Technical Data Sheet

TSV630, TSV630A, TSV631,
TSV631A
Rail-to-rail input/output, 60 µA, 880 kHz, 5 V CMOS
operational amplifiers
Datasheet - production data
•
See the TSV611 (120 kHz for 9 µA) or the
TSV621 (420 kHz for 29 µA) for more power
savings
DFN6 1.2x1.3 (TSV630)
Applications
•
•
•
•
SC70-6 (TSV630)
SOT23-6 (TSV630)
Battery-powered applications
Portable devices
Active filtering
Medical instrumentation
Description
The TSV630 and TSV631 devices are single
operational amplifiers offering low voltage, low
power operation, and rail-to-rail input and output.
SC70-5 (TSV631)
SOT23-5 (TSV631)
Features
•
•
•
•
•
•
•
•
•
•
•
Low offset voltage: 500 µV max (A version)
Low power consumption: 60 µA typ at 5 V
Low supply voltage: 1.5 V - 5.5 V
Gain bandwidth product: 880 kHz typ
Unity gain stability
Low power shutdown mode: 5 nA typ
High output current: 63 mA at VCC = 5 V
Low input bias current: 1 pA typ
Rail-to-rail input and output
Extended temperature range: -40 °C to
125 °C
Automotive qualification
These devices have a very low input bias current
and a low offset voltage making them ideal for
applications that require precision. They can
operate at power supplies ranging from 1.5 V to
5.5 V, and are therefore very suitable for batterypowered devices, extending battery life.
These op-amps feature an excellent speed/power
consumption ratio, offering an 880 kHz gain
bandwidth while consuming only 60 µA at a 5 V
supply voltage. They are unity gain stable for
capacitive loads up to 100 pF.
The devices are internally adjusted to provide
very narrow dispersion of AC and DC
parameters. The TSV630 provides a shutdown
function.
All
devices
are
offered
in
micropackages and are guaranteed for industrial
temperature ranges from -40° C to +125° C.
These features combined make the TSV630 and
TSV631 ideal for sensor interfaces, batterysupplied and portable applications, as well as
active filtering.
Related products
•
See the TSV521 series for higher merit
factor (1.15 MHz for 45 µA)
July 2015
DocID15242 Rev 7
This is information on a product in full production.
1/27
www.st.com
Contents
TSV630, TSV630A, TSV631, TSV631A
Contents
1
Package pin connections ................................................................ 3
2
Absolute maximum ratings and operating conditions .................. 4
3
Electrical characteristics ................................................................. 5
4
Application information ................................................................. 13
5
4.1
Operating voltages .......................................................................... 13
4.2
Rail-to-rail input ............................................................................... 13
4.3
Rail-to-rail output ............................................................................. 13
4.4
Shutdown function (TSV630) .......................................................... 14
4.5
Optimization of DC and AC parameters .......................................... 15
4.6
Driving resistive and capacitive loads ............................................. 15
4.7
PCB layouts .................................................................................... 15
4.8
Macromodel .................................................................................... 16
Package information ...................................................................... 17
5.1
DFN6 1.2 x 1.3 package information ............................................... 18
5.2
SC70-6 (or SOT323-6) package information ................................... 20
5.3
SOT23-6 package information ........................................................ 22
5.4
SC70-5 (or SOT323-5) package information ................................... 23
5.5
SOT23-5 package information ........................................................ 24
6
Ordering information ...................................................................... 25
7
Revision history .............................................................................. 26
2/27
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
1
Package pin connections
Package pin connections
Figure 1: Pin connections for each package (top view)
OUT 1
6 VCC+
VCC- 2
5 SHDN
IN- 3
4 IN+
DFN6 1.2x1.3 (TSV630)
IN+
1
6
VCC+
VCC-
2
5
SHDN
IN-
3
4
OUT
5
VCC+
4
OUT
SC70-6/SOT23-6 (TSV630)
IN+
1
VCC-
2
IN-
3
SC70-5/SOT23-5 (TSV631)
DocID15242 Rev 7
3/27
Absolute maximum ratings and operating
conditions
2
TSV630, TSV630A, TSV631, TSV631A
Absolute maximum ratings and operating conditions
Table 1: Absolute maximum ratings (AMR)
Symbol
VCC
Vid
Vin
Iin
SHDN
Tstg
Rthja
(5)(6)
Tj
Parameter
Supply voltage
Unit
6
Differential input voltage
(2)
±VCC
V
Input voltage
(3)
(VCC-) - 0.2 to (VCC+) + 0.2
Input current
(4)
10
mA
6
V
-65 to 150
°C
Shutdown voltage
(3)
Storage temperature
Thermal resistance junction to
ambient
DFN6 1.2 x 1.3
232
SC70-6
232
SOT23-6
240
SC70-5
205
SOT23-5
250
Maximum junction temperature
HBM: human body model
ESD
Value
(1)
MM: machine model
(7)
(8)
CDM: charged device model
(9)
Latch-up immunity
°C/W
150
°C
4
kV
300
V
1.5
kV
200
mA
Notes:
(1)
All voltage values, except the differential voltage are with respect to the network ground terminal.
(2)
The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
(3)
VCC - Vin must not exceed 6 V
(4)
Input current must be limited by a resistor in series with the inputs.
(5)
Rth are typical values.
(6)
Short-circuits can cause excessive heating and destructive dissipation.
(7)
100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating
(8)
A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device
with no external series resistor (internal resistor < 5 W), done for all couples of pin combinations with other pins
floating
(9)
All pins plus package are charged together to the specified voltage and then discharged directly to the ground
Table 2: Operating conditions
4/27
Symbol
Parameter
Value
VCC
Supply voltage
1.5 to 5.5
Vicm
Common mode input voltage range
(VCC-) - 0.1 to (VCC+) + 0.1
Toper
Operating free air temperature range
-40 to 125
DocID15242 Rev 7
Unit
V
°C
TSV630, TSV630A, TSV631, TSV631A
3
Electrical characteristics
Electrical characteristics
Table 3: Electrical characteristics at VCC+ = 1.8 V with VCC- = 0 V, Vicm = VCC/2,
Tamb = 25 ° C and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV630, TSV631
Vio
ΔVio/ΔT
Offset voltage
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
Common mode rejection ratio
20 log (ΔVic/ΔVio)
Avd
Large signal voltage gain
VOH
High level output voltage,
(VOH = VCC - Vout)
VOL
Low level output voltage
Isink
Iout
Isource
Supply current,
ICC
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
Input offset voltage drift
Iio
CMR
3
SHDN
= VCC+
μV/°C
2
-40 °C < Top < 125 °C
-40 °C < Top < 125 °C
0 V to 1.8 V, Vout = 0.9 V
53
-40 °C < Top < 125 °C
51
RL= 10 kΩ, Vout = 0.5 V to 1.3 V
85
-40 °C < Top < 125 °C
80
RL = 10 kΩ
(1)
1
10
1
100
1
10 (1)
1
100
pA
74
dB
95
5
-40 °C < Top < 125 °C
35
50
RL = 10 kΩ
mV
4
-40 °C < Top < 125 °C
35
mV
50
Vο = 1.8 V
6
-40 °C < Top < 125 °C
4
Vο = 0 V
6
-40 °C < Top < 125 °C
4
No load, Vout = VCC/2
40
12
mA
10
50
-40 °C < Top < 125 °C
60
62
µA
AC performance
GBP
Gain bandwidth product
ɸm
Phase margin
Gm
Gain margin
SR
Slew rate
en
Equivalent input noise voltage
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
700
RL = 2 kΩ, CL = 100 pF
RL = 2 kΩ, CL = 100 pF, Av = 1
0.2
790
kHz
48
Degrees
11
dB
0.27
V/μs
f = 1 kHz
67
f = 10 kHz
53
nV / √Hz
Notes:
(1)
Guaranteed by design.
DocID15242 Rev 7
5/27
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
Table 4: Shutdown characteristics VCC = 1.8 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
2.5
50
Unit
DC performance
SHDN
ICC
Supply current in shutdown
mode (all operators)
= VCC-
-40 °C < Top < 85 °C
200
-40 °C < Top < 125 °C
1.5
ton
Amplifier turn-on time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
300
toff
Amplifier turn-off time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
20
nΑ
µA
ns
VIH
SHDN
logic high
VIL
SHDN
logic low
IIH
SHDN
current high
SHDN
= VCC+
10
IIL
SHDN
current low
SHDN
= VCC-
10
SHDN
= VCC-
50
1.3
V
IOLeak
6/27
Output leakage in shutdown
mode
0.5
-40 °C < Top < 125 °C
DocID15242 Rev 7
1
pA
nA
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
Table 5: Electrical characteristics at VCC+ = 3.3 V, VCC- = 0 V, Vicm = VCC/2,
Tamb = 25 ° C, RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV630, TSV631
Vio
ΔVio/ΔT
Iio
Iib
CMR
Offset voltage
Input offset current
Input bias current
Common mode rejection
ratio 20 log (ΔVic/ΔVio)
Large signal voltage gain
VOH
High level output voltage,
(VOH = VCC - Vout)
Low level output voltage
Isink
Iout
Isource
Supply current,
ICC
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
Input offset voltage drift
Avd
VOL
3
SHDN
= VCC+
μV/°C
2
-40 °C < Top < 125 °C
-40 °C < Top < 125 °C
0 V to 3.3 V, Vout = 1.75 V
57
-40 °C < Top < 125 °C
53
RL = 10 kΩ, Vout = 0.5 V to 2.8 V
88
-40 °C < Top < 125 °C
83
RL = 10 kΩ
(1)
1
10
1
100
1
10 (1)
1
100
pA
79
dB
98
6
-40 °C < Top < 125 °C
35
50
RL = 10 kΩ
mV
7
-40 °C < Top < 125 °C
35
mV
50
Vο = 3.3 V
30
45
-40 °C < Top < 125 °C
25
42
Vο = 0 V
30
38
-40 °C < Top < 125 °C
25
No load, Vout = 1.75 V
43
55
-40 °C < Top < 125 °C
mA
64
66
µA
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL = 100 pF,
f = 100 kHz
710
860
kHz
50
Degrees
11
dB
0.29
V/μs
ɸm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 2 kΩ, CL = 100 pF, Av = 1
en
Equivalent input noise
voltage
f = 1 kHz
64
f = 10 kHz
51
RL = 2 kΩ, CL = 100 pF
0.22
nV / √Hz
Notes:
(1)
Guaranteed by design.
DocID15242 Rev 7
7/27
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
Table 6: Electrical characteristics at VCC+ = 5 V with VCC- = 0 V, Vicm = VCC/2,
Tamb = 25° C and RL connected to VCC/2 (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
DC performance
TSV630, TSV631
Vio
ΔVio/ΔT
Offset voltage
3
TSV630A, TSV631A
0.5
-40 °C < Top < 125 °C,
TSV630, TSV631
4.5
-40 °C < Top < 125 °C,
TSV630A, TSV631A
2
Input offset voltage drift
Iio
Input offset current
(Vout = VCC/2)
Iib
Input bias current
(Vout = VCC/2)
-40 °C < Top < 125 °C
10
1
100
1
10 (1)
1
100
Common mode rejection ratio
20 log (ΔVic/ΔVio)
0 V to 5 V, Vout = 2.5 V
60
-40 °C < Top < 125 °C
55
SVR
Supply voltage rejection ratio
20 log (ΔVCC/ΔVio)
VCC = 1.8 to 5 V
75
102
RL= 10 kΩ, Vout= 0.5 V to 4.5 V
89
98
-40 °C < Top < 125 °C
84
Large signal voltage gain
VOH
High level output voltage,
(VOH = VCC - Vout)
VOL
Low level output voltage
Isink
Iout
Isource
Supply current
ICC
SHDN
= VCC+
(1)
1
CMR
Avd
μV/°C
2
-40 °C < Top < 125 °C
7
-40 °C < Top < 125 °C
dB
35
50
RL = 10 kΩ
pA
80
-40 °C < Top < 125 °C
RL = 10 kΩ
mV
6
-40 °C < Top < 125 °C
35
mV
50
Vο = 5 V
40
69
-40 °C < Top < 125 °C
35
65
Vο = 0 V
40
74
-40 °C < Top < 125 °C
36
68
No load, Vout = VCC/2
50
60
-40 °C < Top < 125 °C
mA
69
72
µA
AC performance
GBP
Gain bandwidth product
RL = 2 kΩ, CL= 100 pF,
f = 100 kHz
730
880
Fu
Unity gain frequency
ɸm
Phase margin
Gm
Gain margin
SR
Slew rate
RL = 2 kΩ, CL = 100 pF, Av = 1
en
Equivalent input noise
voltage
f = 1 kHz
60
f = 10 kHz
47
8/27
kHz
830
RL = 2 kΩ, CL = 100 pF,
DocID15242 Rev 7
0.25
50
Degrees
12
dB
0.34
V/μs
nV / √Hz
TSV630, TSV630A, TSV631, TSV631A
Symbol
THD+en
Electrical characteristics
Parameter
Total harmonic distortion
Conditions
Min.
f = 1 kHz, AV = 1, RL = 100 kΩ,
Vicm = VCC/2, Vout = 2 VPP
Typ.
Max.
0.0017
Unit
%
Notes:
(1)
Guaranteed by design.
Table 7: Shutdown characteristics VCC = 5 V
Symbol
Parameter
Conditions
Min.
Typ.
Max.
5
50
Unit
DC performance
SHDN
= VCC-
Supply current in shutdown
mode (all operators)
-40 °C < Top < 85 °C
200
-40 °C < Top < 125 °C
1.5
ton
Amplifier turn-on time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
300
toff
Amplifier turn-off time
RL = 2 kΩ, Vout = (VCC-) + 0.2 V
to (VCC+) - 0.2 V
30
ICC
nΑ
µA
ns
VIH
SHDN
logic high
VIL
SHDN
logic low
IIH
SHDN
current high
SHDN
= VCC+
10
IIL
SHDN
current low
SHDN
= VCC-
10
SHDN
= VCC-
50
4.5
V
IOLeak
Output leakage in shutdown
mode
0.5
-40 °C < Top < 125 °C
DocID15242 Rev 7
1
pA
nA
9/27
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
Figure 3: In-series resistor (Riso) vs.
capacitive load
In-series resistor (Ω)
Figure 2: Supply current vs. supply voltage
at Vicm = VCC/2
Figure 5: Voltage gain and phase vs. frequency
at VCC = 1.5 V
P hase (° )
G ain (dB )
Figure 4: Output current vs. output voltage
at VCC = 5 V
Figure 7: Phase margin vs. output current
at VCC = 5 V
Figure 6: Voltage gain and phase vs. frequency
at VCC = 5 V
90
80
Cl=100pF
70
P hase (° )
G ain (dB )
60
50
40
Cl=330pF
30
20
10
Vcc=5V, Vicm=2.5V
R l =2kohms, T=25 C
0
-1.5
10/27
DocID15242 Rev 7
-1.0
-0.5
0.0
0.5
1.0
1.5
TSV630, TSV630A, TSV631, TSV631A
Electrical characteristics
Figure 9: Negative slew rate vs. time
Output voltage (V)
Figure 8: Positive slew rate vs. time
T ime (µs )
T ime (µs )
Figure 10: Positive slew rate vs. supply voltage
Figure 11: Negative slew rate vs. supply voltage
0.5
0.0
0.4
-0.1
0.3
-0.2
0.2
-0.3
0.1
-0.4
0.0
2.5
3.0
3.5
4.0
4.5
5.0
-0.5
2.5
5.5
Supply voltage (V)
Figure 12: Distortion + noise vs. output voltage
(RL = 2 kΩ)
Vcc=1.8V
Vcc=3.3V
Vcc=1.5V
3.5
4.0
4.5
Supply voltage (V)
5.0
5.5
Figure 13: Distortion + noise vs. output voltage
(RL = 100 kΩ
THD + N (%)
THD + N (%)
f=1kHz, Av=1
R l=2kOhms to Vcc/2
Vicm=(Vcc-0.7)/2
BW=22kHz
3.0
f=1kHz, Av=1
R I = 100kOhms to Vcc/2
Vicm=(Vcc-0.7)/2
BW=22kHz
Vcc=1.5V
Vcc=5.5V
Vcc=5V
Output Voltage (Vpp)
Output Voltage (Vpp)
DocID15242 Rev 7
11/27
Electrical characteristics
TSV630, TSV630A, TSV631, TSV631A
Figure 14: Distortion + noise vs. frequency and input
voltage
Figure 15: Distortion + noise vs. frequency and output
load resistor
Ω
T HD + N (%)
T HD + N (%)
0.1
0.01
V in= 3V p p
1E -3
10
0.1
V cc=5.5V
R l=2k Ω
0.01
100
1000
10000
10
100
Input equivalent voltage noise density (nV/VHz)
Figure 16: Noise vs. frequency
12/27
V cc=5.5V
R l=100kΩ
Ω
1000
Vcc=5V
T=25°C
Vicm=2.5V
100
Vicm=4.5V
10
0.01
0.1
1
10
Frequency (kHz)
DocID15242 Rev 7
100
1000
10000
TSV630, TSV630A, TSV631, TSV631A
Application information
4
Application information
4.1
Operating voltages
The TSV630 and TSV631 can operate from 1.5 V to 5.5 V. Their parameters are fully
specified for 1.8-V, 3.3-V, and 5-V power supplies. However, the parameters are very
stable in the full VCC range and several characterization curves show the TSV63x
characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended
temperature ranges from -40 °C to 125 °C.
4.2
Rail-to-rail input
The TSV630 and TSV631 are built with two complementary PMOS and NMOS input
differential pairs. The devices have a rail-to-rail input, and the input common mode range is
extended from (VCC-) - 0.1 V to (VCC+) + 0.1 V. The transition between the two pairs appears
at (VCC+) - 0.7 V. In the transition region, the performance of CMRR, PSRR, Vio and THD is
slightly degraded (as shown in Figure 17 and Figure 18 for Vio vs. Vicm).
Figure 17: Input offset voltage vs input common mode
at VCC = 1.5 V
Figure 18: Input offset voltage vs input common mode at
VCC = 5 V
0.5
0.4
0.3
Input Offs et V oltage (mV )
Input Offs et V oltage (mV )
0.4
0.2
0.1
0.0
-0.1
-0.2
-0.3
0.0
-0.2
-0.4
-0.4
-0.5
-0.2
0.2
0.0
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Input C ommon Mode V oltage (V)
1.6
0.0
1.0
2.0
3.0
4.0
Input C ommon Mode V oltage (V)
5.0
The device is guaranteed without phase reversal.
4.3
Rail-to-rail output
The operational amplifiers’ output levels can go close to the rails: to a maximum of 35 mV
above and below the rail when a 10 kΩ resistive load is connected to VCC/2.
DocID15242 Rev 7
13/27
Application information
4.4
TSV630, TSV630A, TSV631, TSV631A
Shutdown function (TSV630)
The operational amplifier is enabled when the SHDN
pin is pulled high. To disable the
amplifier, the SHDN must be pulled down to VCC-. When in shutdown mode, the amplifier
output is in a high impedance state. The SHDN
pin must never be left floating, but must
be tied to VCC+ or VCC-.
The turn-on and turn-off time are calculated for an output variation of ±200 mV (Figure 19
and Figure 20 show the test configurations).
Figure 21 and Figure 22 show the amplifier output voltage behavior when the SHDN pin
is toggled high and low.
Figure 19: Test configuration for turn-on time (Vout
pulled down)
+2.5 V
Figure 20: Test configuration for turn-off time (Vout
pulled down)
+2.5 V
GND
GND
2 kΩ
2 kΩ
2V
+
2V
+
DUT
DUT
-
-
- 2.5 V
- 2.5 V
Figure 21: Turn-on time, VCC = ±2.5 V, Vout pulled
down, T = 25 °C
Figure 22: Turn-off time, VCC = ±2.5 V, Vout pulled
down, T = 25 °C
Vout
Shutdow n pulse
Vcc = 5V
T = 25° C
Output vo ltage (V)
Voltage (V)
Shutdow n pulse
Vout
Vcc = 5V
T = 25° C
Time (µs)
14/27
Time (µs)
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
4.5
Application information
Optimization of DC and AC parameters
These devices use an innovative approach to reduce the spread of the main DC and AC
parameters. An internal adjustment achieves a very narrow spread of the current
consumption (60 µA typical, min/max at ±17 %). Parameters linked to the current
consumption value, such as GBP, SR and AVd, benefit from this narrow dispersion. All
parts present a similar speed and the same behavior in terms of stability. In addition, the
minimum values of GBP and SR are guaranteed (GBP = 730 kHz minimum and
SR = 0.25 V/µs minimum).
4.6
Driving resistive and capacitive loads
These products are micro-power, low-voltage operational amplifiers optimized to drive
rather large resistive loads, above 2 kΩ. For lower resistive loads, the THD level may
significantly increase.
In a follower configuration, these operational amplifiers can drive capacitive loads up to
100 pF with no oscillations. When driving larger capacitive loads, adding an in-series
resistor at the output can improve the stability of the devices (see Figure 23 for
recommended in-series resistor values). Once the in-series resistor value has been
selected, the stability of the circuit should be tested on the bench and simulated with the
simulation model.
In-series res is tor (Ω)
Figure 23: In-series resistor vs. capacitive load
4.7
PCB layouts
For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible
to the power supply pins.
DocID15242 Rev 7
15/27
Application information
4.8
TSV630, TSV630A, TSV631, TSV631A
Macromodel
An accurate macromodel of the TSV630 and TSV631 is available on STMicroelectronics’
web site at www.st.com. This model is a trade-off between accuracy and complexity (that
is, time simulation) of the TSV63x operational amplifiers. It emulates the nominal
performances of a typical device within the specified operating conditions mentioned in the
datasheet. It also helps to validate a design approach and to select the right operational
amplifier, but it does not replace on-board measurements.
16/27
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
DocID15242 Rev 7
17/27
Package information
5.1
TSV630, TSV630A, TSV631, TSV631A
DFN6 1.2 x 1.3 package information
Figure 24: DFN6 1.2 x 1.3 package outline
BOTTOM VIEW
e
b
PIN#1 ID
L3
L
SIDE VIEW
A1
A
C
SEATING
PLANE
8
0.05 C
TOP VIEW
D
E
PIN 1
18/27
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
Package information
Table 8: DFN6 1.2 x 1.3 mechanical data
Dimensions
Millimeters
Ref
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
0.31
0.38
0.40
0.012
0.015
0.016
A1
0.00
0.02
0.05
0.000
0.001
0.002
b
0.15
0.18
0.25
0.006
0.007
0.010
c
0.05
0.002
D
1.20
0.047
E
1.30
0.051
e
0.40
0.016
L
0.475
0.525
0.575
0.019
0.021
0.023
L3
0.375
0.425
0.475
0.015
0.017
0.019
Figure 25: DFN6 1.2 x 1.3 recommended footprint
0.40
0.25
3
1
1.20
0.475
4
DocID15242 Rev 7
6
19/27
Package information
5.2
TSV630, TSV630A, TSV631, TSV631A
SC70-6 (or SOT323-6) package information
Figure 26: SC70-6 (or SOT323-6) package outline
Table 9: SC70-6 (or SOT323-6) mechanical data
Dimensions
Ref
Millimeters
Min.
A
Typ.
0.80
A1
Max.
Min.
1.10
0.031
Typ.
Max.
0.043
0.10
0.004
A2
0.80
1.00
0.031
0.039
b
0.15
0.30
0.006
0.012
c
0.10
0.18
0.004
0.007
D
1.80
2.20
0.071
0.086
E
1.15
1.35
0.045
e
20/27
Inches
0.65
0.053
0.026
HE
1.80
2.40
0.071
0.094
L
0.10
0.40
0.004
0.016
Q1
0.10
0.40
0.004
0.016
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
Package information
Figure 27: SC70-6 (or SOT323-6) recommended footprint
DocID15242 Rev 7
21/27
Package information
5.3
TSV630, TSV630A, TSV631, TSV631A
SOT23-6 package information
Figure 28: SOT23-6 package outline
Table 10: SOT23-6 mechanical data
Dimensions
Millimeters
Ref.
Min.
A
Typ.
0.90
A1
Max.
Min.
1.45
0.035
Typ.
Max.
0.057
0.10
0.004
A2
0.90
1.30
0.035
0.051
b
0.35
0.50
0.013
0.019
c
0.09
0.20
0.003
0.008
D
2.80
3.05
0.110
0.120
E
1.50
1.75
0.060
0.069
e
22/27
Inches
0.95
0.037
H
2.60
3.00
0.102
0.118
L
0.10
0.60
0.004
0.024
q
0°
10 °
0°
10 °
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
5.4
Package information
SC70-5 (or SOT323-5) package information
Figure 29: SC70-5 (or SOT323-5) package outline
SIDE VIEW
DIMENSIONS IN MM
GAUGE PLANE
COPLANAR LEADS
SEATING PLANE
TOP VIEW
Table 11: SC70-5 (or SOT323-5) mechanical data
Dimensions
Ref.
Millimeters
Min.
A
Typ.
0.80
A1
Inches
Max.
Min.
1.10
0.315
Typ.
0.043
0.10
A2
0.80
b
0.15
0.90
Max.
0.004
1.00
0.315
0.30
0.006
0.035
0.039
0.012
c
0.10
0.22
0.004
D
1.80
2.00
2.20
0.071
0.079
0.009
0.087
E
1.80
2.10
2.40
0.071
0.083
0.094
E1
1.15
1.25
1.35
0.045
0.049
0.053
e
0.65
0.025
e1
1.30
0.051
L
0.26
<
0°
0.36
0.46
0.010
8°
0°
DocID15242 Rev 7
0.014
0.018
8°
23/27
Package information
5.5
TSV630, TSV630A, TSV631, TSV631A
SOT23-5 package information
Figure 30: SOT23-5 package outline
Table 12: SOT23-5 mechanical data
Dimensions
Millimeters
Ref.
A
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
1.20
1.45
0.035
0.047
0.057
A1
24/27
Inches
0.15
0.006
A2
0.90
1.05
1.30
0.035
0.041
0.051
B
0.35
0.40
0.50
0.014
0.016
0.020
C
0.09
0.15
0.20
0.004
0.006
0.008
D
2.80
2.90
3.00
0.110
0.114
0.118
D1
1.90
0.075
e
0.95
0.037
E
2.60
2.80
3.00
0.102
0.110
0.118
F
1.50
1.60
1.75
0.059
0.063
0.069
L
0.10
0.35
0.60
0.004
0.014
0.024
K
0 degrees
10 degrees
0 degrees
DocID15242 Rev 7
10 degrees
TSV630, TSV630A, TSV631, TSV631A
6
Ordering information
Ordering information
Table 13: Order codes
Order code
Temperature
range
TSV630IQ1T
Package
Packing
Marking
DFN6 1.2 x 1.3
K4
TSV630ILT
SΟΤ23-6
K108
TSV630ICT
SC70-6
K18
TSV631ILT
SΟΤ23-5
K109
TSV631ICT
-40 °C to 125 °C
TSV630AILT
SC70-5
SΟΤ23-6
K19
Tape and reel
K141
TSV630AICT
SC70-6
K41
TSV631AILT
SΟΤ23-5
K142
TSV631AICT
SC70-5
K42
SΟΤ23-5
K10C
TSV631IYLT (1)
-40 °C to 125 °C
automotive grade
Notes:
(1)
Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according
to AEC Q001 and Q002 or equivalent.
DocID15242 Rev 7
25/27
Revision history
7
TSV630, TSV630A, TSV631, TSV631A
Revision history
Table 14: Document revision history
Date
Revision
19-Dec-2008
1
Initial release.
17-Aug-2009
2
Added root part numbers TSV630A and TSV631A on
cover page.
13-Aug-2012
3
Corrected the “Equivalent input noise voltage” values
in Table 3, Table 5, and Table 6.
Updated Figure 16: "Noise vs. frequency"
4
Features: added “automotive qualification”
Added Related products
Description: updated
Updated titles of Figure 14 and Figure 15
Updated Section 4.4: "Shutdown function (TSV630)"
Updated Table 13: "Order codes"
5
Added DFN6 1.2 x 1.3 package details
Table 3, Table 5, and Table 6: replaced DVio with
ΔVio/ΔT.
Figure 3: updated title
Updated disclaimer
21-Nov-2014
6
Related products: updated
Table 3, Table 4, Table 5, Table 6, and Table 7:
updated some of the “conditions”.
Figure 25: "DFN6 1.2 x 1.3 recommended footprint":
updated
Table 12: "SOT23-5 mechanical data": updated some
of the “inches” dimensions.
01-Jul-2015
7
Table 3, Table 5, and Table 6: VOH "min" values
changed to "max" values.
22-Mar-2013
02-Oct-2013
26/27
Changes
DocID15242 Rev 7
TSV630, TSV630A, TSV631, TSV631A
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID15242 Rev 7
27/27