SC508/SC508A EcoSpeed® DC-DC Buck Controller with Integrated LDO POWER MANAGEMENT Features Description Power system Input voltage — 4.5V to 46V Output voltage — 0.6V to >85% x VIN Integrated bootstrap switch Fixed 5V LDO output — 200mA 1% reference Selectable internal/external bias power supply EcoSpeed® architecture with pseudo-fixed frequency adaptive on-time control Logic input and output control Independent control EN for LDO and switcher Programmable soft-start time Programmable VIN UVLO threshold Power Good output Selectable power-save mode for >80% efficiency under light load Programmable ultrasonic power-save mode SmartDriveTM for reduced EMI Protections Automatic restart on fault shutdown Over-voltage and under-voltage TC compensated RDS(ON) sensed current limit Thermal shutdown Smart power-save Pre-bias start-up Capacitor types: SP, POSCAP, OSCON, and ceramic Package — 3 x 3(mm), 20-pin MLPQ Lead-free and halogen-free RoHS and WEEE compliant AEC-Q100 Qualified available in SC508A • • • • • • • The SC508/SC508A is a synchronous EcoSpeed® buck regulator which incorporates Semtech’s advanced, patented adaptive on-time control architecture to provide excellent light-load efficiency and fast transient response. It features an integrated bootstrap switch and a fixed 5V LDO in a 3 x 3(mm) package. The device is highly efficient and uses minimal PCB area. The SC508A is available for automotive applications and is qualified to AEC-Q100. • • • • • • The SC508 supports using standard capacitor types such as electrolytic or special polymer, in addition to ceramic, at switching frequencies up to 1MHz. The programmable frequency, synchronous operation, and programmable power-save provide high efficiency operation over a wide load range. Additional features include cycle-by-cycle current limit, programmable soft-start, under and over-voltage protection, programmable over-current protection, start-up into pre-biased output, automatic fault recovery (hiccup restart), soft-shutdown, selectable power-save modes, and programmable ultrasonic power-save. The device also provides separate enable inputs for the PWM controller and LDO as well as a power good output for the PWM controller. Output voltage range is 0.6 to 5V, with output voltages greater than 5V supported using additional components. • • • • • • Applications Office automation and computing Networking and telecommunication equipment Point-of-load power supplies and module replacement Automotive applications The input voltage can range from 4.5V to 46V. The wide input voltage range, programmable frequency, and integrated 5V LDO make the device extremely flexible and easy to use in a broad range of applications. Support is provided for multi-cell battery systems in addition to traditional DC power supply applications. Typical Application Circuit VEXT or VLDO PGOOD EN ENABLE LDO RTON VEXT or VLDO 0.1µF SC508 SC508A ENL TON VDDA VDDP 10nF VIN CIN DH LX BST ILIM 1µF VLDO 1µF VIN PGOOD ENABLE 3.3O L1 VOUT + COUT RLIM DL VOUT VLDO SS PSV AGND FB PGND PSV Revision 4.3 © 2012 Semtech Corporation SC508/SC508A FB TON AGND EN ILIM Ordering Information ENL Pin Configuration 20 19 18 17 16 Top View 1 15 PGOOD VOUT 2 14 PSV VDDA 3 13 VDDP VLDO 4 12 DL VIN 5 11 PGND 7 8 9 10 BST DH LX SS 6 NC AGND PAD Device Package SC508ULTRT(1)(2) MLPQ-UT20 SC508AULTRT(1)(2)(3) MLPQ-UT20 SC508EVB Evaluation Board SC508AEVB Evaluation Board Notes: 1) Available in tape and reel only. A reel contains 3000 devices. 2) Lead-free packaging only. Device is WEEE and RoHS compliant and halogen-free. 3) AEC-Q100 Qualified. MLPQ-UT20 Marking Information 508 yyww xxxx 508A yyww xxxx yyww = Date Code xxxx = Semtech Lot Number yyww = Date Code xxxx = Semtech Lot Number SC508/SC508A Absolute Maximum Ratings Recommended Operating Conditions LX to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +50 Input Voltage (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 to 46 LX to PGND (V) (transient — 100ns) . . . . . . . . . . -2 to +50 VDDA to AGND, VDDP to PGND (V). . . . . . . . . . . . 4.5 to 5.5 DH, BST to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +55 VOUT to PGND (V)(2). . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 to 5.5 DH, BST to LX (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6 DL to PGND (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6 Supports output voltages greater than 5.5V using external components VIN to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +50 Thermal Information EN, FB, ILIM, PGOOD to AGND (V). . . . -0.3 to +(VDDA + 0.3) Storage Temperature (°C). . . . . . . . . . . . . . . . . . . . . -60 to +150 PSV, SS, TON to AGND (V). . . . . . . . . . . -0.3 to +(VDDA + 0.3) Maximum Junction Temperature (°C). . . . . . . . . . . . . . . . 150 VLDO, VOUT to AGND (V). . . . . . . . . . . -0.3 to +(VDDA + 0.3) Operating Junction Temperature (°C). . . . . . . . . -40 to +125 TON to AGND (V). . . . . . . . . . . . . . . . . . . -0.3 to +(VDDA -1.5) Thermal resistance, junction to ambient(3) (°C/W). . . . . . . 50 ENL to AGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to VIN Peak IR Reflow Temperature (°C). . . . . . . . . . . . . . . . . . . . 260 VDDP to PGND, VDDA to AGND (V) . . . . . . . . . . . 0.3 to +6 VDDA to VDDP (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +0.3 AGND to PGND (V). . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +0.3 ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not recommended. NOTES: (1) Tested according to JEDEC standard JESD22-A114. (2) VOUT pin must not exceed (VDDA pin + 0.3V). (3) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards. Electrical Characteristics Unless specified: VIN =12V, VDDA = VDDP = 5V, TA = +25°C for Typ, -40 to +85 °C for Min and Max, TJ < 125°C, Typical Application Circuit Parameter Conditions Min Typ Max Units VDDA = 5V 4.5 46 V Sensed at ENL pin, rising edge 1.50 1.56 1.70 Sensed at ENL pin, falling edge 1.45 1.52 1.65 Input Supplies Input Supply Voltage (VIN) VIN UVLO Threshold(1) VIN UVLO Hysteresis V Sensed at ENL pin; EN = 5V 0.04 V Measured at VDDA pin, rising edge 3.7 3.9 4.1 Measured at VDDA pin, falling edge 3.5 3.7 3.9 VDDA UVLO Threshold V VDDA UVLO Hysteresis VIN Supply Current 0.2 Shutdown mode; ENL, EN = 0V, VIN = 46V 20 Standby mode; VDDA, VDDP, ENL = 5V, EN = 0V 130 V 35 μA SC508/SC508A Electrical Characteristics (continued) Parameter Conditions Min Typ Max Units ENL , EN = 0V 3 7 μA Power-save operation EN = 5V, PSV = open (float), VFB > 600mV 0.4 Ultrasonic Power-save operation EN = 5V, RPSV = 115kΩ, VFB > 600mV 2.4 Forced Continuous Mode operation Operating fSW = 220kHz, PSV = VDDA, no load 13 Input Supplies (continued) VDDA + VDDP Supply Current(2) FB Comparator Threshold Frequency Range Static VIN and load, 0 to +85 °C 0.5952 Static VIN and load, -40 to +85 °C 0.594 0.600 Continuous mode operation mA 0.6048 V 0.606 V 1000 kHz 1870 ns Timing On-Time Forced Continuous Mode operation VIN = 30V, VOUT = 3 V, RTON = 600kΩ, VDDA = 5V 1530 On-time Accuracy; Forced Continuous Mode VIN = 4.5 to 10V, VOUT = 3 V, RTON = 600kΩ, VDDA = 5V 1700 ±15 % Minimum On-Time 80 ns Minimum Off-Time 250 ns 25 kHz 3.0 μA 500 kΩ Ultrasonic Frequency Minimum switching frequency, RPSV = 115kΩ Soft-Start Soft-Start Charge Current Analog Inputs/Outputs VOUT Input Resistance Current Sense Zero Cross Detector Threshold LX with respect to PGND -3 0 +3 mV Power Good Power Good Threshold Startup Delay Time Upper limit, VFB > internal 600mV reference +20 Lower limit, VFB < internal 600mV reference -10 EN rising edge to PGOOD rising edge, CSS = 10nF 11 ms 5 µs Fault (noise immunity) Delay Time Leakage Power Good On-Resistance PGOOD = high impedance (open) PGOOD = pulled low to AGND % 1 10 µA Ω SC508/SC508A Electrical Characteristics (continued) Parameter Conditions Min Typ Max Units 9 10 11 μA Fault Protection ILIM Source Current ILIM Source Current Temperature Coefficient ILIM Comparator Offset 0.41 With respect to AGND -8 0 %/°C +8 mV Output Under-Voltage Threshold VFB with respect to internal 600mV reference, 8 consecutive cycles -25 % Smart Power-Save Protection Threshold VFB with respect to internal 600mV reference +10 % Over-Voltage Protection Threshold VFB with respect to internal 600mV reference +20 % 5 μs 165 °C Over-Voltage Fault Delay Over-Temperature Shutdown 10°C hysteresis Logic Inputs/Outputs Logic Input High Voltage — EN Logic Input High Voltage — PSV Logic Input Low Voltage — EN, ENL(3) Forced Continuous Mode operation; PSV pin with respect to VDDA 1.4 V -0.4 V With respect to AGND EN Input Bias Current EN = VDDA or AGND ENL Input Bias Current VIN = 46V FB Input Bias Current FB = VDDA or AGND -10 0.4 V +10 μA +11 -1 PSV = VDDA 5 PSV < 1.5V 1 μA +1 μA 16 μA PSV Input Bias Current μA Linear Regulator VLDO Accuracy Current Limit VLDO load = 10mA 4.875 5.0 VLDO < 1V start-up 13 1V < VLDO < 4.5V (typ) 90 Operating, VLDO > 4.5V (typ) 200 5.125 V mA VLDO to VOUT Switch-over Threshold (4) -130 +130 mV VLDO to VOUT Non-switch-over Threshold (4) -500 +500 mV VLDO to VOUT Switch-over Resistance VLDO Drop Out Voltage VLDO = VOUT = 5V 2.0 Ω VIN to VLDO, LDO load = 50mA 1.2 V SC508/SC508A Electrical Characteristics (continued) Parameter Conditions Min Typ Max Units High-Side Driver (DH, BST, LX) Peak Current VDDP = 5V, DH pin sourcing or sinking 2 RDH_PULL-UP, LX < 0.5V, VDDP = 5V 3.0 6.0 Ω RDH_PULL-UP, LX > 0.5V, VDDP = 5V 1.0 2.0 Ω RDH_PULL-DOWN, VDDP = 5V 0.6 1.2 Ω Rise Time CDH-LX = 3nF, VDDP = 5V 22 ns Fall Time CDH-LX = 3nF, VDDP = 5V 12 ns From FB Input to DH 45 ns Shoot-thru Protection Delay 45 ns Bootstrap Switch Resistance 16 Ω VDDP = 5V, DL sourcing 2 A VDDP = 5V, DL sinking 4 RDL_PULL-UP, VDDP = 5V 1.0 2.1 Ω RDL_PULL-DOWN, VDDP = 5V 0.50 0.86 Ω Rise Time CDL = 3nF, VDDP = 5V 7 ns Fall Time CDL = 3nF, VDDP = 5V 3.5 ns On Resistance Propagation Delay A Low-Side Driver (DL, VDDP, PGND) Peak Current On Resistance Notes: (1) VIN UVLO is programmable using a resistor divider from VIN to ENL to AGND. The ENL voltage is compared to an internal reference. (2) For UPSV and FCM operation, the VDDA and VDDP supply current includes the DH/DL current required to drive the external MOSFETS. (3) The ENL pin will enable the LDO with 0.8V typical. The ENL pin VIN ULVO function will disable the switcher unless the ENL pin exceeds the VIN UVLO Threshold which is typically 1.56V. (4) The switch-over threshold is the maximum voltage differential between the VLDO and VOUT pins which ensures that VLDO will internally switch-over to VOUT. The non-switch-over threshold is the minimum voltage differential between the VLDO and VOUT pins which ensures that VLDO will not switch-over to VOUT. SC508/SC508A Typical Characteristics (continued) Efficiency vs Load — PSAVE Mode Efficiency vs Load — 5V output VOUT 1.8V, External 5V bias, 220kHz Frequency 100 100 90 42V 28V 80 42V 28V Efficiency (%) Efficiency (%) 15V 90 15V 80 VOUT 5V, Internal 5V bias, Power-save, 250kHz Frequency 70 60 50 70 60 50 40 40 30 30 20 20 Inductor: Cyntec PCMB104E-4R7MS High side MOSFET: Alpha Omega AO4440 Low side MOSFET: Fairchild FMDS5352 0 1 2 3 4 IOUT (ADC) 5 6 7 8 0 1 VOUT 1.8V, External 5V bias, 220kHz Frequency 100 5 6 28V 15V 80 4 VOUT 12V, External 5V bias, Power-save, 400kHz Frequency 90 90 42V 80 42V 28V Efficiency (%) Efficiency (%) 3 IOUT (ADC) Efficiency vs Load — 12V output Efficiency vs Load — Ultrasonic PSAVE Mode 100 2 70 60 50 70 60 50 40 40 30 30 20 20 Inductor: Cyntec PCMB104E-4R7MS High side MOSFET: Fairchild FMDS5352 Low side MOSFET: Fairchild FMDS5352 0 1 2 3 4 IOUT (ADC) 5 6 7 8 0 1 2 Efficiency vs Load — Forced Continuous Mode 100 6 VOUT 1.8V, External 5V bias, 220kHz Frequency 42 VIN PSAVE 1.84 1.83 42V 28V 1.82 70 60 50 15 VIN FCM 28 VIN UPSAVE 1.81 VOUT (V) Efficiency (%) 5 1.85 15V 80 4 Load Regulation VOUT 1.8V, External 5V bias, 220kHz Frequency 90 3 IOUT (ADC) 1.80 1.79 1.78 40 1.77 30 1.76 1.75 20 0 1 2 3 IOUT 4 (ADC) 5 6 7 8 0 1 2 3 4 IOUT (ADC) 5 6 7 8 SC508/SC508A Typical Characteristics (continued) Start-up — EN Input Pre-Bias Start-up — EN Input VIN = 42V, VOUT = 1.8V, IOUT = 0A, PSAVE EN (5V/div) VIN = 42V, VOUT = 1.8V, IOUT = 0A, PSAVE EN (5V/div) VOUT (1V/div) VOUT (1V/div) PGOOD (5V/div) PGOOD (5V/div) LX (50V/div) LX (50V/div) Time (1ms/div) Time (1ms/div) Start-up — SS ramp-up Shutdown — EN Input VIN = 42V, VOUT = 1.8V, IOUT = 0A, PSAVE, startup using EN input VIN = 42V, VOUT = 1.8V, IOUT = 1A, PSAVE EN (5V/div) SS (5V/div) VOUT (1V/div) VOUT (1V/div) PGOOD (5V/div) PGOOD (5V/div) LX (50V/div) LX (50V/div) Time (1ms/div) Time (1ms/div) Start-up, Shutdown — ENL Input (VIN UVLO) Over-current — Automatic Restart VIN = 42V, VOUT = 1.8V, External load = 15A VIN = 42V, VOUT = 1.8V, IOUT = 1A, PSAVE SS (5V/div) ENL (5V/div) VOUT (1V/div) VOUT (1V/div) IOUT (10A/div) PGOOD (5V/div) LX (50V/div) LX (50V/div) Time (4ms/div) Time (20ms/div) SC508/SC508A Typical Characteristics (continued) Switching — PSAVE Transient Response — PSAVE VIN = 42V, VOUT = 1.8V, IOUT = 0A VOUT (50mV/div) VIN = 42V, VOUT = 1.8V, IOUT = 0A to 8A to 0A VOUT (50mV/div) DL (5V/div) IOUT (5AV/div) LX (50V/div) LX (50V/div) Time (10ms/div) Time (100µs/div) Switching — UPSAVE Transient Response — UPSAVE VIN = 42V, VOUT = 1.8V, IOUT = 0A VIN = 42V, VOUT = 1.8V, IOUT = 0A to 8A to 0A VOUT (50mV/div) VOUT (50mV/div) DL (5V/div) IOUT (5A/div) LX (50V/div) LX (50V/div) Time (20μs/div) Time (100μs/div) Transient Response — FCM Switching — FCM VIN = 42V, VOUT = 1.8V, IOUT = 0A to 8A to 0A VIN = 42V, VOUT = 1.8V, IOUT = 0A VOUT (50mV/div) VOUT (50mV/div) DL (5V/div) IOUT (5A/div) LX (50V/div) LX (50V/div) Time (4μs/div) Time (100μs/div) SC508/SC508A Detailed Application Circuit ENABLE LDO EN PGOOD 5 ILIM EN VDDP VLDO DL VIN VIN 100nF SC508 VDDA CSS 3.9nF PGND 6 7 8 9 1µF 15 14 13 (1) RLIM 6.81kW 12 VIN (2) RPSV 11 LX VLDO 100nF PSV DH 1µF VOUT BST 4 5V 16 PGOOD N/C 3(1) FB SS 2 5V 17 18 AGND PAD 1 19 ENL 20 TON RTON 154kW 10 Q1 CIN1 CIN2 RBST 3.3W 10µF 10µF CBST 100nF Q2 L1 36V to 1.8V @ 8A COUT 1µF + CTOP* np RTOP 20kW VOUT RBOT 10kW Key Components Component Value Manufacturer Part Number CIN1, CIN2 10µF/50V Murata UMK325BJ106MM-T www.murata.com COUT 330µF/6mW Sanyo 2TPF330M6 edc.sanyo.com Web L1 1.8µH Vishay IHLP4040EZER1R8M01 www.vishay.com Q1 AO4440 Alpha Omega AO4440 www.aosmd.com Q2 FDMS5352 Fairchild FDMS5352 www.fairchildsemi.com Notes: (1) 5V: (2) RPSV: Connect VDDA and VDDP to external 5V supply for external bias. Connect VDDA and VDDP to VLDO for self -biased operation. Use 115kW for Ultrasonic operation. Remove RPSV for Power-Save operation. Connect PSV pin to VDDA for Forced Continuous Mode operation. 10 SC508/SC508A Pin Descriptions Pin # Pin Name Pin Function 1 FB Feedback input for switching regulator — connect to an external resistor divider from output — used to program the output voltage. 2 VOUT Switcher output voltage sense pin — also the input to the internal switch-over MOSFET between VOUT and VLDO. The voltage at this pin must not exceed the VDDA pin. For output voltages up to 5V connect this pin directly to the switcher output. For output voltages exceeding 5V connect this pin to the switcher output through a resistor divider. 3 VDDA 5V supply input for internal analog circuits — connect to external 5V supply or connect to VLDO — also the sense input for VDDA Under Voltage Lockout (VDDA UVLO). 4 VLDO Output of the 5V LDO — The voltage at this pin must not exceed the voltage at the VDDA pin. 5 VIN Input supply voltage — connect to the same supply used for the high-side MOSFET. Connect a 100nF capacitor from this pin to AGND to filter high frequency noise. 6 SS Soft-Start — connect an external capacitor to AGND to program the soft start and automatic recovery time. 7 NC No Connection 8 BST Bootstrap pin — connect a 100nF minimum capacitor and series resistor from BST to LX to develop the floating voltage for the high-side gate drive. A 3.3 ohm resistor is recommended. 9 DH High-side gate drive output 10 LX Switching (phase) node 11 PGND 12 DL 13 VDDP 14 PSV 15 PGOOD 16 ILIM 17 EN 18 AGND 19 TON ON time programming input — set the on-time by connecting through a resistor to AGND. 20 ENL Enable input for the LDO and VIN UVLO input for the switching regulator — connect ENL to AGND to disable the LDO — drive to logic high (>1.7V) to enable the LDO and inhibit VIN UVLO — connect to resistor divider from VIN to AGND to program the VIN UVLO threshold. PAD AGND Power ground for the DL and DH drivers and the low-side external MOSFET. Low-side gate drive output 5V supply input for the DH and DL gate drives — connect to the same 5V supply used for VDDA. Power-save programming input — connect a resistor to AGND to set a minimum (ultrasonic) power-save frequency — float pin to select power-save with no minimum frequency — pull up to VDDA to disable powersave and select forced continuous mode. Open-drain Power Good indicator — high impedance indicates the switching regulator output is good. An external pull-up resistor is required when connecting the PGOOD signal to external logic. Current limit sense pin — used to program the current limit by connecting a resistor from ILIM to LX. Enable input for switching regulator — logic low disables the switching regulator — logic high enables the switching regulator. Analog ground Analog ground 11 SC508/SC508A Block Diagram VDDA PGOOD PSV EN VIN VDDP 3 15 14 17 5 13 VDDA AGND A VDDA UVLO VDDA SS FB 6 VIN VDDP Control & Status Bootstrap Switch Reference DL VIN ULVO Soft Start/ Automatic Restart Gate Drive Control On-time Generator 1 FB Comparator TON VDDP 19 Zero Cross Detector VOUT BST 9 DH 10 LX 12 DL 11 PGND 16 ILIM DL 2 VLDO Switchover Comparator Current Limit A VLDO 8 4 Y VLDO Switchover MUX B VIN 5V LDO VIN ULVO detect To Control & Status 20 ENL A = connected to pins 18 and PAD 12 SC508/SC508A Applications Information Synchronous Buck Converter The SC508 is a step down synchronous DC-DC buck controller with an internal 5V LDO. It provides efficient operation in a space saving 3x3 (mm) 20-pin package. The programmable operating frequency range up to 1MHz enables optimizing the configuration for PCB area and efficiency. For automotive applications, the SC508A is qualified to AEC-Q100. The controller uses a pseudo-fixed frequency adaptive on-time control. This allows fast transient response which permits the use of smaller output capacitors. Input Voltage Requirements The SC508 requires two input supplies for normal operation: VIN and VDDA/VDDP. VIN operates over the wide range of 5V to 46V. VDDA and VDDP require a 5V supply which can be from an external source or from the internal LDO. VDDA and VDDP must be derived from the same source voltage. Psuedo-fixed Frequency Adaptive On-time Control The PWM control method used by the SC508 is pseudofixed frequency, adaptive on-time, as shown in Figure 1. The ripple voltage generated at the output capacitor ESR is used as a PWM ramp signal. This ripple is used to trigger the on-time of the controller. TON VIN VLX CIN Q1 VFB VLX VOUT L Q2 FB Threshold The adaptive on-time is determined by an internal oneshot timer. When the one-shot is triggered by the output ripple, the device sends a single on-time pulse to the highside MOSFET. The pulse period is determined by VOUT and VIN. The period is proportional to output voltage and inversely proportional to input voltage. With this adaptive on-time configuration, the device automatically anticipates the on-time needed to regulate VOUT for the present VIN condition and at the selected frequency. The advantages of adaptive on-time control are: • • • • • Predictable operating frequency compared to other variable frequency methods. Reduced component count by eliminating the error amplifier and compensation components. Reduced component count by removing the need to sense and control inductor current. Fast transient response — the response time is controlled by a fast comparator instead of a typically slow error amplifier. Reduced output capacitance due to fast transient response. One-Shot Timer and Operating Frequency One-shot timer operation is shown in Figure 2. The FB comparator output goes high when VFB is less than the internal 600mV reference. This feeds into the DH gate drive and turns on the high-side MOSFET, and also starts the one-shot timer. The one-shot timer uses an internal comparator and a capacitor. One comparator input is connected to VOUT, the other input is connected to the capacitor. When the on-time begins, the capacitor charges from zero volts through a current which is proportional to VIN. When the capacitor voltage reaches VOUT, the on-time is completed and the high-side MOSFET turns off. ESR + FB COUT FB REF VOUT VIN Figure 1 — PWM Control Method, VOUT Ripple RTON FB Comparator Gate Drives + One-Shot Timer VIN DH Q1 VLX DL Q2 VOUT L ESR COUT + FB On-time = K x RTON x (VOUT/VIN) Figure 2 — On-Time Generation 13 SC508/SC508A Applications Information (continued) This method automatically produces an on-time that is proportional to VOUT and inversely proportional to VIN. Under steady-state conditions, the switching frequency can be determined from the on-time by the following equation. fSW 721 QV u 9,1 S) u 9287 § 9287 · ¨¨ QV ¸¸ u 9,1 9 u I © ,1 6: ¹ S) u 9287 The maximum recommended RTON value is shown by the following equation. 5721B0$; 9,1B0,1 u ȝ$ Immediately after the on-time, the DL output drives high to energize the low-side MOSFET. DL has a minimum high time of ~250ns, after which DL continues to stay high until one of the following occurs: • • To FB pin R1 R2 Figure 3 — Output Voltage Selection VOUT TON u VIN The SC508 uses an external resistor to set the on-time which indirectly sets the frequency. The on-time can be programmed to provide an operating frequency of up to 1MHz using a resistor between the TON pin and ground. The resistor value is selected by the following equation. 5721 VOUT The FB input falls below the 600mV reference The Zero Cross Detector trips if power-save is active Note that the on-time variation increases to typically 15% at input voltages from 4.5 to 10V. In most applications this does not significantly affect overall performance. VOUT Voltage Selection The switcher output voltage is regulated by comparing VOUT as seen through a resistor divider at the FB pin to the internal 600mV reference voltage (see Figure 3). Note that this control method regulates the valley of the output ripple voltage, not the DC value. The DC value of VOUT is offset by the output ripple according to the following equation. VOUT § R · §V · 0.6 u ¨¨1 1 ¸¸ ¨ RIPPLE ¸ © R2 ¹ © 2 ¹ In some applications a small capacitor CTOP is placed in parallel with R1 to provide a larger ripple signal from VOUT to the FB pin. In these applications, the output voltage VOUT is calculated according to the following equation in which w represents the switching frequency. 9287 § 5 · §9 · u ¨¨ ¸¸ ¨ 5,33/( ¸ u 5 © ¹ ¹ © 5Ȧ&723 § 5 u 5 · ¨¨ Ȧ&723 ¸¸ 5 5 © ¹ Configuring VOUT Greater Than 5V The switcher output voltage can be programmed higher than 5V with careful attention to the VOUT and RTON pins. In these applications the VOUT pin cannot connect directly to the switcher output due to its maximum voltage rating. An additional resistor divider network is required to connect from the switcher output to the VOUT pin as shown in Figure 4. LX L VOUT > 5V RV1 COUT To VOUT pin RV2 Figure 4 — Resistor Divider For VOUT Exceeding 5V 14 SC508/SC508A Applications Information (continued) If the internal LDO is used for bias power, the LDO switchover function must be inhibited by selecting the resistor divider so that the voltage at the VOUT pin does not exceed 4V; this will inhibit the VLDO switch-over function. If the SC508 bias power is from an external 5V supply and the LDO is disabled by grounding the ENL pin, the voltage at the VOUT pin is not limited to 4V and can be as high as the VDDA supply voltage. Note that the VOUT pin has an internal 500kW resistor connected to AGND. To minimize the effect of this resistor on the resistor divider ratio, the maximum recommend value for resistor RV2 in Figure 4 is 10kW. In addition to the resistor divider, the RTON resistor value must be adjusted. The on-time is generated according to the voltage at the VOUT pin. In order to select the desired on-time and operating frequency, the RTON resistor should be adjusted to a higher value to compensate for the reduced voltage at the VOUT pin. For output voltages exceeding 5V, the required RTON value can be determined by the following equation. The desired operating frequency is fSW. 5721 § 9287 · ¨¨ QV ¸¸ u 9,1 § 5 · © 9,1 u I6: ¹ u ¨¨ 9 ¸¸ S) u 9287 © 5 9 ¹ For applications where VOUT exceeds 5V, FCM operation is recommended. Forced Continuous Mode Operation The SC508 operates the switcher in Forced Continuous Mode (FCM) by connecting the PSV pin to VDDA. The PSV pin should never exceed the VDDA supply. See Figure 5 for FCM waveforms. In this mode one of the power MOSFETs is always on, with no intentional dead time other than to avoid cross-conduction. This results in more uniform frequency across the full load range with the trade-off being reduced efficiency at light loads due to the high-frequency switching of the MOSFETs. The PSV pin contains a 5μA current sink to prevent stray leakage current from pulling the PSV pin up to the VDDA supply when the PSV pin is floated to select Power-Save operation. To select Forced Continuous Mode operation, the maximum recommended resistance between the VDDA supply and the PSV pin is 40kW. FB Ripple Voltage (VFB) FB threshold DC Load Current Inductor Current On-time (TON) DH on-time is triggered when VFB reaches the FB Threshold. DH DL DL drives high when on-time is completed. DL remains high until VFB falls to the FB threshold. Figure 5 — Forced Continuous Mode Operation Programmable Ultrasonic Power-Save Operation The device provides programmable ultrasonic power-save operation at light loads; the minimum operating frequency is programmed by connecting a resistor from PSV to AGND. The SC508 uses the PSV resistor to set an internal timer that monitors the time between consecutive high-side gate pulses. If the time exceeds the programmed timer, DL drives high to turn the low-side MOSFET on. This draws current from VOUT through the inductor, forcing both VOUT and VFB to fall. When VFB drops to the 600mV threshold, the next DH on-time is triggered. After the on-time is completed the high-side MOSFET is turned off and the low-side MOSFET turns on, and the internal timer is restarted. The low-side MOSFET remains on until the inductor current ramps down to zero, at which point the low-side MOSFET is turned off. This ends the cycle until VFB again falls below the 600mV threshold, or the internal timer forces another DL turn-on. 15 SC508/SC508A Applications Information (continued) Because the period between on-times is limited to a maximum value, a minimum operating frequency is maintained. Figure 6 shows ultrasonic power-save operation. ately exits power-save and returns to forced continuous mode. Figure 7 shows power-save operation at light loads. minimum frequency FB Ripple Voltage (VFB) FB threshold (0A) Inductor Current On-time (TON) FB Ripple Voltage (VFB) DH DH On-time is triggered when VFB reaches the FB Threshold. DL After the programmable time-out, DL drives high if VFB has not reached the FB threshold. Figure 6 — Ultrasonic Power-Save Operation The equation for determining the RPSV resistor value is shown next. The desired minimum frequency is fSWMIN. RPSV Zero (0A) On-time (TON) DH DL FB threshold Inductor Current DH On-time is triggered when VFB reaches the FB Threshold programmable time-out Dead time varies according to load 1 350pF u fSWMIN Power-Save Mode Operation The device provides power-save operation at light loads with no minimum operating frequency, selected by floating the PSV pin (no connection). In this mode of operation, the zero cross comparator monitors inductor current via the voltage across the low-side MOSFET during the off-time. If the inductor current falls to zero for 8 consecutive switching cycles, the controller enters power-save operation. It will then turn off the low-side MOSFET on each subsequent cycle, provided that the current falls to zero. After the low-side MOSFET is off, both high-side and low-sides MOSFETs remain off until VFB drops to the 600mV threshold. While the MOSFETs are off the load is supplied by the output capacitor. If the inductor current does not reach zero on any switching cycle, the controller immedi- DL drives high when on-time is completed. DL remains high until inductor current reaches zero. Figure 7 — Power-Save Operation Smart Power-Save Protection Active loads may leak current from a higher voltage into the switcher output. Under light load conditions with power-save enabled, this can force VOUT to slowly rise and reach the over-voltage threshold, resulting in an overvoltage shutdown. Smart power-save prevents this condition. When the FB voltage exceeds 10% above nominal (exceeds 660mV), the device immediately disables powersave and DL drives high to turn on the low-side MOSFET. This draws current from VOUT through the inductor and causes VOUT to fall. When VFB drops back to the 600mV trip point, a normal TON switching cycle begins. This method prevents over-voltage shutdown by cycling energy from VOUT back to VIN. It also minimizes operating power under light load conditions by avoiding forced continuous mode operation. Figure 8 shows typical waveforms for the Smart Powersave feature. 16 SC508/SC508A Applications Information (continued) Smart Power Save Threshold VOUT discharges via inductor and low-side MOSFET Normal VOUT ripple FB threshold Current Limit Protection DH and DL off High-side Drive (DH) Single DH on-time pulse after DL turn-off Low-side Drive (DL) DL turns on when Smart PSAVE threshold is reached Note that the LDO enable pin (ENL) can also disable the switching regulator through the VIN UVLO function. Refer to the ENL Pin and VIN UVLO section. Normal DL pulse after DH on-time pulse DL turns off when FB threshold is reached Figure 8 — Smart Power-Save SmartDriveTM For each DH pulse, the DH driver initially turns on the high-side MOSFET at a slower speed. This produces a softer, controlled turn off and reverse recovery of the lowside diode. Once the low-side diode is off and the LX voltage has risen 0.8V above PGND, the SmartDrive circuit automatically drives the high-side MOSFET on at a rapid rate. This two stage technique reduces switching noise and EMI while maintaining high efficiency and reducing the need for external snubbers. Enable Input for Switching Regulator The EN input is a logic level input. When EN is low (grounded), the switching regulator is off and in its lowest power state. When EN is low and VDDA is above the VDDA UVLO threshold, the output of the switching regulator soft-discharges into the VOUT pin through an internal 2kΩ resistor. When EN is a logic high (>1V) the switching regulator is enabled. The SC508 features programmable current limiting, which is accomplished using the RDS(ON) of the lower MOSFET for current sensing. The current limit is set by RLIM resistor which connects from the ILIM pin to the drain of the lowside MOSFET. When the low-side MOSFET is on, an internal 10μA current flows from the ILIM pin and through the RLIM resistor, creating a voltage drop across the resistor. While the low-side MOSFET is on, the inductor current flows through it and creates a voltage across the RDS(ON). The voltage across the MOSFET is negative with respect to PGND. If this MOSFET voltage drop exceeds the voltage across RLIM, the voltage at the ILIM pin will be negative and current limit will activate. The current limit then keeps the low-side MOSFET on and prevents another high-side ontime, until the current in the low-side MOSFET reduces enough to bring the ILIM pin voltage up to zero. This method regulates the inductor valley current at the level shown by ILIM in Figure 9. Inductor Current VOUT drifts up to due to leakage current flowing into COUT IPEAK ILOAD ILIM Time Figure 9 — Valley Current Limit The current limit schematic with the RLIM resistor is shown in Figure 10. The EN input has internal resistors — 2MΩ pullup to VDDA, and a 1MΩ pulldown to AGND. These resistors will normally cause the EN voltage to be near the logic high trip point as VDDA reaches the VDDA UVLO threshold. To prevent undesired toggling of EN and erratic start-up performance, the EN pin should not be allowed to float as open-circuit. 17 SC508/SC508A Applications Information (continued) VIN BST CBST Q1 + CIN ILIM DL VOUT L DH LX RLIM PGND Q2 D2 COUT + After the SS capacitor voltage reaches 1.5V, the SS capacitor continues to charge until the SS voltage is equal to 67% of VDDA. At this time the Power Good monitor compares the FB pin to the 600mV reference and sets the PGOOD output high (open drain) if VOUT is in regulation. The time between VOUT reaching the regulation point and the PGOOD output going high is shown by the following equation. &66 § u 9''$ · u¨ 9 ¸ ȝ$ © ¹ W3*22' Figure 10 — Valley Current Limit Setting the valley current limit to 10A results in a peak inductor current of 10A plus peak ripple current. In this situation the average current through the inductor is 10A plus one-half the peak-to-peak ripple current. The RLIM value is calculated by the next equation. 5/,0 5'621 u ,/,0 ȝ$ The internal 10μA current source is temperature compensated at 4100ppm in order to provide tracking with the RDSON. Soft-Start of PWM Regulator The SC508 has a programmable soft-start time that is controlled by an external capacitor at the SS pin. During the soft-start time, the controller sources 3μA from the SS pin to charge the capacitor. During the start-up process (Figure 11), 40% of the voltage ramp at the SS pin is used as the reference for the FB comparator. The PWM comparator issues an on-time pulse when the FB voltage is less than 40% of the SS voltage, which forces the output voltage to follow the SS ramp. The output voltage reaches regulation when the SS pin voltage exceeds 1.5V and the FB reaches the 600mV threshold. The time between the first LX pulse and VOUT reaching the regulation point is the soft-start time (tSS). The calculation for the soft-start time is shown by the following equation. t SS CSS u 1.5 V 3PA The time from the rising edge of the EN pin to the PGOOD output going high is shown by the following equation. W(1B*22' &66 § u 9''$ · u¨ ¸ ȝ$ © ¹ After the Power Good Start-up Delay Time is completed, the SS pin is internally pulled up to the VDDA supply. The soft-start cycle and Power Good timing can be seen in the Figure 11. EN CSS charging current 3uA VSS = 3.35V VSS = 1.5V SS VOUT in regulation FB tSS tPGOOD PGOOD Figure 11 — Soft-start Cycle and Power Good timing Pre-Bias Start-up SC508 can support soft-start with an output pre-bias. The SS ramp time is the same as a normal start-up when the output voltage starts from zero. Under a pre-bias start-up, the DH and DL drivers inhibit switching until 40% of the 18 SC508/SC508A Applications Information (continued) ramp at the SS pin equals the pre-bias FB voltage level. Pre-bias start-up is achieved by turning off the lower MOSFET when the inductor current reaches zero during the soft-start cycle. This method prevents the output voltage from decreasing. Power Good Output The PGOOD (power good) output is an open-drain output which requires an external pull-up resistor. During startup, PGOOD is held low and is not allowed to transition high until the FB pin is in regulation and the SS pin has reached 67% of VDDA. The time from EN going high to PGOOD going high is typically 11ms for CSS = 10nF. When the voltage at the FB pin is 10% below the nominal voltage, PGOOD is pulled low. Once PGOOD pulls low there is typically 2% hysteresis to prevent chatter on the PGOOD output. PGOOD will transition low if the FB voltage exceeds +20% of nominal (720mV), which is also the over-voltage shutdown threshold. PGOOD also pulls low if the EN pin is low and VDDA is present. Output Over-Voltage Protection Over-voltage protection (OVP) becomes active as soon as the device is enabled. The OVP threshold is set at 600mV +20% (720mV). There is a 5μs delay built into the OVP detector to prevent false transitions. When VFB exceeds the OVP threshold, DL is driven high and the low-side MOSFET is turned on. DL remains high and the controller remains off while the device goes through the automatic fault recovery cycle. When the automatic recovery cycle is completed, the device will attempt a new soft-start cycle. At the start of the soft-start cycle, the DL output will go low for typically 30usec while the controller initializes the soft-start sequence. PGOOD is also low after an OVP event. Output Under-Voltage Protection When VFB falls 25% below its nominal voltage (falls to 450mV) for eight consecutive clock cycles, the switcher is shut off and the DH and DL drives are pulled low to tristate the MOSFETs. The controller stays off while the device goes through the automatic fault recovery cycle. Automatic Fault Recovery The SC508 includes an automatic recovery feature (hiccup mode upon fault). If the switcher output is shut down due to a fault condition, the device uses the SS capacitor as a timer. Upon fault detection the SS pin is pulled low and then begins charging through the internal 3μA current source. When the SS capacitor reaches 67% of VDDA, the SS pin is again pulled low, after which the SS capacitor begins another charging cycle. The SS capacitor will be used for 15 cycles of charging from 0 to 67% of VDDA. (For Over-voltage and Over-Temperature faults, the count will be 16 cycles instead of 15.) During these cycles the switcher is off and there is no MOSFET switching. During the next charging cycle, the normal soft-start routine is implemented and the MOSFETs begin switching. Switching continues until the Power Good Start-up Delay Time is reached. If the switcher output is still in a fault condition, the switcher will again shut down and force 15 cycles of SS charging (16 cycles in the case of an Over-voltage or Over-Temperature fault) before attempting another soft-start. The long delay between soft-start cycles reduces the average power loss in the power components. The automatic recovery timing is shown in Figure 12. fault applied 1 soft-start cycle 1 soft-start cycle tEN_PGOOD tEN_PGOOD 15 cycles 15 cycles tHICCUP = 15 x tEN_PGOOD tHICCUP = 15 x tEN_PGOOD tEN_PGOOD 67% x VDDA SS Figure 12 — Automatic Recovery Timing The control of the low-side MOSFET during an Overvoltage fault is handled differently from other faults. If the fault was due to an over-voltage condition, the DL output will remain high during 16 SS charging cycles. For all other faults, the DL output will remain low. However, if the FB pin exceeds the Over-voltage threshold, the charging of the SS capacitor will not occur, and the DL output will remain high. If the FB pin falls below the OVP threshold, 16 SS charging cycles will occur while DL remains high. When the next start-up cycle commences, DL will drive 19 SC508/SC508A Applications Information (continued) low for typically 30us as the controller re-initializes the internal soft-start routine. Note that LDO faults will not be automatically recovered by the hiccup restart feature, refer to the LDO Thermal Limitations section. VDDA UVLO and POR The VDDA Under-Voltage Lock-Out (UVLO) circuitry inhibits switching and tri-states the DH/DL drivers until VDDA rises above 3.9V. When VDDA exceeds 3.9V, an internal POR (Power-On Reset) resets the fault latch and the softstart circuitry and then the SC508 is ready to begin a softstart cycle. The switcher will shut off if VDDA falls below 3.6V. VDDP does not have UVLO protection. LDO Regulator When the LDO is providing bias power to the device, a minimum 0.1μF capacitor referenced to AGND is required, along with a minimum 1μF capacitor referenced to PGND to filter the gate drive pulses. Refer to the PCB Layout Guidelines section. ENL Pin and VIN UVLO The ENL pin is also used for the VIN under-voltage lockout (VIN UVLO) for the switcher. The VIN UVLO voltage is programmable via a resistor divider at the VIN, ENL and AGND pins. The VIN UVLO function has a typical threshold of 1.56V on the VIN rising edge. The falling edge threshold is 1.52V. Timing is important when driving ENL with logic and not using the VIN UVLO capability. The ENL pin must transition from high to low within 2 switching cycles to avoid the PWM output turning off. If ENL goes below the VIN UVLO threshold and stays above 1V, then the switcher will turn off but the LDO will remain on. Note that it is possible to operate the switcher with the LDO disabled, but the ENL pin must be below the logic low threshold (0.4V maximum), otherwise the VIN UVLO function will disable the switcher. The next table summarizes the function of the ENL and EN pins, with respect to the rising edge of ENL. EN ENL LDO status Switcher status low high low high low high low, < 0.4V low, < 0.4V high, < 1.52V high, < 1.52V high, > 1.56V high, > 1.56V off off on on on on off on off off off on Figure 13 shows the ENL voltage thresholds and their effect on LDO and Switcher operation. ENL voltage LDO on Switcher on if EN = high 1.56V VIN UVLO hysteresis 1.52V LDO on Switcher off by VIN UVLO ENL low threshold (min 0.4V) LDO off Switcher on if EN = high AGND Figure 13 — ENL Thresholds ENL Logic Control of PWM Operation When the ENL input exceeds the VIN UVLO threshold of 1.56V, internal logic checks the PGOOD signal. If PGOOD is high, the switcher is already running and the LDO will start without affecting the switcher. If PGOOD is low, the device disables PWM switching until the LDO output has reached 90% of its final value. This delay prevents the additional current needed by the DH and DL gate drives from overloading the LDO at start-up. LDO Start-up Before LDO start-up, the device checks the status of the following signals to ensure proper operation can be maintained. 20 SC508/SC508A Applications Information (continued) 1. ENL pin 2. VLDO output 3. VIN input voltage When the ENL pin is high and VIN voltage is available, the LDO will begin start-up. During the initial phase when VLDO is below 1V, the LDO initiates a current-limited startup (typically 20mA). This protects the LDO from thermal damage if the VLDO pin is shorted to ground. As VLDO exceeds 1V, the start-up current gradually increases to 80mA. When VLDO reaches 4.5V, the LDO current limit increases to 200mA and the LDO output rises quickly to 5.0V. The LDO start-up profile is shown in Figure 14. VLDO voltage regulating with 200mA current limit increasing current 1.0V 20mA constant current Figure 14 — LDO Start-Up LDO Thermal Limitations The LDO is not protected by the Over-Temperature shutdown feature. If the LDO output is loaded externally, the resulting power loss can cause overheating and failure of the LDO. In typical applications where the LDO is used to power only the SC508 and the external MOSFETs, the current supplied by the LDO is typically below 30mA and temperature rise is acceptable. The LDO output is protected against heavy overloading or short circuits as shown in Figure 14. When the LDO load is enough to keep the LDO output below 1V, the availablecurrent from the LDO is typically 20mA, which limits the power loss and prevents LDO overheating. LDO Switch-Over Operation The SC508 includes a switch-over function for the LDO. The switch-over function is designed to increase efficiency After the switcher completes soft-start and the PGOOD delay, the switch-over logic waits for 32 switching cycles before it starts the switch-over. There are two methods of completing the switch-over of VLDO to VOUT. In the first method, the LDO is already in regulation when the DC-DC converter is enabled. As soon as the PGOOD output goes high, the 32 cycle count is started. The voltages at the VLDO and VOUT pins are then compared; if the two voltages are within ±300mV of each other, the VLDO pin connects to the VOUT pin using an internal switch, and the LDO is turned off. 5V 4.5V by using the more efficient DC-DC converter to power the IC, avoiding the less efficient LDO regulator when possible. The switch-over function connects the VLDO pin directly to the VOUT pin through an internal switch. When the switch-over is complete the LDO is turned off, which reduces operating power loss. If the LDO output is used to bias the SC508, then after switch-over the device is selfpowered from the switching regulator with the LDO turned off. In the second method, the DC-DC converter is already running and the LDO is enabled. In this case the 32 cycle count is started as soon as the LDO reaches 90% of its final value. At this time, the VLDO and VOUT pins are compared, and if within ±300mV the switch-over occurs and the LDO is turned off. Switch-over MOSFET Parasitic Diodes The switch-over MOSFET contains parasitic diodes that are inherent to its construction, as shown in Figure 15. Switchover control Switchover MOSFET VLDO VOUT Parasitic diode Parasitic diode VDDA Figure 15— Switch-over MOSFET Parasitic Diodes 21 SC508/SC508A Applications Information (continued) It is important to prevent forward bias of these diodes. The following two conditions must be satisfied in order for the parasitic diodes to stay off. • • VDDA > VLDO VDDA > VOUT If either VLDO or VOUT is higher than VDDA, the respective diode will turn on and the SC508 operating current will then flow through this diode. This has the potential of damaging the device. Using the Internal LDO to Bias the SC508 The following steps must be followed when using the internal LDO to bias the device. • • • Connect VDDA and VDDP to VLDO before enabling the LDO. During the initial start-up the LDO, when the LDO output is less than 1V, the external load should not exceed 10mA. Above 1V, any external load on VLDO should not exceed 40mA until the LDO voltage has reached 4.5V. Review any external loads connected to the LDOoutput to prevent overheating of the LDO. When the switch-over feature is used and the VDDA/VDDP power comes from the VOUT pin, the EN and ENL inputs must be used carefully. Do not connect the EN pin directly to VDDA or another supply voltage. If this is done, driving the ENL pin low (to AGND) will turn off the LDO and the LDO switch-over MOSFET, but the switcher will continue operating. VOUT will feed into the LDO output and the VDDA/VDDP supplies through the internal parasitic diode. This can potentially damage the device, and also prevents the switcher from shutting off until the VDDA supply drops below the VDDA UVLO threshold. For these applications a dedicated logic signal is required to drive EN low and disable the switcher. This signal can be combined with the ENL signal if needed, as long as the EN pin does not exceed Absolute Maximum Ratings. LDO Usage at Low Input Voltage Applications requiring steady-state or transient operation at low input voltages (VIN below 6.5V) may use the internal LDO to bias the VDDA/VDDP pins within limitations. There are limitations to both startup and normal operation as explained below. When starting up using the internal LDO, switcher operation is inhibited until the LDO output reaches 4.5V. During this time, the LDO start-up is implemented using a current source. At low VIN it is important to not apply an external load to the LDO, in order to allow the LDO output to reach the 4.5V threshold and allow switching to begin. Once switching begins, LDO operation transitions from current-source operation to voltage regulation. The minimum operating VIN is then limited by the RDSON of the internal LDO MOSFET. The current required to power the SC508 and external MOSFET gates causes a voltage drop from the VIN pin to the VLDO pin. The VLDO pin must stay above 4.5V, otherwise the LDO control will revert back to current-source operation, causing more voltage drop at the LDO output. The RDSON of the LDO mosfet at low VIN is typically 24 ohms at 25°C. Design Procedure When designing a switch mode supply the input voltage range, load current, switching frequency, and inductor ripple current must be specified. The maximum input voltage (VINMAX) is the highest specified input voltage. The minimum input voltage ( VINMIN) is determined by the lowest input voltage including the voltage drops due to connectors, fuses, switches, and PCB traces. The following parameters define the design. • • • • Nominal output voltage (VOUT ) Static or DC output tolerance Transient response Maximum load current (IOUT ) There are two values of load current to evaluate — continuous load current and peak load current. Continuous load current relates to thermal stresses which drive the selection of the inductor and input capacitors. Peak load current determines instantaneous component stresses and filtering requirements such as inductor saturation, output capacitors, and design of the current limit circuit. 22 SC508/SC508A Applications Information (continued) The following values are used in this design. • • • • VIN = 28V + 10% VOUT = 1.8V + 4% fSW = 220kHz Load = 8A maximum Frequency Selection Selection of the switching frequency requires making a trade-off between the size and cost of the external filter components (inductor and output capacitor) and the power conversion efficiency. The desired switching frequency is 220kHz. A resistor, RTON is used to program the on-time (indirectly setting the frequency) using the following equation. R TON (TON 10ns) u VIN 28pF u VOUT To select RTON, use the maximum value for VIN, and for TON use the value associated with maximum VIN. T ON V OUT V INMAX u f SW TON = 266 ns at 30.8VIN, 1.8VOUT, 220kHz Substituting for RTON results in the following solution. RTON = 156kΩ, use RTON = 154kΩ Inductor Selection In order to determine the inductance, the ripple current must first be defined. Low inductor values result in smaller size but create higher ripple current which can reduce efficiency. Higher inductor values will reduce the ripple current/voltage and for a given DC resistance are more efficient. However, larger inductance translates directly into larger packages and higher cost. Cost, size, output ripple, and efficiency are all used in the selection process. The ripple current will also set the boundary for powersave operation. The switching will typically enter powersave mode when the load current decreases to 1/2 of the ripple current. For example, if ripple current is 4A then Power-save operation will typically start for loads less than 2A. If ripple current is set at 40% of maximum load current, then power-save will start for loads less than 20% of maximum current. The inductor value is typically selected to provide a ripple current that is between 25% to 60% of the maximum load current. This provides an optimal trade-off between cost, efficiency, and transient performance. During the DH on-time, voltage across the inductor is (VIN - VOUT ). The following equation for determining inductance is shown. L ( VIN VOUT ) u TON IRIPPLE In this example the inductor ripple current is set approximately equal to 50% of the maximum load current. Thus ripple current target will be 50% x 8A or 4A. To find the minimum inductance needed, use the VIN and TON values that correspond to VINMAX. / u QV $ ȝ+ A slightly smaller value of 1.8µH is selected. This will increase the maximum IRIPPLE to 4.3A. Note that the inductor must be rated for the maximum DC load current plus 1/2 of the ripple current. The ripple current under minimum VIN conditions is also checked using the following equations. 721B9,10,1 IRIPPLE S) u 5 721 u 9287 QV 9,10,1 QV ( VIN VOUT ) u TON L ,5,33/(B9,10,1 u QV ȝ+ $ 23 SC508/SC508A Applications Information (continued) Capacitor Selection The output capacitors are chosen based on required ESR and capacitance. The maximum ESR requirement is controlled by the output ripple requirement and the DC tolerance. The output voltage has a DC value that is equal to the valley of the output ripple plus 1/2 of the peak-to-peak ripple. Change in the output ripple voltage will lead to a change in DC voltage at the output. The design goal is for the output voltage regulation to be ±4% under static conditions. The internal 600mV reference tolerance is 1%. Allowing 1% tolerance from the FB resistor divider, this allows 2% tolerance due to VOUT ripple. Since this 2% error comes from 1/2 of the ripple voltage, the allowable ripple is 4%, or 72mV for a 1.8V output. The maximum ripple current of 4.3A creates a ripple voltage across the ESR. The maximum ESR value allowed is shown by the following equations. (650$; 95,33/( The following can be used to calculate the needed capacitance for a given dILOAD/dt. Peak inductor current is shown by the next equation. ILPK = IMAX + 1/2 x IRIPPLEMAX ILPK = 8 + 1/2 x 4.3 = 10.2A P9 $ ,5,33/(0$; Rate of change of Load Current ESRMAX = 16.7 mΩ The output capacitance is chosen to meet transient requirements. A worst-case load release, from maximum load to no load at the exact moment when inductor current is at the peak, determines the required capacitance. If the load release is instantaneous (load changes from maximum to zero in < 1µs), the output capacitor must absorb all the inductor’s stored energy. This will cause a peak voltage on the capacitor according to the following equation. COUTMIN If the load release is relatively slow, the output capacitance can be reduced. At heavy loads during normal switching, when the FB pin is above the 600mV reference, the DL output is high and the low-side MOSFET is on. During this time, the voltage across the inductor is approximately -VOUT. This causes a down-slope or falling di/dt in the inductor. If the load di/dt is not faster than the -di/dt in the inductor, then the inductor current will tend to track the falling load current. This will reduce the excess inductive energy that must be absorbed by the output capacitor, therefore a smaller capacitance can be used. 1 § ·2 L¨ IOUT u IRIPPLEMAX ¸ 2 © ¹ 2 VPEAK VOUT COUT 2 COUTMIN = 272µF 2 ILPK u ILPK I MAX u dt VOUT dlLOAD 2VPK VOUT Example dlLOAD dt 2 .5 A Ps The preceding rate of load change would cause the output current to move from 8A to zero in 3.2µs. 2 1 § ·2 1.8PH¨ 8 u 4.3 ¸ 2 © ¹ 1.98 1.80 IMAX = maximum load release = 8A Lu Assuming a peak voltage VPEAK of 1.98 (180mV rise upon load release), and a 8A load release, the required capacitance is shown by the next equation. COUTMIN dlLOAD dt COUT 10.2 u 10.2 8 u 1Ps 1.8 2.5 2 u 1.98 1.8 1.8PH u COUT = 198µF Note that COUT is much smaller in this example, 198µF compared to 272µF based on a worst-case load release. To meet the two design criteria of minimum 272µF and 24 SC508/SC508A Applications Information (continued) maximum 16.7mΩ ESR, select a capacitor rated at 330µF and 6mΩ ESR. It is recommended that an additional small capacitor with a value of 1 to 10µF be placed in parallel with COUT in order to filter high frequency switching noise. Stability Considerations Unstable operation is possible with adaptive on-time controllers, and usually takes the form of double-pulsing or ESR loop instability. Double-pulsing occurs due to switching noise seen at the FB input or because the FB ripple voltage is too low. This causes the FB comparator to trigger prematurely after the 250ns minimum off-time has expired. In extreme cases the noise can cause three or more successive on-times. Double-pulsing will result in higher ripple voltage at the output, but in most applications it will not affect operation. This form of instability can usually be avoided by providing the FB pin with a smooth, clean ripple signal that is at least 10mVp-p, which may dictate the need to increase the ESR of the output capacitors. It is also imperative to provide a proper PCB layout as discussed in the Layout Guidelines section. Another way to eliminate doubling-pulsing is to add a small capacitor across the upper feedback resistor, as shown in Figure 16. This capacitor should be left unpopulated unless it can be confirmed that double-pulsing exists. Adding the CTOP capacitor will couple more ripple into FB to help eliminate the problem. An optional connection on the PCB should be available for this capacitor. One simple way to solve this problem is to add trace resistance in the high current output path. A side effect of adding trace resistance is decreased load regulation. ESR Requirements A minimum ESR is required for two reasons. One reason is to generate enough output ripple voltage to provide 10mVp-p at the FB pin (after the resistor divider) to avoid double-pulsing. The second reason is to prevent instability due to insufficient ESR. The on-time control regulates the valley of the output ripple voltage. This ripple voltage is the sum of the two voltages. One is the ripple generated by the ESR, the other is the ripple due to capacitive charging and discharging during the switching cycle. For most applications the minimum ESR ripple voltage is dominated by the output capacitors, typically SP or POSCAP devices. For stability the ESR zero of the output capacitor should be lower than approximately one-third the switching frequency. The formula for minimum ESR is shown by the following equation. ESR MIN 3 2 u S u C OUT u f sw Using Ceramic Output Capacitors CTOP VOUT ESR loop instability is caused by insufficient ESR. The details of this stability issue are discussed in the ESR Requirements section. The best method for checking stability is to apply a zero-to-full load transient and observe the output voltage ripple envelope for overshoot and ringing. Ringing for more than one cycle after the initial step is an indication that the ESR should be increased. To FB pin R1 R2 Figure 16 — Capacitor Coupling to FB Pin NOTE: The CTOP capacitor can moderately affect the DC output voltage, refer to the section on VOUT voltage selection. When using high ESR value capacitors, the feedback voltage ripple lags the phase node voltage by 90 degrees and the converter is easily stabilized. When using ceramic output capacitors, the ESR value is normally too small to meet the above ESR criteria. As a result, the feedback voltage ripple is 180 degrees from the phase node leading to unstable operation. In this application it is necessary to add a small virtual ESR network that is composed of two capacitors and one resistor, as shown by RL, CL, and CC in Figure 17. 25 SC508/SC508A Applications Information (continued) RL +- D x VIN L DCR L VL CL RL R1 CC COUT R2 FB pin DCR VOUT VOUT VL CL CC CC R1 R1 COUT COUT R2 FB pin FB pin R2 Figure 17 — Virtual ESR Ramp Circuit Figure 19 — FB Voltage by Output Voltage The ripple voltage at FB is a superposition of two voltage sources: the voltage across C L and the output ripple voltage. They are defined in the following equations. The magnitude of the FB ripple contribution due to output voltage ripple is shown by the following equation. 9)%'9287 ,/ u '&5V u / '&5 6 u 5/&/ 9F / ',/ & u I6: '9287 Figure 18 shows the equivalent circuit for calculating the magnitude of the ripple contribution at the FB pin due to CL. L +- D x VIN DCR RL VL CL FB pin CC R1 '9287 u 5 5 5 6 u && The purpose of this network is to couple the inductor current ripple information into the feedback voltage such that the feedback voltage has 90 degrees phase lag to the switching node similar to the case of using standard high ESR capacitors. This is illustrated in Figure 20. VOUT FB contribution by output voltage ripple LX FB contribution by CL R2 Combined FB Figure 18 — FB Voltage by CL Voltage The magnitude of the FB ripple contribution due to CL is shown by the following equation. VFBc L Vc L u R1 // R2 u S u C C R1 // R2 u S u C C 1 Figure 19 shows the equivalent circuit for calculating the magnitude of the ripple contribution due to the output voltage ripple. IL Figure 20 — FB voltage in Phaser Diagram The magnitude of the feedback ripple voltage, which is dominated by the contribution from CL , is controlled by the value of R1, R2 and CC . If the corner frequency of (R1// R2) x CC is too high, the ripple magnitude at the FB pin will be smaller, which can lead to double-pulsing. Conversely, if the corner frequency of (R1// R2) x CC is too low, the ripple magnitude at FB pin will be higher. Since the SC508 regulates to the valley of the ripple voltage at the FB pin, a high ripple magnitude is undesirable as it significantly impacts the output voltage regulation. As a result, it is desirable to 26 SC508/SC508A Applications Information (continued) select a corner frequency for (R1// R2) x CC to achieve enough, but not excessive, ripple magnitude and phase margin. The component values for R1, R2, and CC should be calculated using the following procedure. Select CL (typical 10nF) and RL to match with L and DCR time constant using the following equation. 5/ / '&5 u &/ Select CC by using the following equation. && | u 5 5 u S u IVZ The resistor values (R1 and R2) in the voltage divider circuit set the VOUT for the switcher. The typical value for CC is from 10pF to 1nF. Dropout Performance The output voltage adjust range for continuous-conduction operation is limited by the fixed 250ns (typical) minimum off-time of the one-shot. When working with low input voltages, the duty-factor limit must be calculated using worst-case values for on and off times. The duty-factor limitation is shown by the following equation. DUTY TON(MIN) TON(MIN) TOFF(MAX ) The inductor resistance and MOSFET on-state voltage drops must be included when performing worst-case dropout duty-factor calculations. System DC Accuracy (VOUT Controller) Three factors affect VOUT accuracy: the trip point of the FB error comparator, the ripple voltage variation with line and load, and the external resistor tolerance. The error comparator offset is trimmed so that under static conditions it trips when the feedback pin is 600mV, + 1%. The on-time pulse from the SC508 in the design example is calculated to give a pseudo-fixed frequency of 220kHz. Some frequency variation with line and load is expected. This variation changes the output ripple voltage. Because adaptive on-time converters regulate to the valley of the output ripple, ½ of the output ripple appears as a DC regulation error. For example, if the output ripple is 50mV with VIN = 6 volts, then the measured DC output will be 25mV above the comparator trip point. If the ripple increases to 80mV with VIN = 25V, then the measured DC output will be 40mV above the comparator trip. The best way to minimize this effect is to minimize the output ripple. To compensate for valley regulation, it may be desirable to use passive droop. Take the feedback directly from the output side of the inductor and place a small amount of trace resistance between the inductor and output capacitor. This trace resistance should be optimized so that at full load the output droops to near the lower regulation limit. Passive droop minimizes the required output capacitance because the voltage excursions due to load steps are reduced as seen at the load. The use of 1% feedback resistors contributes up to 1% error. If tighter DC accuracy is required, 0.1% resistors should be used. The output inductor value may change with current. This will change the output ripple and therefore will have a minor effect on the DC output voltage. The output ESR also affects the output ripple and thus has a minor effect on the DC output voltage. Switching Frequency Variations The switching frequency will vary depending on line and load conditions. The line variations are a result of fixed propagation delays in the on-time one-shot, as well as unavoidable delays in the external MOSFET switching. As VIN increases, these factors make the actual DH on-time slightly longer than the ideal on-time. The net effect is that frequency tends to falls slightly with increasing input voltage. The switching frequency also varies with load current as a result of the power losses in the MOSFETs and the inductor. For a conventional PWM constant-frequency converter, as load increases the duty cycle also increases slightly to compensate for IR and switching losses in the 27 SC508/SC508A Applications Information (continued) MOSFETs and inductor. A adaptive on-time converter must also compensate for the same losses by increasing the effective duty cycle (more time is spent drawing energy from VIN as losses increase). Because the on-time is essentially constant for a given VOUT/VIN combination, to offset the losses the off-time will reduce slightly as load increases. The net effect is that switching frequency increases slightly with increasing load. PCB Layout Guidelines A switch-mode converter requires good PCB layout which is essential to achieving high performance. The following guidelines will provide an optimum PCB layout. The device layout recommendations consist of four parts. • • • • Grounding for PGND and AGND Power components Low-noise analog circuits Bypass capacitors Grounding for PGND and AGND A ground plane layer for PGND is recommended to minimize the effects of switching noise, resistive losses, and to maximize heat removal from the power components. A separate ground plane or island should be used for AGND and all associated components. The AGND island should avoid overlapping switching signals on other layers (DH/DL/BST/LX). Connect PGND and AGND together with a zero ohm resistor or copper trace. Make the connection near the AGND and PGND pins of the IC. • • • • • Low-noise Analog Circuits Low-noise analog circuits are sensitive circuits that are referenced to AGND. Due to their high impedance and sensitivity to noise, it is important that these circuits be located as far as possible from the switching signals. • • • • • Power Components Use short, wide traces between the following power components. Input capacitors and high-side MOSFETs High-side and Low-side MOSFETs and inductor (LX connection). Use wide copper traces to provide high current carrying capacity and for heat dissipation. Inductor and output capacitors. All PGND connections — the input capacitors, low-side MOSFETs, output capacitors, and the PGND pin of the SC508. An inner layer ground plane is recommended. Each power component requires a short, low impedance connection to the PGND plane. Place vias to the PGND plane directly near the component pins. Use short wide traces for the pin connections from the SC508 (LX, DH, DL and BST). Do not route these traces near the sensitive low-noise analog signals (FB, SS, TON, VOUT ). Avoid overlapping of the DL trace with LX/DH/ BST. This helps reduce transient peaks on the gate of the low-side MOSFET during the turn-on of the high-side MOSFET. • • Use a plane or solid area for AGND. Place all components connected to AGND above this area. Use short direct traces for the AGND connections to all components. Place vias to the AGND plane directly near the component pins. Proper routing of the VOUT sense trace is essential since it feeds into the FB resistor divider. Noise on the FB waveform will cause instability and multiple pulsing. Connect the VOUT sense trace directly to the output capacitor or a ceramic bypass capacitor. Route this trace over to the VOUT pin, carefully avoiding all switching signals and power components. Route this trace in a quiet layer if possible. Route this trace away from the switching traces and components, even if the trace is longer. Avoid shorter trace routing through the power switching area. If a bypass capacitor is used at the IC side of the VOUT sense trace, it should be placed near the FB resistor divider. All components connected to the FB pin must be located near the pin. The FB traces should be 28 SC508/SC508A Applications Information (continued) • • • kept small and not routed near any noisy switching connections or power components. Place the SS capacitor near the SS pin with a short direct connection to the AGND plane. Place the RLIM resistor near the IC. For an accurate ILIM current sense connection, route the RLIM trace directly to the drain of the low-side MOSFET (LX). Use an inner routing layer if needed. Place the RTON resistor near the TON pin. Route R TON to the TON pin and to AGND using short traces and avoid all switching signals. Bypass Capacitors The device requires bypass capacitors for the following pins. • • • • VDDA pin with respect to AGND. This 0.1μF minimum capacitor must be placed and routed close to the IC pins, on the same layer as the IC. This capacitor also functions as bypass for the LDO output, since the VDDA and VLDO pins are adjacent. VDDP with respect to PGND. This 1μF minimum capacitor must be placed and routed close to the IC pins and on the same layer as the IC. BST pin with respect to LX. This 0.1μF minimum capacitor must be placed near the IC, on either side of the PCB. Use short traces for the routing between the capacitor and the IC. VIN pin with respect to AGND. This 0.1μF minimum capacitor must be placed and routed close to the IC pins. This capacitor provides noise filtering for the input to the internal LDO. 29 SC508/SC508A Outline Drawing — MLPQ-UT20 3x3 A D PIN 1 INDICATOR (LASER MARK) DIMENSIONS INCHES MILLIMETERS DIM MIN NOM MAX MIN NOM MAX B E A2 A aaa C C A1 SEATING PLANE A A1 A2 b D D1 E E1 e L N aaa bbb .020 .000 - .024 .002 (.006) .006 .008 .010 .114 .118 .122 .061 .067 .071 .114 .118 .122 .061 .067 .071 .016 BSC .012 .016 .020 20 .003 .004 0.50 0.00 - 0.60 0.05 (0.1524) 0.15 0.20 0.25 2.90 3.00 3.10 1.55 1.70 1.80 2.90 3.00 3.10 1.55 1.70 1.80 0.40 BSC 0.30 0.40 0.50 20 0.08 0.10 D1 e LxN E/2 E1 2 1 N D/2 bxN bbb C A B NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS . 3. DAP is 1.90 x 190mm. 30 SC508/SC508A Land Pattern — MLPQ-UT20 3x3 H R (C) DIMENSIONS K G Y X P Z DIM INCHES MILLIMETERS C G H K P R X Y Z (.114) (2.90) .083 .067 .067 .016 .004 .008 .031 .146 2.10 1.70 1.70 0.40 0.10 0.20 0.80 3.70 NOTES: 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES). 2. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET. 3. THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE. FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE. 31 SC508/SC508A © Semtech 2012 All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range. SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFESUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise. Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. Contact Information Semtech Corporation Power Management Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804 www.semtech.com 32