TSV630, TSV630A, TSV631, TSV631A Rail-to-rail input/output, 60 µA, 880 kHz, 5 V CMOS operational amplifiers Datasheet - production data • See the TSV611 (120 kHz for 9 µA) or the TSV621 (420 kHz for 29 µA) for more power savings DFN6 1.2x1.3 (TSV630) Applications • • • • SC70-6 (TSV630) SOT23-6 (TSV630) Battery-powered applications Portable devices Active filtering Medical instrumentation Description The TSV630 and TSV631 devices are single operational amplifiers offering low voltage, low power operation, and rail-to-rail input and output. SC70-5 (TSV631) SOT23-5 (TSV631) Features • • • • • • • • • • • Low offset voltage: 500 µV max (A version) Low power consumption: 60 µA typ at 5 V Low supply voltage: 1.5 V - 5.5 V Gain bandwidth product: 880 kHz typ Unity gain stability Low power shutdown mode: 5 nA typ High output current: 63 mA at VCC = 5 V Low input bias current: 1 pA typ Rail-to-rail input and output Extended temperature range: -40 °C to 125 °C Automotive qualification These devices have a very low input bias current and a low offset voltage making them ideal for applications that require precision. They can operate at power supplies ranging from 1.5 V to 5.5 V, and are therefore very suitable for batterypowered devices, extending battery life. These op-amps feature an excellent speed/power consumption ratio, offering an 880 kHz gain bandwidth while consuming only 60 µA at a 5 V supply voltage. They are unity gain stable for capacitive loads up to 100 pF. The devices are internally adjusted to provide very narrow dispersion of AC and DC parameters. The TSV630 provides a shutdown function. All devices are offered in micropackages and are guaranteed for industrial temperature ranges from -40° C to +125° C. These features combined make the TSV630 and TSV631 ideal for sensor interfaces, batterysupplied and portable applications, as well as active filtering. Related products • See the TSV521 series for higher merit factor (1.15 MHz for 45 µA) July 2015 DocID15242 Rev 7 This is information on a product in full production. 1/27 www.st.com Contents TSV630, TSV630A, TSV631, TSV631A Contents 1 Package pin connections ................................................................ 3 2 Absolute maximum ratings and operating conditions .................. 4 3 Electrical characteristics ................................................................. 5 4 Application information ................................................................. 13 5 4.1 Operating voltages .......................................................................... 13 4.2 Rail-to-rail input ............................................................................... 13 4.3 Rail-to-rail output ............................................................................. 13 4.4 Shutdown function (TSV630) .......................................................... 14 4.5 Optimization of DC and AC parameters .......................................... 15 4.6 Driving resistive and capacitive loads ............................................. 15 4.7 PCB layouts .................................................................................... 15 4.8 Macromodel .................................................................................... 16 Package information ...................................................................... 17 5.1 DFN6 1.2 x 1.3 package information ............................................... 18 5.2 SC70-6 (or SOT323-6) package information ................................... 20 5.3 SOT23-6 package information ........................................................ 22 5.4 SC70-5 (or SOT323-5) package information ................................... 23 5.5 SOT23-5 package information ........................................................ 24 6 Ordering information ...................................................................... 25 7 Revision history .............................................................................. 26 2/27 DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A 1 Package pin connections Package pin connections Figure 1: Pin connections for each package (top view) OUT 1 6 VCC+ VCC- 2 5 SHDN IN- 3 4 IN+ DFN6 1.2x1.3 (TSV630) IN+ 1 6 VCC+ VCC- 2 5 SHDN IN- 3 4 OUT 5 VCC+ 4 OUT SC70-6/SOT23-6 (TSV630) IN+ 1 VCC- 2 IN- 3 SC70-5/SOT23-5 (TSV631) DocID15242 Rev 7 3/27 Absolute maximum ratings and operating conditions 2 TSV630, TSV630A, TSV631, TSV631A Absolute maximum ratings and operating conditions Table 1: Absolute maximum ratings (AMR) Symbol VCC Vid Vin Iin SHDN Tstg Rthja (5)(6) Tj Parameter Supply voltage Unit 6 Differential input voltage (2) ±VCC V Input voltage (3) (VCC-) - 0.2 to (VCC+) + 0.2 Input current (4) 10 mA 6 V -65 to 150 °C Shutdown voltage (3) Storage temperature Thermal resistance junction to ambient DFN6 1.2 x 1.3 232 SC70-6 232 SOT23-6 240 SC70-5 205 SOT23-5 250 Maximum junction temperature HBM: human body model ESD Value (1) MM: machine model (7) (8) CDM: charged device model (9) Latch-up immunity °C/W 150 °C 4 kV 300 V 1.5 kV 200 mA Notes: (1) All voltage values, except the differential voltage are with respect to the network ground terminal. (2) The differential voltage is the non-inverting input terminal with respect to the inverting input terminal. (3) VCC - Vin must not exceed 6 V (4) Input current must be limited by a resistor in series with the inputs. (5) Rth are typical values. (6) Short-circuits can cause excessive heating and destructive dissipation. (7) 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating (8) A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 W), done for all couples of pin combinations with other pins floating (9) All pins plus package are charged together to the specified voltage and then discharged directly to the ground Table 2: Operating conditions 4/27 Symbol Parameter Value VCC Supply voltage 1.5 to 5.5 Vicm Common mode input voltage range (VCC-) - 0.1 to (VCC+) + 0.1 Toper Operating free air temperature range -40 to 125 DocID15242 Rev 7 Unit V °C TSV630, TSV630A, TSV631, TSV631A 3 Electrical characteristics Electrical characteristics Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV630, TSV631 Vio ΔVio/ΔT Offset voltage Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) Common mode rejection ratio 20 log (ΔVic/ΔVio) Avd Large signal voltage gain VOH High level output voltage, (VOH = VCC - Vout) VOL Low level output voltage Isink Iout Isource Supply current, ICC TSV630A, TSV631A 0.5 -40 °C < Top < 125 °C, TSV630, TSV631 4.5 -40 °C < Top < 125 °C, TSV630A, TSV631A 2 Input offset voltage drift Iio CMR 3 SHDN = VCC+ μV/°C 2 -40 °C < Top < 125 °C -40 °C < Top < 125 °C 0 V to 1.8 V, Vout = 0.9 V 53 -40 °C < Top < 125 °C 51 RL= 10 kΩ, Vout = 0.5 V to 1.3 V 85 -40 °C < Top < 125 °C 80 RL = 10 kΩ (1) 1 10 1 100 1 10 (1) 1 100 pA 74 dB 95 5 -40 °C < Top < 125 °C 35 50 RL = 10 kΩ mV 4 -40 °C < Top < 125 °C 35 mV 50 Vο = 1.8 V 6 -40 °C < Top < 125 °C 4 Vο = 0 V 6 -40 °C < Top < 125 °C 4 No load, Vout = VCC/2 40 12 mA 10 50 -40 °C < Top < 125 °C 60 62 µA AC performance GBP Gain bandwidth product ɸm Phase margin Gm Gain margin SR Slew rate en Equivalent input noise voltage RL = 2 kΩ, CL = 100 pF, f = 100 kHz 700 RL = 2 kΩ, CL = 100 pF RL = 2 kΩ, CL = 100 pF, Av = 1 0.2 790 kHz 48 Degrees 11 dB 0.27 V/μs f = 1 kHz 67 f = 10 kHz 53 nV / √Hz Notes: (1) Guaranteed by design. DocID15242 Rev 7 5/27 Electrical characteristics TSV630, TSV630A, TSV631, TSV631A Table 4: Shutdown characteristics VCC = 1.8 V Symbol Parameter Conditions Min. Typ. Max. 2.5 50 Unit DC performance SHDN ICC Supply current in shutdown mode (all operators) = VCC- -40 °C < Top < 85 °C 200 -40 °C < Top < 125 °C 1.5 ton Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) + 0.2 V to (VCC+) - 0.2 V 300 toff Amplifier turn-off time RL = 2 kΩ, Vout = (VCC-) + 0.2 V to (VCC+) - 0.2 V 20 nΑ µA ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 SHDN = VCC- 50 1.3 V IOLeak 6/27 Output leakage in shutdown mode 0.5 -40 °C < Top < 125 °C DocID15242 Rev 7 1 pA nA TSV630, TSV630A, TSV631, TSV631A Electrical characteristics Table 5: Electrical characteristics at VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C, RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV630, TSV631 Vio ΔVio/ΔT Iio Iib CMR Offset voltage Input offset current Input bias current Common mode rejection ratio 20 log (ΔVic/ΔVio) Large signal voltage gain VOH High level output voltage, (VOH = VCC - Vout) Low level output voltage Isink Iout Isource Supply current, ICC TSV630A, TSV631A 0.5 -40 °C < Top < 125 °C, TSV630, TSV631 4.5 -40 °C < Top < 125 °C, TSV630A, TSV631A 2 Input offset voltage drift Avd VOL 3 SHDN = VCC+ μV/°C 2 -40 °C < Top < 125 °C -40 °C < Top < 125 °C 0 V to 3.3 V, Vout = 1.75 V 57 -40 °C < Top < 125 °C 53 RL = 10 kΩ, Vout = 0.5 V to 2.8 V 88 -40 °C < Top < 125 °C 83 RL = 10 kΩ (1) 1 10 1 100 1 10 (1) 1 100 pA 79 dB 98 6 -40 °C < Top < 125 °C 35 50 RL = 10 kΩ mV 7 -40 °C < Top < 125 °C 35 mV 50 Vο = 3.3 V 30 45 -40 °C < Top < 125 °C 25 42 Vο = 0 V 30 38 -40 °C < Top < 125 °C 25 No load, Vout = 1.75 V 43 55 -40 °C < Top < 125 °C mA 64 66 µA AC performance GBP Gain bandwidth product RL = 2 kΩ, CL = 100 pF, f = 100 kHz 710 860 kHz 50 Degrees 11 dB 0.29 V/μs ɸm Phase margin Gm Gain margin SR Slew rate RL = 2 kΩ, CL = 100 pF, Av = 1 en Equivalent input noise voltage f = 1 kHz 64 f = 10 kHz 51 RL = 2 kΩ, CL = 100 pF 0.22 nV / √Hz Notes: (1) Guaranteed by design. DocID15242 Rev 7 7/27 Electrical characteristics TSV630, TSV630A, TSV631, TSV631A Table 6: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25° C and RL connected to VCC/2 (unless otherwise specified) Symbol Parameter Conditions Min. Typ. Max. Unit DC performance TSV630, TSV631 Vio ΔVio/ΔT Offset voltage 3 TSV630A, TSV631A 0.5 -40 °C < Top < 125 °C, TSV630, TSV631 4.5 -40 °C < Top < 125 °C, TSV630A, TSV631A 2 Input offset voltage drift Iio Input offset current (Vout = VCC/2) Iib Input bias current (Vout = VCC/2) -40 °C < Top < 125 °C 10 1 100 1 10 (1) 1 100 Common mode rejection ratio 20 log (ΔVic/ΔVio) 0 V to 5 V, Vout = 2.5 V 60 -40 °C < Top < 125 °C 55 SVR Supply voltage rejection ratio 20 log (ΔVCC/ΔVio) VCC = 1.8 to 5 V 75 102 RL= 10 kΩ, Vout= 0.5 V to 4.5 V 89 98 -40 °C < Top < 125 °C 84 Large signal voltage gain VOH High level output voltage, (VOH = VCC - Vout) VOL Low level output voltage Isink Iout Isource Supply current ICC SHDN = VCC+ (1) 1 CMR Avd μV/°C 2 -40 °C < Top < 125 °C 7 -40 °C < Top < 125 °C dB 35 50 RL = 10 kΩ pA 80 -40 °C < Top < 125 °C RL = 10 kΩ mV 6 -40 °C < Top < 125 °C 35 mV 50 Vο = 5 V 40 69 -40 °C < Top < 125 °C 35 65 Vο = 0 V 40 74 -40 °C < Top < 125 °C 36 68 No load, Vout = VCC/2 50 60 -40 °C < Top < 125 °C mA 69 72 µA AC performance GBP Gain bandwidth product RL = 2 kΩ, CL= 100 pF, f = 100 kHz 730 880 Fu Unity gain frequency ɸm Phase margin Gm Gain margin SR Slew rate RL = 2 kΩ, CL = 100 pF, Av = 1 en Equivalent input noise voltage f = 1 kHz 60 f = 10 kHz 47 8/27 kHz 830 RL = 2 kΩ, CL = 100 pF, DocID15242 Rev 7 0.25 50 Degrees 12 dB 0.34 V/μs nV / √Hz TSV630, TSV630A, TSV631, TSV631A Symbol THD+en Electrical characteristics Parameter Total harmonic distortion Conditions Min. f = 1 kHz, AV = 1, RL = 100 kΩ, Vicm = VCC/2, Vout = 2 VPP Typ. Max. 0.0017 Unit % Notes: (1) Guaranteed by design. Table 7: Shutdown characteristics VCC = 5 V Symbol Parameter Conditions Min. Typ. Max. 5 50 Unit DC performance SHDN = VCC- Supply current in shutdown mode (all operators) -40 °C < Top < 85 °C 200 -40 °C < Top < 125 °C 1.5 ton Amplifier turn-on time RL = 2 kΩ, Vout = (VCC-) + 0.2 V to (VCC+) - 0.2 V 300 toff Amplifier turn-off time RL = 2 kΩ, Vout = (VCC-) + 0.2 V to (VCC+) - 0.2 V 30 ICC nΑ µA ns VIH SHDN logic high VIL SHDN logic low IIH SHDN current high SHDN = VCC+ 10 IIL SHDN current low SHDN = VCC- 10 SHDN = VCC- 50 4.5 V IOLeak Output leakage in shutdown mode 0.5 -40 °C < Top < 125 °C DocID15242 Rev 7 1 pA nA 9/27 Electrical characteristics TSV630, TSV630A, TSV631, TSV631A Figure 3: In-series resistor (Riso) vs. capacitive load In-series resistor (Ω) Figure 2: Supply current vs. supply voltage at Vicm = VCC/2 Figure 5: Voltage gain and phase vs. frequency at VCC = 1.5 V P hase (° ) G ain (dB ) Figure 4: Output current vs. output voltage at VCC = 5 V Figure 7: Phase margin vs. output current at VCC = 5 V Figure 6: Voltage gain and phase vs. frequency at VCC = 5 V 90 80 Cl=100pF 70 P hase (° ) G ain (dB ) 60 50 40 Cl=330pF 30 20 10 Vcc=5V, Vicm=2.5V R l =2kohms, T=25 C 0 -1.5 10/27 DocID15242 Rev 7 -1.0 -0.5 0.0 0.5 1.0 1.5 TSV630, TSV630A, TSV631, TSV631A Electrical characteristics Figure 9: Negative slew rate vs. time Output voltage (V) Figure 8: Positive slew rate vs. time T ime (µs ) T ime (µs ) Figure 10: Positive slew rate vs. supply voltage Figure 11: Negative slew rate vs. supply voltage 0.5 0.0 0.4 -0.1 0.3 -0.2 0.2 -0.3 0.1 -0.4 0.0 2.5 3.0 3.5 4.0 4.5 5.0 -0.5 2.5 5.5 Supply voltage (V) Figure 12: Distortion + noise vs. output voltage (RL = 2 kΩ) Vcc=1.8V Vcc=3.3V Vcc=1.5V 3.5 4.0 4.5 Supply voltage (V) 5.0 5.5 Figure 13: Distortion + noise vs. output voltage (RL = 100 kΩ THD + N (%) THD + N (%) f=1kHz, Av=1 R l=2kOhms to Vcc/2 Vicm=(Vcc-0.7)/2 BW=22kHz 3.0 f=1kHz, Av=1 R I = 100kOhms to Vcc/2 Vicm=(Vcc-0.7)/2 BW=22kHz Vcc=1.5V Vcc=5.5V Vcc=5V Output Voltage (Vpp) Output Voltage (Vpp) DocID15242 Rev 7 11/27 Electrical characteristics TSV630, TSV630A, TSV631, TSV631A Figure 14: Distortion + noise vs. frequency and input voltage Figure 15: Distortion + noise vs. frequency and output load resistor Ω T HD + N (%) T HD + N (%) 0.1 0.01 V in= 3V p p 1E -3 10 0.1 V cc=5.5V R l=2k Ω 0.01 100 1000 10000 10 100 Input equivalent voltage noise density (nV/VHz) Figure 16: Noise vs. frequency 12/27 V cc=5.5V R l=100kΩ Ω 1000 Vcc=5V T=25°C Vicm=2.5V 100 Vicm=4.5V 10 0.01 0.1 1 10 Frequency (kHz) DocID15242 Rev 7 100 1000 10000 TSV630, TSV630A, TSV631, TSV631A Application information 4 Application information 4.1 Operating voltages The TSV630 and TSV631 can operate from 1.5 V to 5.5 V. Their parameters are fully specified for 1.8-V, 3.3-V, and 5-V power supplies. However, the parameters are very stable in the full VCC range and several characterization curves show the TSV63x characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C. 4.2 Rail-to-rail input The TSV630 and TSV631 are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears at (VCC+) - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio and THD is slightly degraded (as shown in Figure 17 and Figure 18 for Vio vs. Vicm). Figure 17: Input offset voltage vs input common mode at VCC = 1.5 V Figure 18: Input offset voltage vs input common mode at VCC = 5 V 0.5 0.4 0.3 Input Offs et V oltage (mV ) Input Offs et V oltage (mV ) 0.4 0.2 0.1 0.0 -0.1 -0.2 -0.3 0.0 -0.2 -0.4 -0.4 -0.5 -0.2 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Input C ommon Mode V oltage (V) 1.6 0.0 1.0 2.0 3.0 4.0 Input C ommon Mode V oltage (V) 5.0 The device is guaranteed without phase reversal. 4.3 Rail-to-rail output The operational amplifiers’ output levels can go close to the rails: to a maximum of 35 mV above and below the rail when a 10 kΩ resistive load is connected to VCC/2. DocID15242 Rev 7 13/27 Application information 4.4 TSV630, TSV630A, TSV631, TSV631A Shutdown function (TSV630) The operational amplifier is enabled when the SHDN pin is pulled high. To disable the amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier output is in a high impedance state. The SHDN pin must never be left floating, but must be tied to VCC+ or VCC-. The turn-on and turn-off time are calculated for an output variation of ±200 mV (Figure 19 and Figure 20 show the test configurations). Figure 21 and Figure 22 show the amplifier output voltage behavior when the SHDN pin is toggled high and low. Figure 19: Test configuration for turn-on time (Vout pulled down) +2.5 V Figure 20: Test configuration for turn-off time (Vout pulled down) +2.5 V GND GND 2 kΩ 2 kΩ 2V + 2V + DUT DUT - - - 2.5 V - 2.5 V Figure 21: Turn-on time, VCC = ±2.5 V, Vout pulled down, T = 25 °C Figure 22: Turn-off time, VCC = ±2.5 V, Vout pulled down, T = 25 °C Vout Shutdow n pulse Vcc = 5V T = 25° C Output vo ltage (V) Voltage (V) Shutdow n pulse Vout Vcc = 5V T = 25° C Time (µs) 14/27 Time (µs) DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A 4.5 Application information Optimization of DC and AC parameters These devices use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of the current consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and SR = 0.25 V/µs minimum). 4.6 Driving resistive and capacitive loads These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may significantly increase. In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding an in-series resistor at the output can improve the stability of the devices (see Figure 23 for recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on the bench and simulated with the simulation model. In-series res is tor (Ω) Figure 23: In-series resistor vs. capacitive load 4.7 PCB layouts For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins. DocID15242 Rev 7 15/27 Application information 4.8 TSV630, TSV630A, TSV631, TSV631A Macromodel An accurate macromodel of the TSV630 and TSV631 is available on STMicroelectronics’ web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV63x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements. 16/27 DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A 5 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID15242 Rev 7 17/27 Package information 5.1 TSV630, TSV630A, TSV631, TSV631A DFN6 1.2 x 1.3 package information Figure 24: DFN6 1.2 x 1.3 package outline BOTTOM VIEW e b PIN#1 ID L3 L SIDE VIEW A1 A C SEATING PLANE 8 0.05 C TOP VIEW D E PIN 1 18/27 DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A Package information Table 8: DFN6 1.2 x 1.3 mechanical data Dimensions Millimeters Ref Inches Min. Typ. Max. Min. Typ. Max. A 0.31 0.38 0.40 0.012 0.015 0.016 A1 0.00 0.02 0.05 0.000 0.001 0.002 b 0.15 0.18 0.25 0.006 0.007 0.010 c 0.05 0.002 D 1.20 0.047 E 1.30 0.051 e 0.40 0.016 L 0.475 0.525 0.575 0.019 0.021 0.023 L3 0.375 0.425 0.475 0.015 0.017 0.019 Figure 25: DFN6 1.2 x 1.3 recommended footprint 0.40 0.25 3 1 1.20 0.475 4 DocID15242 Rev 7 6 19/27 Package information 5.2 TSV630, TSV630A, TSV631, TSV631A SC70-6 (or SOT323-6) package information Figure 26: SC70-6 (or SOT323-6) package outline Table 9: SC70-6 (or SOT323-6) mechanical data Dimensions Ref Millimeters Min. A Typ. 0.80 A1 Max. Min. 1.10 0.031 Typ. Max. 0.043 0.10 0.004 A2 0.80 1.00 0.031 0.039 b 0.15 0.30 0.006 0.012 c 0.10 0.18 0.004 0.007 D 1.80 2.20 0.071 0.086 E 1.15 1.35 0.045 e 20/27 Inches 0.65 0.053 0.026 HE 1.80 2.40 0.071 0.094 L 0.10 0.40 0.004 0.016 Q1 0.10 0.40 0.004 0.016 DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A Package information Figure 27: SC70-6 (or SOT323-6) recommended footprint DocID15242 Rev 7 21/27 Package information 5.3 TSV630, TSV630A, TSV631, TSV631A SOT23-6 package information Figure 28: SOT23-6 package outline Table 10: SOT23-6 mechanical data Dimensions Millimeters Ref. Min. A Typ. 0.90 A1 Max. Min. 1.45 0.035 Typ. Max. 0.057 0.10 0.004 A2 0.90 1.30 0.035 0.051 b 0.35 0.50 0.013 0.019 c 0.09 0.20 0.003 0.008 D 2.80 3.05 0.110 0.120 E 1.50 1.75 0.060 0.069 e 22/27 Inches 0.95 0.037 H 2.60 3.00 0.102 0.118 L 0.10 0.60 0.004 0.024 q 0° 10 ° 0° 10 ° DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A 5.4 Package information SC70-5 (or SOT323-5) package information Figure 29: SC70-5 (or SOT323-5) package outline SIDE VIEW DIMENSIONS IN MM GAUGE PLANE COPLANAR LEADS SEATING PLANE TOP VIEW Table 11: SC70-5 (or SOT323-5) mechanical data Dimensions Ref. Millimeters Min. A Typ. 0.80 A1 Inches Max. Min. 1.10 0.315 Typ. 0.043 0.10 A2 0.80 b 0.15 0.90 Max. 0.004 1.00 0.315 0.30 0.006 0.035 0.039 0.012 c 0.10 0.22 0.004 D 1.80 2.00 2.20 0.071 0.079 0.009 0.087 E 1.80 2.10 2.40 0.071 0.083 0.094 E1 1.15 1.25 1.35 0.045 0.049 0.053 e 0.65 0.025 e1 1.30 0.051 L 0.26 < 0° 0.36 0.46 0.010 8° 0° DocID15242 Rev 7 0.014 0.018 8° 23/27 Package information 5.5 TSV630, TSV630A, TSV631, TSV631A SOT23-5 package information Figure 30: SOT23-5 package outline Table 12: SOT23-5 mechanical data Dimensions Millimeters Ref. A Min. Typ. Max. Min. Typ. Max. 0.90 1.20 1.45 0.035 0.047 0.057 A1 24/27 Inches 0.15 0.006 A2 0.90 1.05 1.30 0.035 0.041 0.051 B 0.35 0.40 0.50 0.014 0.016 0.020 C 0.09 0.15 0.20 0.004 0.006 0.008 D 2.80 2.90 3.00 0.110 0.114 0.118 D1 1.90 0.075 e 0.95 0.037 E 2.60 2.80 3.00 0.102 0.110 0.118 F 1.50 1.60 1.75 0.059 0.063 0.069 L 0.10 0.35 0.60 0.004 0.014 0.024 K 0 degrees 10 degrees 0 degrees DocID15242 Rev 7 10 degrees TSV630, TSV630A, TSV631, TSV631A 6 Ordering information Ordering information Table 13: Order codes Order code Temperature range TSV630IQ1T Package Packing Marking DFN6 1.2 x 1.3 K4 TSV630ILT SΟΤ23-6 K108 TSV630ICT SC70-6 K18 TSV631ILT SΟΤ23-5 K109 TSV631ICT -40 °C to 125 °C TSV630AILT SC70-5 SΟΤ23-6 K19 Tape and reel K141 TSV630AICT SC70-6 K41 TSV631AILT SΟΤ23-5 K142 TSV631AICT SC70-5 K42 SΟΤ23-5 K10C TSV631IYLT (1) -40 °C to 125 °C automotive grade Notes: (1) Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent. DocID15242 Rev 7 25/27 Revision history 7 TSV630, TSV630A, TSV631, TSV631A Revision history Table 14: Document revision history Date Revision 19-Dec-2008 1 Initial release. 17-Aug-2009 2 Added root part numbers TSV630A and TSV631A on cover page. 13-Aug-2012 3 Corrected the “Equivalent input noise voltage” values in Table 3, Table 5, and Table 6. Updated Figure 16: "Noise vs. frequency" 4 Features: added “automotive qualification” Added Related products Description: updated Updated titles of Figure 14 and Figure 15 Updated Section 4.4: "Shutdown function (TSV630)" Updated Table 13: "Order codes" 5 Added DFN6 1.2 x 1.3 package details Table 3, Table 5, and Table 6: replaced DVio with ΔVio/ΔT. Figure 3: updated title Updated disclaimer 21-Nov-2014 6 Related products: updated Table 3, Table 4, Table 5, Table 6, and Table 7: updated some of the “conditions”. Figure 25: "DFN6 1.2 x 1.3 recommended footprint": updated Table 12: "SOT23-5 mechanical data": updated some of the “inches” dimensions. 01-Jul-2015 7 Table 3, Table 5, and Table 6: VOH "min" values changed to "max" values. 22-Mar-2013 02-Oct-2013 26/27 Changes DocID15242 Rev 7 TSV630, TSV630A, TSV631, TSV631A IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID15242 Rev 7 27/27