Microsemi ZL70550 Ultra-Low-Power Sub-GHz RF Transceiver (Preliminary Datasheet)

ZL70550 Preliminary Datasheet
Ultra-Low-Power Sub-GHz RF Transceiver
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and
system solutions for communications, defense & security, aerospace and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits,
FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and
precise time solutions, setting the world’s standard for time; voice processing devices; RF solutions;
discrete components; Enterprise Storage and Communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well
as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif, and
has approximately 4,800 employees globally. Learn more at www.microsemi.com.
Microsemi Corporate
Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: [email protected]
©2015-2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi
logo
are
registered
trademarks of Microsemi Corporation. All
other trademarks and service marks are
the property of their respective owners.
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.
ZL70550 Preliminary Datasheet: 152078-2 2/16
Contents
1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1
1.2
Revision 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Initial Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1
2.2
2.3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1
Typical Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2
3
3
4
3 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1
MAC Packet Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1
Raw Bit Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2
Raw Byte Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3
User Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.4
Z-Star Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
6
6
7
8
4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1
4.2
4.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.1
Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.2
Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2.3
Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Transmit Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1
Transmit Power vs. PA Trim Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2
Transmit Power vs. Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1
5.2
5.3
Pin Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Pin Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Functional Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1
6.2
Drawing and Markings for 32-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Drawing and Markings for 29-Pin CSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ZL70550 Preliminary Datasheet Revision 2
iii
Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
ZL70550 RF Transceiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
50-Ω Single-Ended Application Example with Optional Low-Pass Filter . . . . . . . . . . . . . . . . . . . . . 4
Packet Format, Raw Byte Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Packet Format, User Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Packet Format, Z-Star Packet Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Crystal Oscillator with Optional Additional External Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . 14
TX Power vs. PA Trim Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TX Power vs. Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Footprint (top view) for 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Footprint (bottom view) for 29-Pin CSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package Drawing and Package Dimensions for 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Markings for 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Package Drawing and Package Dimensions for 29-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Markings for 29-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ZL70550 Preliminary Datasheet Revision 2
iv
Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Packet Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Digital I/O AC and DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Transmitter RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Receiver RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Crystal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Pinout for 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Pinout for 29-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Overview of ZL70550 Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Ordering and Package Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
ZL70550 Preliminary Datasheet Revision 2
v
Revision History
1
Revision History
The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.
1.1
Revision 2
The following is a summary of the substantive changes in revision 2 of this document, dated
February 2016.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Item 1. Updated document format to be more in line with current Microsemi corporate branding
standards, including restructuring the outline.
Item 2. Updated RX state current and TX state current; see Features and Specifications, page 2,
and Current Consumption, page 11.
Item 3. Updated reference frequency to 24MHz, which affects calculations for data rates, for channel
separation, and for IF center frequency. See Features and Specifications, page 2, and General RF
Parameters, page 11, and Receiver, page 13, and Crystal Oscillator, page 14.
Item 4. Updated sensitivity specifications in Features and Specifications, page 2, and in Receiver,
page 13.
Item 5. Added Japanese bands in Features and Specifications, page 2.
Item 6. Removed erroneous references to PHY in Features and Specifications, page 2, and in Z-Star
Packet Mode, page 8.
Item 7. Updated figures to show ten bytes of preamble and three bytes of frame sync; see MAC
Packet Modes, page 5.
Item 8. Updated output voltage, output current, and output rise time specifications in Digital
Interface, page 10.
Item 9. Added and modified table notes in General RF Parameters, page 11, in Current
Consumption, page 11, in Receiver, page 13, and in Crystal Oscillator, page 14.
Item 10. Updated limits for reference spurs in Synthesizer, page 12.
Item 11. Updated limits for maximum input power, RSSI range, LBT minimum level, and 1-dB
compression in Receiver, page 13.
Item 12. Removed specifications for external clock output, average wake-up current, PLL clock time,
PA ramp up/down, and channel change settling time in Electrical Specifications, page 9.
Item 13. Updated graphs in Transmit Power Characteristics, page 15.
Item 14. Changed markings for QFN in Drawing and Markings for 32-Pin QFN Package, page 21.
Item 15. Changed package drawing for CSP and markings for CSP in Drawing and Markings for 29Pin CSP Package, page 22.
Item 16. Updated part numbers and table notes under Ordering Information, page 24.
This Preliminary Datasheet version contains information based on simulation and/or initial
characterization. The information is believed to be correct, but changes are possible.
1.2
Initial Release
Revision 1, dated September 2015, was the first publication of this document.
This Advanced Datasheet version contained initial estimated information based on simulation, other
products, devices, or speed grades. Such information can be used as estimates, but not for production,
as the data is not fully characterized.
ZL70550 Preliminary Datasheet Revision 2
1
Overview
2
Overview
2.1
Introduction
The ZL70550 ultra-low-power RF transceiver provides efficient wireless communications for applications
where power consumption is of primary importance. With combined ultralow transmit, receive, and sleep
currents, the ZL70550 device is best-in-class for a wide range of high- and low-duty-cycle applications.
The transceiver’s small size and ultralow power requirements make it feasible to operate the device with
a single coin-cell battery or with energy-harvesting sources in extremely small form factors. The built-in
support for Microsemi’s highly efficient and powerful Z-Star protocol allows users to rapidly develop ultralow-power wireless applications.
2.2
Features and Specifications
The ZL70550 RF transceiver features include:
•
•
•
•
•
•
Ultralow power
•
Typical TX current (with 50-Ω match):
< 2.75mA at −10dBm;
< 5.3mA at 0dBm
•
Typical RX current: <2.4mA (low IRX mode)
•
Sleep current: <10nA typical
•
Supply: 1.71V to 3.6V
Operating frequency range: 779MHz to 965MHz
•
North American ISM band: 902MHz to 928MHz
•
European SRD band: 863MHz to 870MHz
•
Chinese band: 779MHz to 787MHz
•
Japanese bands: 916MHz to 930MHz and 950MHz to 956MHz
Sensitivity and data rate:
•
Raw data rate: 200kbit/s, 100kbit/s, or 50kbit/s
•
Typical sensitivity:
−106dBm typical at 50kbit/s at 3.2mA and with FEC
−103dBm typical at 50kbit/s at 2.4mA and with FEC
−99dBm typical at 200kbit/s at 3.2mA and without FEC
−95dBm typical at 200kbit/s at 2.4mA and without FEC
Very few external components
•
Matching network, crystal, decoupling capacitors, and bias resistor
•
Standard interface: SPI bus
Optional built-in MAC
•
Microsemi Z-Star or user protocol support
•
Transmit and receive buffer
•
Automatic CSMA packet transfers
•
Efficient header optimized for small or large payloads
•
Optional preamble, frame sync, length, FEC, and CRC
RoHS compliant
ZL70550 Preliminary Datasheet Revision 2
2
Figure 1 •
ZL70550 RF Transceiver Block Diagram
IF Filter
RF+
RSSI
SPI_MOSI
FEC / CRC
SPI_MISO
PA
SPI_SEL_B
SPI
5)í
MAC
LNA
RX Buffer
Block Diagram
Limiter /
FM Detector
2.2.1
Post-Detection
Filter
Overview
SPI_CLK
Crystal
Oscillator
RC
Oscillator
LDO
Regulator
Always-On
Registers
RESET_B
TX Buffer
TX Filter
VCO
IRQ
GP3..0
RBIAS
VDDIO
XTAL1 XTAL2
2.3
VDDA VSUP VDDD
GND
0001v1602.0
Target Applications
End applications may include:
•
•
•
•
•
•
•
•
Medical monitoring
Industrial/building/home automation
Security
Smart cities
Advanced metering infrastructure
Asset management
Energy harvesting
Voice/compressed-audio communications
ZL70550 Preliminary Datasheet Revision 2
3
Overview
2.3.1
Typical Application Diagram
The following figure is representative of a 50-Ω single-ended implementation (refer to Figure 2, page 4).
An optional low-pass filter on the output is recommended to attenuate second and third harmonic
spurious emissions to meet regulatory standards.
Figure 2 •
50-Ω Single-Ended Application Example with Optional Low-Pass Filter
VDD
C8
39pF
VSUP
C7
0.1μF
XTAL1
L1
8.7nH
L2
8.7nH
50 ohms
C1
100pF
C2
100pF
Application Interface
RF-
SPI_SEL_B
SPI_MISO
SPI_MOSI
VDDIO
L5
8.2nH
C3
0.7pF
RESET_B
SPI_CLK
L4
39nH
RF+
XTAL2
4
C9
39pF
ZL70550
(QFN)
L3
39nH
VDDA
C4
0.7pF
C5
C6
3.6pF 3.6pF
Optional LP
filter (Note 3)
C11
0.1μF
VDDD
C10
0.1μF
.
VDDTEST
IO_MAP
TEST_SEL
Paddle
RBIAS
R1
49.9 NŸ
IRQ
GP3
GP2
GP1
GP0
Application Interface
SCAN_TEST
0002v1507.1
Notes:
1. This schematic is based on the REMOTE550 board from the ZLE70550 Application Development
Kit.
2. C3, C4, L3, and L4 values may change if the layout differs from the REMOTE550 board layout. To
ensure optimal performance, please do not deviate from the REMOTE550 board layout.
3. L1 and L2 are optimized for tuning over the middle to upper frequency range (863MHz to
965MHz). Changing L1 and L2 to approximately 12nH allows tuning over the lower to middle
frequency range (779MHz to 868MHz).
4. The optional low-pass filter reduces the transmitter spurious emissions by approximately 16dB for
the second harmonic and 23dB for the third harmonic. Another option would be to replace this
circuit with a SAW filter to attenuate spurious emissions and to provide protection against
blockers.
5. Use Murata part number GCM155R71C104KA55D or equivalent for C10 and C11.
ZL70550 Preliminary Datasheet Revision 2
4
Functional Descriptions
3
Functional Descriptions
The ultra-low-power ZL70550 RF transceiver enables RF telemetry in applications powered by coin-cell
batteries or energy harvesting, where wireless telemetry was previously unfeasible. End applications
may include wireless sensors, medical monitoring, industrial/home automation, or smart cities.
With a typical peak/average current consumption below 2.4mA in receive and 2.75mA in transmit, and
with an upper data rate of 200kbit/s, the ZL70550 device enables bidirectional RF links over a distance of
more than 100 meters (based on antenna gain and matching loss).
The output power is programmable and can be reduced to −25dBm to save power in cases where the
link budget allows it, or can be increased up to 0dBm for more range or to allow for system losses such
as a very small antenna or body tissue absorption.
To achieve the minimum possible power consumption, the ZL70550 device offers many automatic
calibrations, all available to the user via the SPI bus.
In addition to its ultralow power consumption, the ZL70550 device also includes a highly flexible Media
Access Controller (MAC) that offers four different packet modes of operation ranging from automatic
packet transactions to low-level direct modulation via a serial clock and data.
3.1
MAC Packet Modes
The three different packet modes in which the ZL70550 MAC state machine operates, as well as a direct
modulation mode where users have full control over their own packet or streaming protocols, are
described in Table 1, page 5. These packet modes give users tremendous flexibility in defining their own
packet parameters and transaction capabilities, ranging from a user-defined bit stream to fully automated
multipacket transactions based on Microsemi’s Z-Star protocol.
Table 1 •
Packet
Mode
Packet Modes of Operation
Description
Pre/Frm
Sync
FEC
PHY
AutoMAC
Header Length Header CRC
Raw bit
Optional serial clock and data (TX/RX buffer or
GP3..0 pins)
No
No
No
No
No
No
Raw byte
Compatible with ZL70251 MAC with optional
FEC and CRC
Yes
Opt
No
No
No
Opt
User
User-defined packet (no MAC header)
Yes
Opt
Yes
Yes
No
Opt
Z-Star
Fully functional MAC based on Microsemi’s
Z-Star protocol
Yes
Opt
Yes
Yes
Yes
Yes
ZL70550 Preliminary Datasheet Revision 2
5
Functional Descriptions
3.1.1
Raw Bit Packet Mode
In raw bit mode, raw bits are transmitted without preamble, frame sync pattern, header, or CRC. If these
properties are needed, then they must be encoded in the bit stream. The bit stream may be sourced from
the TX buffer, from the GP3..0 pins, or generated from an internal pattern generator.
On the receiver side, the bit stream is received without frame synchronization or byte alignment. The
received data either can be placed in the receive buffer or can be output with a clock on the GP3..0 pins.
Raw bit mode has two basic applications. First, it can be used for raw bit error testing using the GP3..0
pins. Second, it can be used for applications where the packet framing is not desired, or for data rates not
supported by the ZL70550 device. There are limitations to this second case.
3.1.2
Raw Byte Packet Mode
In raw byte packet mode, packets are transmitted without a MAC header, similar to the ZL70251 device.
The CRC is optional but requires either a fixed-length packet or length information in the packet such that
the application processor can dynamically extract the length from the beginning of the packet and
change the RX packet length before the end of the packet is received.
The packet format is shown in Figure 3, page 6. If raw byte packet mode is used, then the TX and RX
packet lengths are controlled by tx_buf_len and rx_frm_len, respectively. During reception, users may
update rx_frm_len, providing this occurs before the end of the packet. Usually this requires users to
embed the packet length as the first byte of the payload. The packet may optionally be terminated if the
RSSI drops below the RSSI threshold setting or if a SPI Abort command is executed. In all cases,
rx_frm_len indicates the length of the received packet.
Figure 3 •
Packet Format, Raw Byte Packet Mode
Raw Byte Packet (PPDU)
PHY Frame 0-511
0-510
Octets:
Octet order:
10
0-9
3
0-2
Preamble
Frame
Sync
2/4
0-3
Payload
0010v1602.0
ZL70550 Preliminary Datasheet Revision 2
MAC
Frame CRC
(FCS)
6
Functional Descriptions
3.1.3
User Packet Mode
In user packet mode, packets are transmitted with a PHY header and optional FEC and CRC. The basic
packet format is shown in Figure 4, page 7. The PHY header contains the length of the packet, which is
used by the receiver to terminate the packet and calculate the CRC. The format of the PHY header in the
received packet is flexible in that the length may be located at a programmable offset from the beginning
of the PHY frame. It may be of various lengths and either MSB or LSB first.
For automatic PHY header generation on the transmit side, single-byte PHY headers are supported with
LSB first by setting tx_auto_hdr equal to 1. For other formats, the PHY header must come from the
transmit buffer.
Figure 4 •
Packet Format, User Packet Mode
User Packet (PPDU)
PHY Frame 0-511
0-510
Octets:
Octet order:
Octets:
Octet order:
Bits:
Bit order:
0009v1602.0
10
0-9
3
0-2
Header
Preamble
Frame
Sync
PHY
Header
Payload
2/4
0-3
MAC
Frame CRC
(FCS)
0-2
0-1
0-12
0-9
0-8 or 8-0
0-12
UserDefined
Frame
Length
UserDefined
Payload
Offset
1-12
ZL70550 Preliminary Datasheet Revision 2
7
Functional Descriptions
3.1.4
Z-Star Packet Mode
In Z-Star packet mode, packets are transmitted with a MAC header, a PHY header, either a 16-bit or
32-bit CRC (also known as a Frame Check Sequence (FCS)), and an option for using FEC. The basic
packet format is shown in Figure 5, page 8. Z-Star packet mode supports the MAC layer of the Z-Star
protocol as defined in the Z-Star protocol specification. The ZL70550 hardware performs the following
Z-Star MAC functions:
•
•
•
•
•
Automatic CSMA algorithm with random back off (LBT)
Transmitting a packet with or without automatic acknowledgment reception
Programmable automatic retransmissions
Data request (node request to hub for data)
Sniff with automatic packet reception or sleep (supports mesh networking)
The ZL70550 Z-Star MAC is a highly optimized and ultra-low-power protocol supporting a node/hub star
network ideally suited for wireless sensor networks (WSNs) or Internet of things (IoT) applications. It is
also highly flexible to support point-to-point transactions or other topologies. The combination of the
highly optimized Z-Star MAC protocol and the best-in-class, ultra-low-power radio make the ZL70550
device the radio of choice where power efficiency is paramount.
Figure 5 •
Packet Format, Z-Star Packet Mode
Z-Star Packet (PPDU)
PHY Frame
MAC Frame (MPDU)
MAC Header (MHR)
Octets:
Octet order:
Bits:
2
Bit order: b0-b1
Frame
Format
= 00
10
0-9
3
0-2
2
0-1
2
0-1
1/8
0-7
Preamble
Frame
Sync
PHY
Header
Frame
Control
Source
ID
1
b6
1
b7
9
b2-b10
MAC
Frame
Length
1
b11
4
b12-b15
FCS
Length
PHY Hdr
CRC (PCS)
1/8
0-7
1
0
Destination Network
ID
ID
0-504
0-503
2/4
0-3
MAC
MAC
Frame CRC
Payload
(FCS)
PHY Header
Bits:
Bit order:
3
b0-b2
Frame
Type
0008v1602.1
3
b3-b5
4
b0-b3
1
b4
1
b5
1
b6
1
b7
Frame
Ack
Frame
Frame Reserved Addressing
Reserved
Security
Sequence
Request Pending
Subtype
=0
Mode
=0
= 0/1
Number
(A/R)
(FP)
ZL70550 Preliminary Datasheet Revision 2
8
Electrical Specifications
4
Electrical Specifications
Voltages are with respect to ground (VSS) unless otherwise stated.
4.1
Absolute Maximum Ratings
Table 2 •
Absolute Maximum Ratings
Limits
Parameter
Symbol
Min.
Max.
Unit
Notes
Supply voltage
VSUP
−0.3
3.6
V
Note 1
Digital I/O supply voltage
VDDIO
−0.3
3.6
V
Note 1
Digital I/O voltage
VIOD
VSS − 0.3
VDDIO + 0.3
V
Note 2
Analog I/O voltage
VIOA
VSS − 0.3
VSUP + 0.3
V
Note 3
RF I/O voltage
VIORF
VSS − 0.3
2 × VDDA
V
Note 4
Storage temperature
TSTG
−40
85
°C
Unpowered
Electrostatic discharge (human
body model)
VHBM
500
V
RF and crystal pads; Note 5
1500
V
All other pads; Note 5
250
V
All pads
Electrostatic discharge (chargeddevice model)
1.
2.
3.
4.
5.
VCDM
Application of voltage beyond the stated absolute maximum rating may cause permanent damage to the device or cause reduced
reliability.
Applies to digital interface pins including GP3..0, IRQ, RESET_B, SPI_CLK, SPI_MISO, SPI_MOSI, SPI_SEL_B, IO_MAP,
SCAN_TEST, and TEST_SEL.
Applies to analog interface pins, including RBIAS, XTAL1, and XTAL2.
Applies to RF interface pins, including RF+, RF−, TX+, TX−, RX+, and RX−.
Applied one at a time. Exceeding these values may cause permanent damage. Functional operation under these conditions is
not implied.
4.1.1
Recommended Operating Conditions
The recommended operating conditions define the nominal conditions for the device. This means that a
specified parameter is valid for the recommended operating conditions stated in Table 3, page 9, unless
otherwise noted.
Table 3 •
Recommended Operating Conditions
Limits
Parameter
Symbol
Min.
Supply voltage
VDDOP
1.8
Operating temperature
TOP
−40
Typ.
25
Max.
Unit
3.5
V
85
°C
ZL70550 Preliminary Datasheet Revision 2
Notes
9
Electrical Specifications
4.2
Electrical Characteristics
4.2.1
Voltage Regulators
Table 4 •
Voltage Regulators
Limits
Parameter
Symbol
Min.
Typ.
Max.
Unit
Note
Output voltage range
VDDA
1.46
1.52
1.57
V
Note 1
Output voltage range
VDDD
1.20
1.25
1.30
V
Note 1
1.
Do not connect external circuits to these pins. VDDA and VDDD are regulated supplies for the internal analog and digital circuits,
respectively, of the ZL70550 device.
4.2.2
Digital Interface
Table 5 •
Digital I/O AC and DC Specifications
Limits
Parameter
Symbol
Min.
High-level output voltage
VOH
VDD − 0.2
Low-level output voltage
VOL
High-level input voltage
VIH
Low-level input voltage
VIL
High-level output current
Max.
Unit
Note
V
VSS + 0.2
V
VDDIO × 0.85
VDDIO
V
VSSD
VDDIO × 0.15
V
IOH
1
mA
Low-level output current
IOL
1
mA
Input leakage current
ILEAK
10
nA
Output rise time (20% to 80%) TR
35
ns
Load of 120pF at 1mA
Output fall time (80% to 20%) TF
35
ns
Load of 120pF at 1mA
−10
ZL70550 Preliminary Datasheet Revision 2
10
Electrical Specifications
4.2.3
Performance Characteristics
The specified performance of the ZL70550 device is valid over a supply range of 1.8V to 3.5V.
4.2.3.1
General RF Parameters
Table 6 •
General Characteristics
Limits
Parameter
Min.
Operating frequency range
779
Typ.
Reference frequency
Symbol rate
Channel separation
1.
2.
Unit
965
MHz
MHz
See Note 1
200
kbit/s
300-kHz channel width
(24MHz / 20 / 6)
100
kbit/s
300-kHz channel width
(24MHz / 20 / 12)
50
kbit/s
300-kHz channel width
(24MHz / 20 / 24)
300
kHz
Note 2
1
0.45
Note
24
Crystal oscillator startup time
Modulation index
Max.
0.5
ms
0.55
Based on a raw data rate of 200kbit/s
In order to save power and reduce the number of external components, the crystal oscillator has a 3-pF load instead of a typical
8-pF or 10-pF load (refer to Table 11, page 14). The 3-pF load is representative of the pin and PCB parasitic capacitance.
This is not an occupied bandwidth. It is based on the typical channel bandwidth; however, other channel bandwidths can be
programmed.
4.2.3.2
Current Consumption
Table 7 •
Current Consumption
Limits
Parameter
Symbol
SLEEP state current
IDLE state current
Typ.
Max
Unit
Note
ISLEEP
10
50
nA
Partial register retention only
IIDLE
200
300
μA
Crystal oscillator running only
2.4
mA
LNA gain=8’h0F, LNA
bias=8’h05
3.2
mA
LNA gain=8’h0F, LNA
bias=8’h29
5.3
mA
0dBm into a 50-Ω load
2.75
mA
−10dBm into a 50-Ω load
2.4
mA
RX state current
IRX
TX state current (CW on
916MHz)
ITX
RSSI sniff current
ISNIFF
Min.
ZL70550 Preliminary Datasheet Revision 2
11
Electrical Specifications
4.2.3.3
Synthesizer
Table 8 •
Synthesizer
Limits
Parameter
Symbol
Min.
Phase noise at 100kHz
ΦSYNTH_100k
Reference spurs
ΨSYNTH_CLRS
4.2.3.4
Transmitter
Table 9 •
Transmitter RF Characteristics
Typ.
Max.
Unit
Note
−92
dBc/Hz
CW observed from PA
−60
dBc
At 300kHz (25°C);
CW from PA
Limits
Parameter
Condition
Min.
Typ.
PA=maximum setting
0
PA=minimum setting
−25
Max.
Unit
Note
dBm
Measured on ADK (50Ω
match); no SAW filter (for
typical values refer to Figure 7,
page 15)
Output power
Spurious emissions
−35
TX-RX or RX-TX
turnaround time
1.
850
dBm
µs
Programmable
Highest data rate
See Note 1
Last bit of previous packet to first bit of header.
ZL70550 Preliminary Datasheet Revision 2
12
Electrical Specifications
4.2.3.5
Receiver
Table 10 •
Receiver RF Characteristics
Limits
Parameter
Min.
Sensitivity at 25°C, 1.8V
Maximum input power
Typ.
Max.
Unit
Note
−106
dBm
50kbit/s with IRX =3.2mA (LNA
gain=8’h0F, LNA bias=8’h29) with FEC
−103
dBm
50kbit/s with IRX =2.4mA (LNA
gain=8’h0F, LNA bias=8’h21) with FEC
−99
dBm
200kbit/s with IRX =3.2mA (LNA
gain=8’h0F, LNA bias=8’h29) without
FEC
−95
dBm
200kbit/s with IRX =2.4mA (LNA
gain=8’h0F, LNA bias=8’h05) without
FEC
dBm
200kbit/s with IRX =2.4mA (LNA
gain=8’h0F, LNA bias=8’h21) with FEC
−34
Cascaded voltage gain
30
dB
LNA and mixer; programmable, with
five settings in 3-dB to 4-dB steps
(IRX =2.4mA)
IF center frequency
600
kHz
(300kHz × 2)
dB
Linear range (±1 LSB)
Digital, 32 levels of 2dB
RSSI range
40
RSSI resolution
2
dB
Note 1
RSSI accuracy
±2
dB
Note 2
Listen Before Talk (LBT)
minimum level
−100
dB
Adjacent channel rejection
11
dB
Relative to sensitivity
Desired channel 3dB above the
sensitivity limit; 300-kHz channel
spacing with a modulated interferer
Alternate channel rejection
25
dB
Relative to sensitivity
Desired channel 3dB above the
sensitivity limit; 600-kHz channel
spacing with a modulated interferer
11
dB
At ±2MHz, EN300 200 limits
31
dB
At ±10MHz, EN300 200 limits
Blocker rejection
1-dB compression
−41
dBm
LNA gain=8’h0F
Third-order input intercept
point
3.5
mVrms
LNA gain=8’h07
1.
2.
Nominal ADC quantization. The average RSSI results have seven bits rather than five if the averaging length is four or more. The
accuracy in this case is ±0.5dB due to the dithering/averaging of noise at lower levels where LBT thresholds are set.
Calibrated at one LNA gain, one temperature and one input level (for LBT).
ZL70550 Preliminary Datasheet Revision 2
13
Electrical Specifications
4.2.3.6
Crystal Oscillator
All frequency-related specifications are based on the crystal oscillator performance, which, in turn, is
dependent on the crystal specifications. The ZL70550 device specifications assume that the crystal
specifications listed in the following table are met or exceeded (refer to Table 11, page 14). The crystal
oscillator is trimmable to ±5ppm at room temperature when attached to a crystal meeting the
specifications in Table 11, page 14.
Table 11 •
Crystal Specifications
Limits
Parameter
Min.
Frequency
Typ.
Max.
24
Unit
Note
MHz
Frequency tolerance
−30
30
ppm
Stability with temperature
−25
25
ppm
Operating temperature range
−40
85
°C
Equivalent series resistance
12
130
ohm
Motional resistance
0
1
17
ohm
Shunt capacitance
1.4
1.65
1.9
pF
Note 1
Motional capacitance
3.2
3.35
3.5
fF
Note 1
pF
Note 2
Load capacitance
25
3
Drive level
Aging
1.
2.
−3
50
µW
3
ppm
Over operating temperature
First year only; none thereafter
A low shunt capacitance and high motional capacitance is best as it results in a larger trim range. It is particularly important if
external capacitors are used, as those reduce the trim range.
In order to save power, the crystal oscillator presents a 3-pF load instead of the typical 8-pF or 10-pF load. A slight frequency pull,
on the order of 100ppm to 150ppm, would result if using a standard crystal without additional external load capacitors. Such a
deviation has no effect on the operation of the device and is generally not a problem for most applications, providing all ZL70550
devices have the same frequency pull (within trimmable range). If the deviation is not acceptable and power is critical, a special
cut crystal may be used (that is, slightly slower to compensate for the pull). Microsemi is engaging with crystal manufacturers in
developing custom crystals that operate at 24MHz with only a 3-pF load. Alternatively, if power is not as critical, external
capacitors can be added (as shown in Figure 6, page 14) to bring the total load capacitance to the crystal load specification. For
instance, for a crystal with an 8-pF load specification (CL), CLEXT = 8pF − 3pF = 5pF, so two 10-pF capacitors need to be added,
one on each end of the crystal. It must be noted that this results in a reduced trim range.
Figure 6 •
Crystal Oscillator with Optional Additional External Load Capacitors
2×CLext
CLint =
3 pF
2×CLext
0008~Xtal diagram~v1111.0
ZL70550 Preliminary Datasheet Revision 2
14
Electrical Specifications
4.3
Transmit Power Characteristics
The following figures illustrate the relationship between TX power, PA trim setting, and current
consumption (refer to Figure 7, page 15, and Figure 8, page 15). These measurements were made on
the REMOTE550 board from a ZL70550 Application Development Kit (ADK) at room temperature and
with a supply voltage of 1.8V. The figures include the losses of the matching network (approximately 2 dB
to 3dB).
4.3.1
Transmit Power vs. PA Trim Value
Figure 7 •
TX Power vs. PA Trim Value
PA Trim Value
4.00
1
6
11
16
21
26
31
36
41
46
51
56
61
2.00
Tx Power (dBm)
0.00
-2.00
-4.00
-6.00
-8.00
-10.00
Tx Pwr (915.9 MHz)
-12.00
Tx Pwr (867.9 MHz)
-14.00
0017v1602.0
4.3.2
Transmit Power vs. Current Consumption
Figure 8 •
TX Power vs. Current Consumption
Current (mA)
2.5
3
3.5
4
4.5
5
5.5
6.5
6
5
TX Power (dBm)
0
-5
-10
Tx Current (915.9 MHz)
Tx Current (867.9 MHz)
-15
0018v1602.0
ZL70550 Preliminary Datasheet Revision 2
15
Pin Descriptions
5
Pin Descriptions
The ZL70550 device is available in two package options, a 32-pin QFN and a 29-pin CSP. The pins are
described in this section.
5.1
Pin Diagrams
The following illustrations are representations of the QFN and CSP packages, respectively, for the
ZL70550 device.
XTAL1
GND
NC
NC
5)í
RF+
GND
NC
Footprint (top view) for 32-Pin QFN
NC
XTAL2
RBIAS
SCAN_TEST
VDDTEST
SPI_MISO
NC
NC
(Top View)
VDDA
SPI_MOSI
VSUP
TEST_SEL
VDDD
SPI_CLK
GP3
SPI_SEL_B
NC
VDDIO
IRQ
GP0
2
GP1
1
RESET_B
IO_MAP
GP2
Figure 9 •
ZL70550 Preliminary Datasheet Revision 2
0004v1509.0
16
Pin Descriptions
Figure 10 • Footprint (bottom view) for 29-Pin CSP Package
7
6
5
4
3
2
1
A
B
C
D
E
BOTTOM VIEW
5.2
0016v1602.0
Pin Lists
The pinouts for the QFN and CSP packages of the ZL70550 device are listed in Table 12, page 18, and
Table 13, page 18, respectively.
Connect the internal ground paddle to the ground plane of the PCB. A minimum of four vias between the
SMD pad and the ground plane are recommended to ensure reliable performance.
For the QFN, the ground paddle is the primary ground for the device in addition to pins 18 and 23 (refer
to Table 12, page 18).
ZL70550 Preliminary Datasheet Revision 2
17
Pin Descriptions
Table 12 •
Pinout for 32-Pin QFN
Pin Name1
Pin Number
Pin Name1
Pin Number
GP2
1
GND
18
RESET_B
2
NC
19
GP1
3
NC
20
GP0
4
RF−
21
IRQ
5
RF+
22
VDDIO
6
GND
23
NC
7
NC
24
SPI_SEL_B
8
NC
25
IO_MAP
9
RBIAS
26
SPI_CLK
10
VDDTEST
27
TEST_SEL
11
NC
28
SPI_MOSI
12
VDDA
29
NC
13
VSUP
30
SPI_MISO
14
VDDD
31
SCAN_TEST
15
GP3
32
XTAL2
16
Paddle
N/A
XTAL1
17
1.
NC denotes reserved pin. Do not use; do not connect.
Table 13 • Pinout for 29-Pin CSP
Pin Name
Pin Number
Pin Name
Pin Number
RX+
A1
GP0
C6
RBIAS
A2
IRQ
C7
VDDTEST
A3
TX−
D1
VSSA
A4
SCAN_TEST
D4
VDDA
A5
TEST_SEL
D5
VDDD
A6
IO_MAP
D6
GP3
A7
VDDIO
D7
TX+
B1
VSSA2
E1
GP1
B4
XTAL1
E2
VSUP
B5
XTAL2
E3
GP2
B6
SPI_MISO
E4
RESET_B
B7
SPI_MOSI
E5
RX−
C1
SPI_CLK
E6
VSSD
C4
SPI_SEL_B
E7
VSSD2
C5
ZL70550 Preliminary Datasheet Revision 2
18
Pin Descriptions
5.3
Functional Pin Descriptions
The following table shows the functional pin descriptions for the ZL70550 device.
Table 14 •
Overview of ZL70550 Interconnects
Symbol
I/O
Type
Description
Interconnects Available on All Package Options
GP0
I/O
A/D
Analog and digital test bus input and output. General-purpose use for
digital I/O.
GP1
I/O
A/D
Analog and digital test bus input and output. General-purpose use for
digital I/O.
GP2
I/O
A/D
Analog and digital test bus input and output. General-purpose use for
digital I/O.
GP3
I/O
A/D
Analog and digital test bus input and output. General-purpose use for
digital I/O.
7IO_MAP
I
D
Connect to ground. Used for device testing only.
IRQ
O
D
Interrupt output.
NC
N/A
N/A
No connection (do not ground pin).
RBIAS
I
A
Bias setting resistor used to trim the internal current reference. Use a
49.9-kohm resistor (±1%) to ground.
RESET_B
I
D
Asynchronous reset (active low) with a minimum low period of 100ns.
When low, the ZL70550 is in reset and all circuits are off. When
transitioning from low to high, all registers are set to their power-on-reset
values, the crystal oscillator starts up, all other circuits are disabled, and
the ZL70550 enters into the IDLE state.
SCAN_TEST
I
D
Connect to ground. Used for device testing only.
SPI_CLK
I
D
SPI bus clock input.
SPI_MISO
O
D
SPI bus data output. This output is tri-stated when SPI_SEL_B is high and
driven when SPI_SEL_B is low.
SPI_MOSI
I
D
SPI bus data input.
SPI_SEL_B
I
D
SPI bus select input (active low). When low, the SPI_MISO output buffer is
enabled.
TEST_SEL
I
D
Connect to ground. Used for device testing only.
VDDA
O
A
1.52-volt regulator output used to power most on-chip analog circuits.
Connect a 100-nF X7R ceramic capacitor between VDDA and ground.
VDDD
O
A/D
1.25-volt regulator output used to power most on-chip digital circuits.
Connect a 100-nF X7R ceramic capacitor between VDDD and ground.
VDDIO
I
A/D
Power supply input to the internal level shifters (1.8 volts to 3.5 volts).
Controls the digital signaling level for all ZL70550 digital I/O.
VDDTEST
I
A
Connect to ground. Used for device testing only.
VSUP
I
A/D
Supply voltage (1.71 volts to 3.6 volts).
XTAL1
I
A
Crystal connection to the gate (input) of the crystal oscillator. Can also be
driven with an external clock source.
XTAL2
O
A
Crystal connection to the drain (output) of the crystal oscillator.
ZL70550 Preliminary Datasheet Revision 2
19
Pin Descriptions
Table 14 •
Symbol
Overview of ZL70550 Interconnects (continued)
I/O
Type
Description
RF and Ground Connections on QFN Package
Paddle
I
A/D
Ground connection.
GND
I
A/D
Ground connection.
RF+
I/O
A
RF positive (TX/RX). TX+ and RX+ are bonded together.
RF−
I/O
A
RF negative (TX/RX). TX− and RX− are bonded together.
RF and Ground Connections on CSP Package
RX+
I
A
Receiver RF positive input. This input is AC coupled and is connected to
an internal shunt capacitor that can be used for automatic tuning to
antennas or matching networks that connect directly to the receiver
inputs.
RX−
I
A
Receiver RF negative input.This input is AC coupled and is connected to
an internal shunt capacitor that can be used for automatic tuning to
antennas or matching networks that connect directly to the receiver
inputs.
TX+
O
A
Transmitter RF positive output. Requires external biasing to VDDA.
TX−
O
A
Transmitter RF negative output. Requires external biasing to VDDA.
VSSA
I
A
Ground connection.
VSSA2
I
A
Ground connection.
VSSD
I
A
Ground connection.
VSSD2
I
A
Ground connection.
ZL70550 Preliminary Datasheet Revision 2
20
Package Information
6
Package Information
6.1
Drawing and Markings for 32-Pin QFN Package
Figure 11 • Package Drawing and Package Dimensions for 32-Pin QFN
E
A
K
A1
L
D
J
e/2
Pin 1 Area
Pin 1 Identifier
A3
TOP VIEW
b
e
BOTTOM VIEW
SEATING PLANE
0003v1602.0
Common Dimensions
Symbol Minimum Nominal Maximum
A
0.8
0.9
1.0
A1
0
0.02
0.05
A3
b
0.2
0.20
0.25
D
5.00
E
5.00
e
0.50
0.30
J
3.40
3.50
3.60
K
3.40
3.50
3.60
L
0.35
0.40
0.45
Notes:
1. Dimensioning and tolerances conform
to ASME Y14.5M. – 1994.
2. All dimensions are in millimeters.
3. Not to scale.
ZL70550 Preliminary Datasheet Revision 2
21
Package Information
Figure 12 • Markings for 32-Pin QFN
Notes:
1. YY = Last two digits of year of
encapsulation
2. WW = Week number of encapsulation
3. ZZ = Assembly lot sequence code
4. A = Assigned Assembly Site Identifier
5. F = Fab code
6. R = Product revision code
7. e3 = Denotes Pb-free
MSC
ZL70550
e3
F R e3
YYWWAZZ
Pin 1 Corner
6.2
0006v1602.0
Drawing and Markings for 29-Pin CSP Package
Figure 13 • Package Drawing and Package Dimensions for 29-Pin CSP
A
E
7
6
5
4
3
2
1
A
B
D
C
e
D
E
A1
b
BOTTOM VIEW
e
0005v1507.0
Common Dimensions (mm)
Symbol Minimum Nominal Maximum
A
0.317
A1
0.115
b1
0.150
D
1.99
E
3.085
e
TBD BSC
Notes:
1. UBM diameter
2. Ball positions are
currently being
updated.
ZL70550 Preliminary Datasheet Revision 2
22
Package Information
Figure 14 • Markings for 29-Pin CSP
MSC
ZL70550
e2
F R e2
YYWWAZZ
0007v1602.0
Notes:
1. YY = Last two digits of year of
encapsulation
2. WW = Week number of encapsulation
3. ZZ = Assembly lot sequence code
4. A = Assigned Assembly Site Identifier
5. F = Fab code
6. R = Product revision code
7. e2 = Denotes Pb-free
8. Orientation marker corresponds to pin A1
ZL70550 Preliminary Datasheet Revision 2
23
Ordering Information
7
Ordering Information
The ZL70550 RF transceiver is available in two package options.
Table 15 •
Ordering and Package Overview
Ordering Code
Temp Range (°C) Package
Delivery Form Pb-Free
ZL70550LDF1
−40 to 85
(contact Microsemi for availability)
32-pin QFN Tape and reel
YES 1
ZL70550UGB4
−40 to 85
(contact Microsemi for availability)
29-pin CSP Tape and reel
YES 2
1.
2.
Matte tin.
Sn/Ag (97.5 percent tin, 2.5 percent silver).
ZL70550 Preliminary Datasheet Revision 2
24