 0.003 % Table 5. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSV52xA, T = 25 °C 600 TSV52xA, -40 °C < T < 125 °C 2400 TSV52x, T = 25 °C 1.3 TSV52x, -40 °C < T < 125 °C 3.1 Input offset voltage drift -40 °C < T < 125 °C(1) Long term input offset voltage drift T = 25 °C(2) Iio Input offset current (Vout = VCC/2) T = 25 °C 1 10(3) -40 °C < T < 125 °C 1 100(3) Iib Input bias current (Vout = VCC/2) T = 25 °C 1 10(3) -40 °C < T < 125 °C 1 100(3) ΔVio/ΔT ΔVio CMR Common-mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC +0.1 V, Vout = VCC/2, RL = 1 MΩ 3 18 51 -40 °C < T < 125 °C 47 dB VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 3 35 50 Low level output voltage T = 25 °C -40 °C < T < 125 °C 7 35 50 Iout Isource ICC 6/27 pA 73 Large signal voltage gain T = 25 °C Vout = 0.5 V to (VCC - 0.5 V), -40 °C < T < 125 °C RL = 1 MΩ Isink µV/°C month Avd VOL mV μV --------------------------- 0.3 T = 25 °C µV 91 63 Vout = VCC, T = 25 °C 20 Vout = VCC, -40 °C < T < 125 °C 17 Vout = 0 V, T = 25 °C 19 Vout = 0 V, -40 °C < T < 125 °C 17 Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C DocID022743 Rev 1 106 mV 31 mA 27 32 55 32 55 µA TSV52x, TSV52xA Electrical characteristics Table 5. Electrical characteristics at VCC+ = +3.3 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol Parameter Conditions Min. Typ. Max. Unit 0.64 1 MHz 900 kHz 55 degrees 7 dB 0.75 V/μs 60 42 nV -----------Hz 0.003 % AC performance GBP Gain bandwidth product Fu Unity gain frequency Φm Phase margin Gm Gain margin SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5 V en Equivalent input noise voltage f = 1 kHz f = 10 kHz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp THD+N RL = 10 kΩ, CL = 100 pF Table 6. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance Vio Offset voltage TSV52xA, T = 25 °C 600 TSV52xA, -40 °C < T < 125 °C 2400 TSV52x, T = 25 °C 1 TSV52x, -40 °C < T < 125 °C ΔVio/ΔT ΔVio Input offset voltage drift -40 °C < T < 125 °C(1) Long term input offset voltage drift T = 25 °C(2) Iio Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) 2.8 3 18 month 1 10 -40 °C < T < 125 °C 1 100(3) T = 25 °C 1 10(3) -40 °C < T < 125 °C 1 100(3) 54 CMR1 -40 °C < T < 125 °C 50 T = 25 °C 63 CMR2 Common-mode rejection ratio 20 log (ΔVic/ΔVio) Vic = 1 V to VCC -1 V, Vout = VCC/2, RL = 1 MΩ -40 °C < T < 125 °C 58 DocID022743 Rev 1 µV/°C (3) T = 25 °C T = 25 °C mV μV --------------------------- 0.7 Common-mode rejection ratio 20 log (ΔVic/ΔVio) Vic = -0.1 V to VCC +0.1 V, Vout = VCC/2, RL = 1 MΩ µV pA 76 84 dB 7/27 27 Electrical characteristics TSV52x, TSV52xA Table 6. Electrical characteristics at VCC+ = +5 V with VCC- = 0 V, Vicm = VCC/2, T = 25 °C, and RL = 10 kΩ connected to VCC/2 (unless otherwise specified) (continued) Symbol SVR Parameter Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) VCC = 2.7 V to 5.5 V, Vout = VCC/2 Conditions Min. Typ. T = 25 °C 65 87 -40 °C < T < 125 °C 60 Max. dB Avd T = 25 °C Large signal voltage gain Vout = 0.5 V to (VCC - 0.5 V), -40 °C < T < 125 °C RL = 1 MΩ VOH High level output voltage T = 25 °C -40 °C < T < 125 °C 5 35 50 Low level output voltage T = 25 °C -40 °C < T < 125 °C 9 35 50 VOL Isink Iout Isource ICC Unit 94 109 68 Vout = VCC, T = 25 °C 36 Vout = VCC, -40 °C < T < 125 °C 27 Vout = 0 V, T = 25 °C 36 Vout = 0 V, -40 °C < T < 125 °C 27 Supply current (per channel) T = 25 °C Vout = VCC/2, RL > 1 MΩ -40 °C < T < 125 °C mV 55 mA 55 45 60 45 60 µA AC performance Gain bandwidth product RL = 10 kΩ, CL = 100 pF 1.15 MHz Fu Unity gain frequency RL = 10 kΩ, CL = 100 pF 900 kHz Φm Phase margin RL = 10 kΩ, CL = 100 pF 55 degrees Gm Gain margin RL = 10 kΩ, CL = 100 pF 7 dB SR Slew rate RL = 10 kΩ, CL = 100 pF, Vout = 0.5 V to VCC - 0.5V 0.89 V/μs ∫ en Low-frequency peak-topeak input noise Bandwidth: f = 0.1 to 10 Hz 14 µVpp Equivalent input noise voltage f = 1 kHz f = 10 kHz 57 39 nV -----------Hz Total harmonic distortion + noise Follower configuration, fin = 1 kHz, RL = 100 kΩ, Vicm = VCC/2, BW = 22 kHz, Vout = 1 Vpp 0.002 % GBP en THD+N 0.73 1. See Section 4.6: Input offset voltage drift over temperature. 2. Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration. 3. Guaranteed by design. 8/27 DocID022743 Rev 1 TSV52x, TSV52xA Electrical characteristics Figure 2. Supply current vs. supply voltage at Vicm = VCC/2 Figure 3. Input offset voltage distribution at VCC = 5 V, Vicm = 2.5 V 9LRGLVWULEXWLRQDW7 &IRU9&& 99LFP 9 3RSXODWLRQ $0 Figure 4. Input offset voltage temperature coefficient distribution Figure 5. Input offset voltage vs. input Common-mode voltage at VCC = 5 V 9LFP 9&& 9&& 9 3RSXODWLRQ 7 & 7 & 7 & 9&& 9 $0 Figure 7. Output current vs. output voltage at VCC = 2.7 V /LPLWIRU769[$ 7 & 7 & 2XWSXWFXUUHQWP$ /LPLWIRU769; 7 & 7 & 7 & 9&& 99LFP 9 9LFP9 $0 Figure 6. Input offset voltage vs. temperature at VCC = 5 V 7 & $0 DocID022743 Rev 1 9&& 9 2XWSXWYROWDJH9 $0 9/27 27 Electrical characteristics TSV52x, TSV52xA Figure 8. Output current vs. output voltage at VCC = 5.5 V 7 & 7 & 7 & *DLQG% 7 & 7 & *DLQ 9&& 99LFP 9* &/ S)9UO 9&& 3KDVH 9&& 9 7 & 7 & 7 & 7 & 2XWSXWYROWDJH9 )UHTXHQF\N+] $0 $0 Figure 10. Bode diagram at VCC = 2.7 V, RL = 2 k Ω Figure 11. Bode diagram at VCC = 5.5 V, RL = 10 kΩ 7 & 7 & *DLQ 3KDVH 9&& 99LFP 9* &/ S)9UO 9&& *DLQG% 3KDVH 3KDVH 7 & *DLQ 7 & 7 & 7 & *DLQG% 9&& 99LFP 9* &/ S)9UO 9&& )UHTXHQF\N+] )UHTXHQF\N+] $0 $0 Figure 12. Bode diagram at VCC = 5.5 V, RL = 2 kΩ Figure 13. Noise vs. frequency 7 & 7 & *DLQ 3KDVH 3KDVH *DLQG% 9&& 99LFP 9* &/ S)9UO 9&& )UHTXHQF\N+] )UHTXHQF\+] $0 10/27 9&& 99LFP 9 7DPE & 7 & 3KDVH 2XWSXWFXUUHQWP$ 3KDVH Figure 9. Bode diagram at VCC = 2.7 V, RL = 10 kΩ DocID022743 Rev 1 $0 TSV52x, TSV52xA Electrical characteristics Figure 14. Positive slew rate vs. supply voltage Figure 15. Negative slew rate vs. supply voltage &/ S) 9LQIURP9WR9&&9 65FDOFXODWHGIURPWR 7 & 7 & 7 & 6XSSO\YROWDJH9 $0 Figure 16. THD+N vs. frequency at VCC = 2.7 V Figure 17. THD+N vs. frequency at VCC = 5.5 V 9LQ 9SS *DLQ 9LFP 9&& 7+'1 7+'1 9LQ 9SS *DLQ 9LFP 9&& ( ( )UHTXHQF\+] $0 $0 Figure 19. THD+N vs. output voltage at VCC = 5.5 V 7+'1 7+'1 Figure 18. THD+N vs. output voltage at VCC = 2.7 V ( I N+] *DLQ %: N+] 9LFP 9&& )UHTXHQF\+] I N+] *DLQ %: N+] 9LFP 9&& ( 2XWSXWYROWDJH9SS 2XWSXWYROWDJH9SS $0 DocID022743 Rev 1 $0 11/27 27 Electrical characteristics TSV52x, TSV52xA Figure 20. Output impedance versus frequency in closed-loop configuration 9&& 9WR9 2VFOHYHO 9506 * 7 & 2XWSXWLPSHGDQFH )UHTXHQF\N+] $0 Figure 21. Response to a 100 mV input step for Figure 22. Response to a 100 mV input step for gain = 1 at VCC = 5.5 V rising edge gain = 1 at VCC = 5.5 V falling edge VCC = 5.5 V, Vicm = 2.75 V RL = 10 kΩ, CL = 100 pF 0.5 µs/div., 20 mV/div. VCC = 5.5 V, Vicm = 2.75 V RL = 10 kΩ, CL = 100 pF 0.5 µs/div., 20 mV/div. Figure 23. PSRR vs. frequency at VCC = 2.7 V Figure 24. PSRR vs. frequency at VCC = 5.5 V 3655G% 3655G% 9&& 99LFP 9* &/ S)9ULSSOH P9SS 9&& 99LFP 9* &/ S)9ULSSOH P9SS )UHTXHQF\+] )UHTXHQF\+] $0 12/27 DocID022743 Rev 1 $0 TSV52x, TSV52xA Application information 4 Application information 4.1 Operating voltages The amplifiers of the TSV52x, TSV52xA series can operate from 2.7 V to 5.5 V. Their parameters are fully specified for 2.7 V, 3.3 V and 5 V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV52x, TSV52xA device characteristics at 2.7 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 °C. 4.2 Common-mode voltage range The TSV52x, TSV52xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input and the input Common-mode range is extended from VCC- - 0.1 V to VCC+ + 0.1 V. The N channel pair is active for input voltage close to the positive rail typically (VCC+ - 0.7 V) to 100 mv above the positive rail. The P channel pair is active for input voltage close to the negative rail typically 100 mV below the negative rail to VCC- + 0.7 V. And between VCC- + 0.7 V and VCC+ - 0.7 V the both N and P pairs are active. When the both pairs work together it allows to increase the speed of the TSV52x, TSV52xA devices. This architecture improves the merit factor of the whole device. In the transition region, the performance of CMR, SVR, Vio (Figure 25 and Figure 26) and THD is slightly degraded. Figure 25. Input offset voltage vs. input common-mode at VCC = 2.7 V Figure 26. Input offset voltage vs. input common-mode at VCC = 5.5 V 9LRP9 9LRP9 9LFP9 9LFP9 $0 DocID022743 Rev 1 $0 13/27 27 Application information 4.3 TSV52x, TSV52xA Rail-to-rail input The TSV52x, TSV52xA series are guaranteed without phase reversal as shown in Figure 28. It is extremely important that the current flowing in the input pin does not exceed 10 mA. In order to limit this current, a serial resistor can be added on the Vin path. Figure 27. Phase reversal test schematic Figure 28. No phase reversal 9 B 9&& 9RXW 9&& 9RXW9 9LQS 9 9&& 9 9LQQ 9 9LQS9 $0 4.4 $0 Rail-to-rail output The operational amplifier output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 kΩ resistive load to VCC/2. 4.5 Driving resistive and capacitive loads To drive high capacitive loads, adding an in series resistor at the output can improve the stability of the device (see Figure 29 for the recommended in series value). Once the in series resistor has been selected, the stability of the circuit should be tested on the bench and simulated with simulation models. The Rload is placed in parallel with the capacitive load. The Rload and the in series resistor create a voltage divider which introduces an error proportional to the ratio Rs/Rload. By keeping Rs as low as possible, this error is generally negligible. 14/27 DocID022743 Rev 1 TSV52x, TSV52xA Application information Figure 29. In series resistor versus capacitive load 6WDEOH 8QVWDEOH 9&& 99LFP 97 &5ORDG 0LQLPXPVHULDOUHVLVWRUWREHDGGHGWRDJLYHQ FDSDFLWLYHORDGLQRUGHUWRHQVXUHVWDELOLW\ &DSDFLWLYHORDGQ) $0 4.6 Input offset voltage drift over temperature The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations. The maximum input voltage drift over temperature is computed using Equation 1. Equation 1 ΔV io V io ( T ) – V io ( 25° C ) ------------ = max -------------------------------------------------ΔT T – 25° C with T = -40 °C and 125 °C. The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a Cpk (process capability index) greater than 1.33. DocID022743 Rev 1 15/27 27 Application information 4.7 TSV52x, TSV52xA Long term input offset voltage drift To evaluate product reliability, two types of stress acceleration are used: • Voltage acceleration, by changing the applied voltage • Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature. The voltage acceleration has been defined based on JEDEC results, and is defined using Equation 2. Equation 2 A FV = e β ⋅ ( VS – VU ) Where: AFV is the voltage acceleration factor β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1) VS is the stress voltage used for the accelerated test VU is the voltage used for the application The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3. Equation 3 A FT = e Ea ⎛ 1 1 ------ ⋅ ------ – ------⎞ ⎝ T U T S⎠ k Where: AFT is the temperature acceleration factor Ea is the activation energy of the technology based on the failure rate k is the Boltzmann constant (8.6173 x 10-5 eV.K-1) TU is the temperature of the die when VU is used (K) TS is the temperature of the die under temperature stress (K) The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and the temperature acceleration factor (Equation 4). Equation 4 A F = A FT × A FV AF is calculated using the temperature and voltage defined in the mission profile of the product. The AF value can then be used in Equation 5 to calculate the number of months of use equivalent to 1000 hours of reliable stress duration. 16/27 DocID022743 Rev 1 TSV52x, TSV52xA Application information Equation 5 Months = A F × 1000 h × 12 months ⁄ ( 24 h × 365.25 days ) To evaluate the op-amp reliability, a follower stress condition is used where VCC is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules). The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see Equation 6). Equation 6 V CC = maxV op with V icm = V CC ⁄ 2 The long term drift parameter (ΔVio), estimating the reliability performance of the product, is obtained using the ratio of the Vio (input offset voltage value) drift over the square root of the calculated number of months (Equation 7). Equation 7 V io drift ΔV io = -----------------------------( months ) where Vio drift is the measured drift value in the specified test conditions after 1000 h stress duration. 4.8 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. 4.9 Macromodel Accurate macromodels of the TSV52x, TSV52xA devices are available on STMicroelectronics™ website at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV52x, TSV52xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the appropriate operational amplifier, but they do not replace onboard measurements. DocID022743 Rev 1 17/27 27 Package information 5 TSV52x, TSV52xA Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 18/27 DocID022743 Rev 1 TSV52x, TSV52xA 5.1 Package information SC705 package information Figure 30. SC70-5 package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 7. SC70-5 package mechanical data Dimensions Ref Millimeters Min. Typ. Inches Max. Min. 0.032 A 0.80 1.10 A1 0 0.10 A2 0.80 b 0.90 Typ. Max. 0.043 0.004 1.00 0.032 0.035 0.15 0.30 0.006 0.012 c 0.10 0.22 0.004 0.009 D 1.80 2.00 2.20 0.071 0.079 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 0.014 0.039 0.018 8° DocID022743 Rev 1 19/27 27 Package information 5.2 TSV52x, TSV52xA DFN8 2x2 package information Figure 31. DFN8 2x2x0.6, 8 pitch, 0.5 mm package outline Table 8. DFN8 2x2x0.6, 8 pitch, 0.5 mm package mechanical data Dimensions Ref. A Millimeters Min. Typ. Max. Min. Typ. Max. 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 A3 0.002 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 20/27 Inches 0.50 0.020 L 0.50 0.020 ddd 0.08 0.003 DocID022743 Rev 1 TSV52x, TSV52xA Package information Figure 32. DFN8 2x2x0.6, 8 pitch, 0.5 mm footprint recommendation DocID022743 Rev 1 21/27 27 Package information 5.3 TSV52x, TSV52xA MiniSO8 package information Figure 33. MiniSO8 package outline 0LQL62/ Table 9. MiniSO8 package mechanical data Dimensions Symbol Millimeters Min. Typ. A Max. Min. Typ. 1.10 A1 0 A2 0.75 b Max. 0.043 0.15 0 0.95 0.030 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e L 0.85 0.65 0.40 0.60 0.006 0.033 0.80 0.016 0.024 0.95 0.037 L2 0.25 0.010 ccc 0° 0.037 0.026 L1 k 22/27 Inches 8° 0.10 DocID022743 Rev 1 0° 0.031 8° 0.004 TSV52x, TSV52xA 5.4 Package information QFN16 3x3 package information Figure 34. QFN16 3x3x0.9 mm, pad 1.7 package outline 9)431/ DocID022743 Rev 1 23/27 27 Package information TSV52x, TSV52xA Table 10. QFN16 3x3x0.9 mm, pad 1.7 package mechanical data Dimensions Symbol A Millimeters Nom. Min. Max. Nom. Min. Max. 0.90 0.80 1.00 0.035 0.032 0.039 0.00 0.05 0.000 0.002 0.007 0.012 0.114 0.122 0.061 0.071 0.114 0.122 0.061 0.071 0.012 0.020 A1 A3 0.20 b D 3.00 D2 E 3.00 E2 e L Inches 0.008 0.18 0.30 2.90 3.10 1.50 1.80 2.90 3.10 1.50 1.80 0.50 0.118 0.118 0.020 0.30 0.50 Figure 35. QFN16 3x3x0.9 mm, pad 1.7 footprint recommendation 4)1)3 24/27 DocID022743 Rev 1 TSV52x, TSV52xA 5.5 Package information TSSOP14 package information Figure 36. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package outline 76623 Table 11. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package mechanical data Dimensions Symbol Millimeters Min. Typ. A Inches Max. Min. Typ. 1.20 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.90 5.00 5.10 0.193 0.197 0.201 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.176 e L 0.65 0.45 L1 k aaa 1.00 0.60 0.0256 BSC 0.75 1.00 0° 8° 0° 0.10 0.018 DocID022743 Rev 1 8° 0.024 0.030 25/27 27 Ordering information 6 TSV52x, TSV52xA Ordering information Table 12. Order codes Order code Temperature range Package TSV521ICT TSV522IQ2T TSV522IST -40 to 125 °C TSV524IQ4T TSV524IPT TSV522IYST TSV524IYPT -40 to 125 °C Automotive grade(1) TSV522AIST -40 to 125 °C TSV524AIQ4T TSV524AIPT TSV522AIYST TSV524AIYPT K1G DFN8 2 x 2 K1G MiniSO8 K1G QFN16 3 x 3 K1G TSSOP14 TSV524 MiniSO8 K1H SC70-5 TSV522AIQ2T -40 to 125 °C Automotive grade(1) Marking SC70-5 TSSOP14 TSV521AICT Packing Tape and reel TSV524Y K1K DFN8 2 x 2 K1K MiniSO8 K1K QFN16 3 x 3 K1K TSSOP14 TSV524A MiniSO8 K1L TSSOP14 TSV524AY 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent. 7 Revision history Table 13. Document revision history Date Revision 19-Jun-2012 1 Initial release. 2 Updated information of Related products Figure 1: Pin connections for each package (top view): added footnote 1. Section 4: Application information: updated text to make it more readable Table 12: updated automotive footnotes 31-Jan-2014 26/27 Changes DocID022743 Rev 1 TSV52x, TSV52xA Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID022743 Rev 1 27/27 27