PDF Data Sheet Rev. B

Low Power JFET-Input Op Amps
ADA4062-2/ADA4062-4
PIN CONFIGURATIONS
Low input bias current: 50 pA maximum
Offset voltage
1.5 mV maximum for B grade (ADA4062-2 SOIC package)
2.5 mV maximum for A grade
Offset voltage drift: 5 μV/°C typical
Slew rate: 3.3 V/μs typical
CMRR: 90 dB typical
Low supply current: 165 μA typical
High input impedance
Unity-gain stable
±5 V to ±15 V dual-supply operation
Packaging
8-lead SOIC, 8-lead MSOP, 10-lead LFCSP, 14-lead TSSOP, and
16-lead LFCSP packages
OUT A 1
–IN A 2
ADA4062-2
+IN A 3
TOP VIEW
(Not to Scale)
V– 4
OUT B
6
–IN B
5
+IN B
9 V+
1 OUT A
10 NC
8 OUT B
–IN A 2
ADA4062-2
07670-065
+IN B 6
NC 5
NC = NO CONNECT
V– 4
7 –IN B
TOP VIEW
(Not to Scale)
+IN A 3
GENERAL DESCRIPTION
OUT A 1
14
OUT D
–IN A 2
13
–IN D
+IN A 3
ADA4062-4
12
+IN D
V+ 4
TOP VIEW
(Not to Scale)
11
V–
+IN B 5
10
+IN C
–IN B 6
9
–IN C
OUT B 7
8
OUT C
07670-064
Figure 2. 10-Lead LFCSP
Power controls and monitoring
Active filters
Industrial/process controls
Body probe electronics
Data acquisition
Integrators
Input buffering
13 NC
14 OUT D
16 NC
15 OUT A
Figure 3. 14-Lead TSSOP
–IN A 1
+IN A 2
V+ 3
12 –IN D
ADA4062-4
TOP VIEW
(Not to Scale)
+IN B 4
11 +IN D
10 V–
+IN C
–IN C 8
OUT C 7
–IN B 5
OUT B 6
9
NOTES
1. NC = NO CONNECT.
2. IT IS RECOMMENDED TO CONNECT THE EXPOSED PAD TO V–.
07670-068
The ADA4062-2 and ADA4062-4 are dual and quad JFET-input
amplifiers with industry-leading performance. They offer lower
power, offset voltage, drift, and ultralow bias current. The
ADA4062-2 B grade (SOIC package) features a typical low offset
voltage of 0.5 mV, an offset drift of 5 μV/°C, and a bias current
of 2 pA.
The ADA4062 family is also specified for the extended industrial
temperature range of −40°C to +125°C. The ADA4062-2 is
available in lead-free, 8-lead SOIC, 8-lead MSOP, and 10-lead
LFCSP (1.6 mm × 1.3 mm × 0.55 mm) packages, while the
ADA4062-4 is available in lead-free, 14-lead TSSOP and
16-lead LFCSP packages.
V+
7
Figure 1. 8-Lead Narrow-Body SOIC and 8-Lead MSOP
APPLICATIONS
The ADA4062 family is ideal for various applications, including
process controls, industrial and instrumentation equipment,
active filtering, data conversion, buffering, and power control
and monitoring. With a low supply current of 165 μA per
amplifier, they are well suited for lower power applications.
8
07670-001
FEATURES
Figure 4. 16-Lead LFCSP
Table 1. Low Power Op Amps
Single
Dual
Quad
Precision
CMOS
AD8663
AD8667
AD8669
Precision
High Bandwidth
AD8641
AD8642
AD8643
High
Bandwidth
AD8682
AD8684
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.
ADA4062-2/ADA4062-4
TABLE OF CONTENTS
Features .............................................................................................. 1 ESD Caution...................................................................................5 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................6 General Description ......................................................................... 1 Applications Information .............................................................. 15 Pin Configurations ........................................................................... 1 Notch Filter ................................................................................. 15 Revision History ............................................................................... 2 High-Side Signal Conditioning ................................................ 15 Specifications..................................................................................... 3 Micropower Instrumentation Amplifier ................................. 15 Electrical Characteristics ............................................................. 3 Phase Reversal ............................................................................ 16 Absolute Maximum Ratings............................................................ 5 Schematic ......................................................................................... 17 Thermal Resistance ...................................................................... 5 Outline Dimensions ....................................................................... 18 Power Sequencing ........................................................................ 5 Ordering Guide .......................................................................... 20 REVISION HISTORY
2/10—Rev. A to Rev. B
Added 16-Lead LFCSP Package........................................ Universal
Changes to Features Section, General Description Section, and
Table 1 ................................................................................................ 1
Changes to Offset Voltage Drift Parameter, Table 2 .................... 3
Changes to Table 4 ............................................................................ 5
Changes to Typical Performance Characteristics Layout ............ 6
Added Figure 6 and Figure 9; Renumbered Sequentially ........... 6
Changes to Figure 7, Figure 8, and Figure 10 ............................... 6
Changes to Figure 25 and Figure 28 ............................................... 9
Changes to Figure 37 and Figure 40 ............................................. 11
Changes to Figure 41 to Figure 46 ................................................ 12
Changes to Figure 47 and Figure 50 ............................................. 13
Changes to Figure 53 to Figure 58 ................................................ 14
Changes to Notch Filter Section and Micropower Instrumentation
Amplifier Section ............................................................................ 15
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 20
7/09—Rev. 0 to Rev. A
Added ADA4062-4 ............................................................. Universal
Added 14-Lead TSSOP Package ....................................... Universal
Added 10-Lead LFCSP Package ....................................... Universal
Changes to Features Section and Table 1 .......................................1
Changes to Table 2.............................................................................3
Changes to Thermal Resistance Section ........................................5
Changes to Figure 5, Figure 6, Figure 8, and Figure 9 ..................6
Changes to Figure 37 and Figure 40............................................. 11
Changes to Figure 41 and Figure 44............................................. 12
Changes to Figure 47, Figure 48, Figure 50, and Figure 51....... 13
Added Figure 49 and Figure 52; Renumbered Sequentially ..... 13
Changes to Figure 57 and Figure 59............................................. 15
Changes to Phase Reversal Section and Figure 61 ..................... 16
Changes to Figure 63...................................................................... 17
Updated Outline Dimensions ....................................................... 18
Changes to Ordering Guide .......................................................... 19
10/08—Revision 0: Initial Version
Rev. B | Page 2 of 20
ADA4062-2/ADA4062-4
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
B Grade (ADA4062-2, 8-Lead SOIC Only)
Symbol
Conditions
Min
Typ
Max
Unit
0.5
1.5
3
2.5
5
mV
mV
mV
mV
μV/°C
pA
nA
pA
nA
V
VOS
−40°C ≤ TA ≤ +125°C
A Grade
Offset Voltage Drift
Input Bias Current
0.75
∆VOS/∆T
IB
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
5
2
−40°C ≤ TA ≤ +125°C
Input Offset Current
Input Voltage Range
Common-Mode Rejection Ratio
B Grade (ADA4062-2, 8-Lead SOIC Only)
IOS
Input Resistance
Input Capacitance, Differential Mode
Input Capacitance, Common Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
B Grade (ADA4062-2, 8-Lead SOIC Only)
AVO
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
Channel Separation (ADA4062-2 Only)
Channel Separation (ADA4062-4 Only)
VCM = −11.5 V to +11.5 V
−40°C ≤ TA ≤ +125°C
VCM = −11.5 V to +11.5 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = −10 V to +10 V
−40°C ≤ TA ≤ +125°C
80
80
73
70
76
72
RIN
CINDM
CINCM
VOH
VOL
ISC
ZOUT
90
dB
dB
dB
dB
dB
dB
TΩ
pF
pF
90
83
10
1.5
4.8
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
13
12.5
13.5
−13.8
−13
−12.5
20
1
f = 1 kHz, AV = 1
V
V
V
V
mA
Ω
PSRR
A Grade
Supply Current per Amplifier
−11.5
CMRR
A Grade
Large-Signal Voltage Gain
0.5
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
50
5
25
2.5
+15
ISY
SR
tS
GBP
ΦM
CS
CS
VSY = ±4 V to ±18 V
−40°C ≤ TA ≤ +125°C
VSY = ±4 V to ±18 V
−40°C ≤ TA ≤ +125°C
IO = 0 mA
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, CL = 100 pF, AV = 1
To 0.1%, VIN = 10 V step, CL = 100 pF,
RL = 10 kΩ, AV = 1
RL = 10 kΩ, AV = 1
RL = 10 kΩ, AV = 1
f = 1 kHz
f = 1 kHz
Rev. B | Page 3 of 20
80
80
74
70
90
90
165
220
260
dB
dB
dB
dB
μA
μA
3.3
3.5
V/μs
μs
1.4
78
135
130
MHz
Degrees
dB
dB
ADA4062-2/ADA4062-4
Parameter
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
Symbol
Conditions
en p-p
en
in
f = 0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
Rev. B | Page 4 of 20
Min
Typ
1.5
36
5
Max
Unit
μV p-p
nV/√Hz
fA/√Hz
ADA4062-2/ADA4062-4
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage
Input Current
Output Short-Circuit Duration to GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages. It was
measured using a standard 4-layer board.
Rating
±18 V
±VSY
±VSY
±10 mA
Indefinite
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
Table 4. Thermal Resistance
Package Type
8-Lead SOIC
8-Lead MSOP
10-Lead LFCSP
14-Lead TSSOP
16-Lead LFCSP
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA
120
142
132
112
75
θJC
45
45
46
35
12
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
POWER SEQUENCING
The supply voltages of the op amps must be established
simultaneously with, or before, any input signals are applied. If
this is not possible, the input current must be limited to 10 mA.
ESD CAUTION
Rev. B | Page 5 of 20
ADA4062-2/ADA4062-4
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
70
50
40
30
20
200
160
120
80
40
–2
–1
0
1
2
3
4
VOS (mV)
0
–4
NUMBER OF AMPLIFERS
10
2
4
6
8
10
TCVOS (µV/°C)
4
20
10
–2
0
2
4
6
8
10
Figure 9. Input Offset Voltage Drift Distribution
25
ADA4062-4 ONLY
VSY = ±5V
–40°C ≤ T ≤ 125°C
BASED ON 200 OP AMPS
ADA4062-4 ONLY
VSY = ±15V
–40°C ≤ T ≤ 125°C
BASED ON 200 OP AMPS
NUMBER OF AMPLIFIERS
20
15
10
15
10
0
2
4
6
8
10
12
14
16
TCVOS (µV/°C)
18
0
0
2
4
6
8
10
12
14
16
TCVOS (µV/°C)
Figure 10. Input Offset Voltage Drift Distribution
Figure 7. Input Offset Voltage Drift Distribution
Rev. B | Page 6 of 20
18
07670-069
5
5
07670-070
NUMBER OF AMPLIFIERS
3
TCVOS (µV/°C)
25
20
2
ADA4062-2 ONLY
VSY = ±15V
–40°C ≤ TA ≤ +125°C
BASED ON 200 OP AMPS
Figure 6. Input Offset Voltage Drift Distribution
0
1
30
0
07670-055
NUMBER OF AMPLIFERS
20
0
0
40
ADA4062-2 ONLY
VSY = ±5V
–40°C ≤ TA ≤ +125°C
BASED ON 200 OP AMPS
–2
–1
Figure 8. Input Offset Voltage Distribution
30
0
–2
VOS (mV)
Figure 5. Input Offset Voltage Distribution
40
–3
07670-005
–3
07670-054
–4
07670-003
10
0
VSY = ±15V
VCM = 0V
BASED ON 600 OP AMPS
240
NUMBER OF AMPLIFERS
60
NUMBER OF AMPLIFERS
280
VSY = ±5V
VCM = 0V
BASED ON 600 OP AMPS
ADA4062-2/ADA4062-4
4
3
2
2
1
1
VOS (mV)
3
0
–1
–1
–2
–3
–3
–4
–4
–5
–4
–3
–2
–1
0
1
2
3
4
5
VCM (V)
–5
–15
–12
–9
–6
–3
0
3
6
9
12
15
VCM (V)
Figure 11. Input Offset Voltage vs. Common-Mode Voltage
10000
VSY = ±15V
0
–2
07670-056
Figure 14. Input Offset Voltage vs. Common-Mode Voltage
10000
VSY = ±5V
1000
100
100
10
10
1
1
–25
0
25
50
75
100
125
TEMPERATURE (°C)
0.1
–50
07670-012
0.1
–50
0
25
50
75
100
125
TEMPERATURE (°C)
Figure 12. Input Bias Current vs. Temperature
3
–25
07670-009
IB (pA)
IB (pA)
1000
VSY = ±15V
Figure 15. Input Bias Current vs. Temperature
5
VSY = ±5V
4
1
3
IB (pA)
IB (pA)
2
VSY = ±15V
0
2
–1
1
–2
–1
0
1
2
3
4
VCM (V)
5
0
–12 –10
07670-013
–2
–3
–8
–6
–4
–2
0
2
4
6
8
10
12
14
VCM (V)
Figure 16. Input Bias Current vs. Common-Mode Voltage
Figure 13. Input Bias Current vs. Common-Mode Voltage
Rev. B | Page 7 of 20
16
07670-010
VOS (mV)
4
5
VSY = ±5V
07670-006
5
ADA4062-2/ADA4062-4
10
V+ – VOH
1
VOL – V–
0.1
0.01
0.1
1
10
100
LOAD CURRENT (mA)
1
0.1
1
10
100
Figure 20. Output Voltage to Supply Rail vs. Load Current
200
+125°C
190
SUPPLY CURRENT/AMP (µA)
160
140
+25°C
120
–40°C
100
80
60
180
170
150
130
120
20
110
4
6
8
10
12
14
16
18
SUPPLY VOLTAGE (±V)
100
–50
07670-146
2
OUTPUT VOTLAGE TO SUPPLY RAIL (V)
1.5
V+ – VOH
VOL – V–
25
50
75
100
TEMPERATURE (°C)
125
50
75
100
125
150
VSY = ±15V
RL = 10kΩ
V+ – VOH
1.5
VOL – V–
1.0
0.5
0
–50
07670-018
0.5
0
25
2.0
VSY = ±5V
RL = 10kΩ
–25
0
Figure 21. Supply Current/Amp vs. Temperature
2.0
0
–50
–25
TEMPERATURE (°C)
Figure 18. Supply Current/Amp vs. Supply Voltage
1.0
VSY = ±5V
140
40
0
VSY = ±15V
160
07670-149
+85°C
180
–25
0
25
50
75
100
TEMPERATURE (°C)
Figure 19. Output Voltage to Supply Rail vs. Temperature
Figure 22. Output Voltage to Supply Rail vs. Temperature
Rev. B | Page 8 of 20
125
07670-015
200
OUTPUT VOTLAGE TO SUPPLY RAIL (V)
VOL – V–
LOAD CURRENT (mA)
220
SUPPLY CURRENT/AMP (µA)
V+ – VOH
0.1
0.01
Figure 17. Output Voltage to Supply Rail vs. Load Current
0
VSY = ±15V
07670-011
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
VSY = ±5V
07670-014
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
10
ADA4062-2/ADA4062-4
120
100
100
80
80
80
80
60
60
60
60
20
20
0
0
40
40
GAIN
20
20
0
0
–20
–20
–20
–20
–40
–40
–40
–40
10k
100k
1M
–60
100M
10M
–60
1k
07670-019
–60
1k
FREQUENCY (Hz)
10k
50
40
30
30
AV = +10
20
GAIN (dB)
10
AV = +1
20
10
0
–10
AV = +1
–10
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
–20
10
07670-020
–20
10
100
1000
VSY = ±5V
100
ZOUT (Ω)
AV = +10
10
1
AV = +1
1k
10k
100k
1M
FREQUENCY (Hz)
10M
1M
10M
100M
VSY = ±15V
AV = +100
AV = +10
AV = +1
0.1
100
07670-021
ZOUT (Ω)
AV = +100
0.1
100
100k
Figure 27. Closed-Loop Gain vs. Frequency
100
1
10k
FREQUENCY (Hz)
Figure 24. Closed-Loop Gain vs. Frequency
10
1k
07670-017
GAIN (dB)
AV = +10
1000
VSY = ±15V
AV = +100
40
0
–60
100M
10M
Figure 26. Open-Loop Gain and Phase vs. Frequency
VSY = ±5V
AV = +100
1M
FREQUENCY (Hz)
Figure 23. Open-Loop Gain and Phase vs. Frequency
50
100k
PHASE (Degrees)
40
GAIN
100
PHASE
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 25. Output Impedance vs. Frequency
Figure 28. Output Impedance vs. Frequency
Rev. B | Page 9 of 20
10M
07670-018
GAIN (dB)
40
120
VSY = ±15V
07670-016
PHASE
100
GAIN (dB)
VSY = ±5V
PHASE (Degrees)
120
120
ADA4062-2/ADA4062-4
100
90
80
80
70
70
60
60
CMRR (dB)
90
50
40
50
40
30
30
20
20
10
10
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
VSY = ±15V
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 29. CMRR vs. Frequency
07670-022
VSY = ±5V
07670-025
CMRR (dB)
100
Figure 32. CMRR vs. Frequency
120
140
VSY = ±5V
VSY = ±15V
120
100
100
80
PSRR (dB)
PSRR+
40
PSRR+
40
PSRR–
20
PSRR–
20
0
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–20
10
100
60
1M
10M
VSY = ±15V
AV = +1
RL = 10kΩ
50
OVERSHOOT (%)
40
30
20
10
40
30
20
10
0
10
100
1000
10000
CL (pF)
07670-030
OVERSHOOT (%)
100k
Figure 33. PSRR vs. Frequency
VSY = ±5V
AV = +1
RL = 10kΩ
50
10k
FREQUENCY (Hz)
Figure 30. PSRR vs. Frequency
60
1k
07670-023
0
07670-026
–20
60
Figure 31. Small-Signal Overshoot vs. Load Capacitance
0
10
100
1000
10000
CL (pF)
Figure 34. Small-Signal Overshoot vs. Load Capacitance
Rev. B | Page 10 of 20
07670-027
PSRR (dB)
80
60
ADA4062-2/ADA4062-4
TIME (10µs/DIV)
Figure 38. Large-Signal Transient Response
VOLTAGE (20mV/DIV)
TIME (10µs/DIV)
TIME (10µs/DIV)
Figure 36. Small-Signal Transient Response
Figure 39. Small-Signal Transient Response
4
4
VSY = ±5V
AV = –10
VSY = ±15V
AV = –10
2
INPUT
0
INPUT
OUTPUT
–5
–10
–4
–6
–15
07670-036
TIME (2µs/DIV)
0
TIME (2µs/DIV)
Figure 40. Negative Overload Recovery
Figure 37. Negative Overload Recovery
Rev. B | Page 11 of 20
–20
07670-033
–2
INPUT VOLTAGE (V)
0
OUTPUT VOLTAGE (V)
0
OUTPUT
07670-029
VSY = ±15V
VIN = 100mV p-p
AV = +1
RL = 10kΩ
CL = 100pF
07670-032
VSY = ±5V
VIN = 100mV p-p
AV = +1
RL = 10kΩ
CL = 100pF
OUTPUT VOLTAGE (V)
VOLTAGE (20mV/DIV)
Figure 35. Large-Signal Transient Response
2
07670-028
VOLTAGE (5V/DIV)
TIME (4µs/DIV)
INPUT VOLTAGE (V)
VSY = ±15V
VIN = 20V p-p
AV = +1
RL = 10kΩ
CL = 100pF
07670-031
VOLTAGE (1V/DIV)
VSY = ±5V
VIN = 4V p-p
AV = +1
RL = 10kΩ
CL = 100pF
ADA4062-2/ADA4062-4
OUTPUT
–2
15
10
5
OUTPUT
0
–2
TIME (2µs/DIV)
0
–5
TIME (2µs/DIV)
Figure 41. Positive Overload Recovery
OUTPUT VOLTAGE (V)
2
INPUT VOLTAGE (V)
4
OUTPUT VOLTAGE (V)
INPUT VOLTAGE (V)
–2
VSY = ±15V
AV = –10
INPUT
0
07670-037
INPUT
0
2
VSY = ±5V
AV = –10
07670-034
2
Figure 44. Positive Overload Recovery
INPUT
VOLTAGE (5V/DIV)
+20mV
OUTPUT
0V
+100mV
OUTPUT
0V
–20mV
–100mV
ERROR BAND
ERROR BAND
TIME (2µs/DIV)
TIME (2µs/DIV)
Figure 42. Positive Settling Time to 0.1%
VOLTAGE (5V/DIV)
+20mV
OUTPUT
VSY = ±15V
CL = 100pF
RL = 10kΩ
INPUT
0V
+100mV
OUTPUT
0V
–20mV
–100mV
ERROR BAND
TIME (2µs/DIV)
ERROR BAND
07670-076
VOLTAGE (1V/DIV)
Figure 45. Positive Settling Time to 0.1%
VSY = ±5V
CL = 100pF
RL = 10kΩ
INPUT
07670-077
VSY = ±15V
CL = 100pF
RL = 10kΩ
07670-075
VSY = ±5V
CL = 100pF
RL = 10kΩ
Figure 43. Negative Settling Time to 0.1%
TIME (2µs/DIV)
Figure 46. Negative Settling Time to 0.1%
Rev. B | Page 12 of 20
07670-078
VOLTAGE (1V/DIV)
INPUT
ADA4062-2/ADA4062-4
1000
100
10
1
10
100
1k
FREQUENCY (Hz)
VSY = ±15V
100
10
1
10
Figure 47. Voltage Noise Density
1k
Figure 50. Voltage Noise Density
VSY = ±5V
TIME (1s/DIV)
Figure 48. 0.1 Hz to 10 Hz Noise
0
100kΩ
1kΩ
–40
–20
RL
–60
–80
–100
–120
–140
100kΩ
1kΩ
–40
RL
–60
–80
–100
–120
–140
100
1k
10k
100k
FREQUENCY (Hz)
07670-049
–160
VSY = ±15V
VIN = 10V p-p
RL = 10kΩ
ADA4062-2 ONLY
–160
100
1k
10k
100k
FREQUENCY (Hz)
Figure 52. Channel Separation vs. Frequency (ADA4062-2 Only)
Figure 49. Channel Separation vs. Frequency (ADA4062-2 Only)
Rev. B | Page 13 of 20
07670-046
–20
VSY = ±5V
VIN = 5V p-p
RL = 10kΩ
ADA4062-2 ONLY
Figure 51. 0.1 Hz to 10 Hz Noise
CHANNEL SEPARATION (dB)
0
07670-041
07670-044
INPUT NOISE VOLTAGE (0.5µV/DIV)
INPUT NOISE VOLTAGE (0.5µV/DIV)
VSY = ±15V
TIME (1s/DIV)
CHANNEL SEPARATION (dB)
100
FREQUENCY (Hz)
07670-040
VOLTAGE NOISE DENSITY (nV/√Hz)
VSY = ±5V
07670-043
VOLTAGE NOISE DENSITY (nV/√Hz)
1000
ADA4062-2/ADA4062-4
–20
100kΩ
–20
1kΩ
–40
RL
–60
–80
–100
–120
1k
10k
100k
1kΩ
–40
RL
–60
–80
–100
–120
–160
100
07670-067
100
FREQUENCY (Hz)
100
10
1k
10k
100k
FREQUENCY (Hz)
Figure 56. Channel Separation vs. Frequency (ADA4062-4 Only)
Figure 53. Channel Separation vs. Frequency (ADA4062-4 Only)
10
VS = ±5V
f = 1kHz
RL = 10kΩ
1
1
THD + N (%)
THD + N (%)
100kΩ
–140
–140
–160
VSY = ±15V
VIN = 10V p-p
RL = 10kΩ
ADA4062-4 ONLY
07670-066
CHANNEL SEPARATION (dB)
0
VSY = ±5V
VIN = 5V p-p
RL = 10kΩ
ADA4062-4 ONLY
CHANNEL SEPARATION (dB)
0
0.1
0.1
0.01
0.01
0.1
1
10
AMPLITUDE (V rms)
0.001
0.001
0.1
1
10
AMPLITUDE (V rms)
Figure 57 THD + N vs. Amplitude
Figure 54. THD + N vs. Amplitude
1
0.01
07670-072
0.01
07670-071
0.001
0.001
VS = ±15V
f = 1kHz
RL = 10kΩ
1
VSY = ±5V
VIN = 0.5V rms
RL = 10kΩ
VS = ±15V
VIN = 2V rms
RL = 10kΩ
0.1
THD + N (%)
THD + N (%)
0.1
10
100
1k
10k
FREQUENCY (Hz)
100k
07670-073
0.001
0.001
100
1k
10k
100k
FREQUENCY (Hz)
Figure 58. THD + N vs. Frequency
Figure 55. THD + N vs. Frequency
Rev. B | Page 14 of 20
1M
07670-074
0.01
0.01
ADA4062-2/ADA4062-4
APPLICATIONS INFORMATION
NOTCH FILTER
HIGH-SIDE SIGNAL CONDITIONING
A notch filter rejects a specific interfering frequency and can be
implemented using a single op amp. Figure 59 shows a 60 Hz
notch filter that uses the twin-T network with the ADA4062-x
configured as a voltage follower. The ADA4062-x works as a buffer
that provides high input resistance and low output impedance.
The low bias current (2 pA typical) and high input resistance
(10 TΩ typical) of the ADA4062-x enable large resistors and small
capacitors to be used.
Many applications require the sensing of signals near the positive
rail. The ADA4062-x can be used in high-side current sensing
applications. Figure 61 shows a high-side signal conditioning
circuit using the ADA4062-x. The ADA4062-x has an input
common-mode range that includes the positive supply (−11.5 V ≤
VCM ≤ +15 V). In the circuit, the voltage drop across a low value
resistor, such as the 0.1 Ω shown in Figure 61, is amplified by a
factor of 5 using the ADA4062-x.
Therefore, to achieve the desired performance, 1% or better
component tolerances are usually required. In addition, a notch
filter requires an op amp with a bandwidth of at least 100× to
200× the center frequency. Hence, using the ADA4062-x with
a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter.
Figure 60 shows the frequency response of the notch filter. At
60 Hz, the notch filter has about 50 dB attenuation of signal.
+VSY
R1
804kΩ
R2
804kΩ
C1
3.3nF
VO
–VSY
C2
3.3nF
1
fO = 2π R C
1 1
C1 = C2 =
07670-060
R1 = R2 = 2R3
C3
2
100kΩ
500kΩ
–15V
Figure 61. High-Side Signal Conditioning
MICROPOWER INSTRUMENTATION AMPLIFIER
The ADA4062-2 is a dual amplifier and is perfectly suited for
applications that require lower supply currents. For supply
voltages of ±15 V, the supply current per amplifier is 165 μA
typical. The ADA4062-2 also offers a typical low offset voltage
drift of 5 μV/°C and a very low bias current of 2 pA, which
make it well suited for instrumentation amplifiers.
R3
10.1kΩ
20
R4
1MΩ
10
R2
1MΩ
+15V
R1
10.1kΩ
1/2
0
ADA4062-2
–10
V1
–20
V2
–30
+15V
1/2
VO
ADA4062-2
–15V
–15V
VO = 100(V2 – V1)
TYPICAL: 0.5mV < │V2 – V1│< 135mV
TYPICAL: –13.8V < VO < +13.5V
USE MATCHED RESISTORS
–40
–50
Figure 62. Micropower Instrumentation Amplifier
–60
–70
100
FREQUENCY (Hz)
1k
07670-057
GAIN (dB)
VO
ADA4062-x
Figure 59. Notch Filter Circuit
–80
10
RL
+15V
Figure 62 shows the classic 2-op-amp instrumentation amplifier
with four resistors using the ADA4062-2. The key to high CMRR
for this instrumentation amplifier are resistors that are well
matched to both the resistive ratio and relative drift. For true
difference amplification, matching of the resistor ratio is very
important, where R3/R4 = R1/R2. Assuming perfectly matched
resistors, the gain of the circuit is 1 + R2/R1, which is approximately
100. Tighter matching of two op amps in one package, as is the
case with the ADA4062-2, offers a significant boost in performance
over the classical 3-op-amp configuration. Overall, the circuit only
requires about 330 μA of supply current.
ADA4062-x
C3
6.6nF
R3
402kΩ
500kΩ
100kΩ
Figure 60. Frequency Response of the Notch Filter
Rev. B | Page 15 of 20
07670-059
IN
0.1Ω
+15V
07670-058
Alternatively, different combinations of resistor and capacitor
values can be used to achieve the desired notch frequency.
However, the major drawback to this circuit topology is the
need to ensure that all the resistors and capacitors be closely
matched. If they are not closely matched, the notch frequency
offset and drift cause the circuit to attenuate at a frequency
other than the ideal notch frequency.
ADA4062-2/ADA4062-4
PHASE REVERSAL
VIN
+VSY
R
D1
10kΩ IN5711
–VSY
07670-053
VO
ADA4062-x
Figure 63. Phase Reversal Solution Circuit
Rev. B | Page 16 of 20
TIME (40µs/DIV)
Figure 64. No Phase Reversal
07670-063
For the ADA4062-x, the output does not phase reverse if one
or both of the inputs exceeds the input voltage range but remains
within the positive supply rail and 0.5 V above the negative
supply rail. In other words, for an application with a supply
voltage of ±15 V, the input voltage can be as high as +15 V
without any output phase reversal. However, when the voltage
of the inputs is driven beyond −14.5 V, phase reversal occurs
due to saturation of the input stage leading to forward biasing
of the gate-drain diode. Phase reversal in ADA4062-x can be
prevented by using a Schottky diode to clamp the input terminals
to each other. In the simple buffer circuit in Figure 63, D1
protects the op amp against phase reversal, and R limits the
input current that flows into the op amp.
VOUT
VOLTAGE (5V/DIV)
Phase reversal occurs in some amplifiers when the input commonmode voltage range is exceeded. When the voltage driving the
input to these amplifiers exceeds the maximum input commonmode voltage range, the output of the amplifiers changes polarity.
Most JFET input amplifiers have phase reversal if either input
exceeds the input common-mode range.
VSY = ±15V
ADA4062-2/ADA4062-4
SCHEMATIC
V+
OUT
V–
Figure 65. Simplified Schematic of the ADA4062-x
Rev. B | Page 17 of 20
07670-062
+IN
–IN
ADA4062-2/ADA4062-4
OUTLINE DIMENSIONS
3.20
3.00
2.80
8
3.20
3.00
2.80
5.15
4.90
4.65
5
1
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.80
0.55
0.40
0.23
0.09
6°
0°
0.40
0.25
100709-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 66. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
8
1
5
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
6.20 (0.2441)
5.80 (0.2284)
0.50 (0.0196)
0.25 (0.0099)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
012407-A
4.00 (0.1574)
3.80 (0.1497)
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.20 DIA
TYP
0.55
0.40
0.30
1.30
1
1.60
0.40
BSC
4
0.05 MAX
0.02 NOM
0.20 BSC
033007-A
SEATING
PLANE
6
0.35
0.30
0.25
BOTTOM VIEW
TOP VIEW
0.60
0.55
0.50
PIN 1
IDENTIFIER
9
Figure 68. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ]
1.30 mm × 1.60 mm, Body, Ultra Thin Quad
(CP-10-10)
Dimensions shown in millimeters
Rev. B | Page 18 of 20
ADA4062-2/ADA4062-4
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
0.65 BSC
1.20
MAX
0.15
0.05
COPLANARITY
0.10
0.30
0.19
0.20
0.09
0.75
0.60
0.45
8°
0°
SEATING
PLANE
061908-A
1.05
1.00
0.80
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 69. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
0.30
0.23
0.18
0.50
BSC
13
PIN 1
INDICATOR
16
1
12
1.75
1.60 SQ
1.45
EXPOSED
PAD
9
TOP VIEW
0.80
0.75
0.70
SEATING
PLANE
0.50
0.40
0.30
4
8
5
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
0.20 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.
Figure 70. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-22)
Dimensions shown in millimeters
Rev. B | Page 19 of 20
01-13-2010-D
PIN 1
INDICATOR
3.10
3.00 SQ
2.90
ADA4062-2/ADA4062-4
ORDERING GUIDE
Model 1
ADA4062-2ARMZ
ADA4062-2ARMZ-RL
ADA4062-2ARMZ-RL7
ADA4062-2ARZ
ADA4062-2ARZ-R7
ADA4062-2ARZ-RL
ADA4062-2BRZ
ADA4062-2BRZ-R7
ADA4062-2BRZ-RL
ADA4062-2ACPZ-R2
ADA4062-2ACPZ-RL
ADA4062-2ACPZ-R7
ADA4062-4ARUZ
ADA4062-4ARUZ-RL
ADA4062-4ACPZ-R2
ADA4062-4ACPZ-R7
ADA4062-4ACPZ-RL
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
10-Lead LFCSP_UQ
10-Lead LFCSP_UQ
10-Lead LFCSP_UQ
14-Lead TSSOP
14-Lead TSSOP
16-Lead LFCSP_WQ
16-Lead LFCSP_WQ
16-Lead LFCSP_WQ
Z = RoHS Compliant Part.
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07670-0-2/10(B)
Rev. B | Page 20 of 20
Package Option
RM-8
RM-8
RM-8
R-8
R-8
R-8
R-8
R-8
R-8
CP-10-10
CP-10-10
CP-10-10
RU-14
RU-14
CP-16-22
CP-16-22
CP-16-22
Branding
A25
A25
A25
J
J
J
A2K
A2K
A2K