Low Power, Precision Rail-to-Rail Output Op Amp AD8622/AD8624 PIN CONFIGURATIONS Very low offset voltage 125 μV maximum Supply current: 215 μA/amp typical Input bias current: 200 pA maximum Low input offset voltage drift: 1.2 μV/°C maximum Very low voltage noise: 11 nV/√Hz Operating temperature: −40°C to +125°C Rail-to-rail output swing Unity gain stable ±2.5 V to ±15 V operation OUT A 1 –IN A 2 +IN A 3 TOP VIEW V– 4 (Not to Scale) 8 V+ 7 OUT B 6 –IN B 5 +IN B Figure 1. 8-Lead Narrow-Body SOIC 8 V+ –IN A 2 AD8622 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B V– 4 07527-002 OUT A 1 Figure 2. 8-Lead MSOP 14 OUT D OUT A 1 Portable precision instrumentation Laser diode control loops Strain gage amplifiers Medical instrumentation Thermocouple amplifiers –IN A 13 –IN D 2 +IN A 3 AD8624 V+ 4 TOP VIEW (Not to Scale) +IN B 5 12 +IN D 11 V– 10 +IN C 6 9 –IN C OUT B 7 8 OUT C –IN B GENERAL DESCRIPTION 07527-067 APPLICATIONS 13 NC 15 OUT A 16 NC 14 OUT D Figure 3. 14-Lead TSSOP –IN A 1 +IN A 2 V+ 3 12 –IN D AD8624 11 +IN D TOP VIEW 10 V– (Not to Scale) 9 +IN C OUT C 7 –IN C 8 –IN B 5 OUT B 6 +IN B 4 NOTES 1. NC = NO CONNECT. 2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE CONNECTED TO V–. 07527-068 The AD8622/AD8624 are dual and quad precision rail-to-rail output operational amplifiers with low supply currents of only 350 µA/amplifier maximum over temperature and supply voltages. The AD8622/AD8624 also has an input bias current cancellation circuitry that provides a very low input bias current over the full operating temperature. With a typical offset voltage of only 10 µV, offset drift of 0.5 µV/°C, and noise of only 0.2 μV p-p (0.1 Hz to 10 Hz), they are perfectly suited for applications where large error sources cannot be tolerated. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8622/AD8624 to maximize the signal-to-noise ratio and dynamic range for low power operation. The AD8622/ AD8624 are specified for the extended industrial temperature range of −40°C to +125°C. The AD8622 is available in lead-free 8-lead SOIC and MSOP packages, while the AD8624 is available in lead-free 14-lead TSSOP and 16-lead LFCSP packages. AD8622 07527-001 FEATURES Figure 4. 16-Lead LFCSP Table 1. Low Power Op Amps Supply 40 V 36 V 12 V to 18 V Single OP97 AD8663 Dual OP297 Quad OP497 OP777 OP1177 OP727 OP2177 OP747 OP4177 6V AD8667 ADA4692-2 AD8669 ADA4692-4 Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. www.analog.com Tel: 781.329.4700 Fax: 781.461.3113 ©2009–2011 Analog Devices, Inc. All rights reserved. AD8622/AD8624 TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................5 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................6 General Description ......................................................................... 1 Applications Information .............................................................. 15 Pin Configurations ........................................................................... 1 Input Protection ......................................................................... 15 Revision History ............................................................................... 2 Phase Reversal ............................................................................ 15 Specifications..................................................................................... 3 Micropower Instrumentation Amplifier ................................. 15 Electrical Characteristics—±2.5 V Operation .......................... 3 Hall Sensor Signal Conditioning .............................................. 16 Electrical Characteristics—±15 V Operation ........................... 4 Simplified Schematic ...................................................................... 17 Absolute Maximum Ratings ............................................................ 5 Outline Dimensions ....................................................................... 18 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 19 REVISION HISTORY 6/11—Rev. B to Rev. C Changes to Figure 13 ........................................................................ 7 2/10—Rev. A to Rev. B Changed 16-Lead to 14-Lead in Figure 62 Caption................... 19 1/10—Rev. 0 to Rev. A Added 14-Lead TSSOP ...................................................... Universal Added 16-Lead LFCSP....................................................... Universal Added Figure 3 and Figure 4; Renumbered Sequentially ........... 1 Changes to Table 5 ............................................................................ 5 Changes to Figure 10 to Figure 16 .................................................. 6 Changes to Figure 26 ........................................................................ 9 Changes to Figure 29 ...................................................................... 10 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 19 7/09—Revision 0: Initial Version Rev. C | Page 2 of 20 AD8622/AD8624 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—±2.5 V OPERATION VSY = ±2.5 V, VCM = 0 V, TA = 25°C, unless otherwise specified. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Typ Max Unit 10 125 230 1.2 200 400 200 300 +1.3 μV μV µV/°C pA pA pA pA V dB dB dB dB GΩ TΩ pF pF 0.5 30 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Open-Loop Gain AVO Input Resistance, Differential Mode Input Resistance, Common Mode Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Uncorrelated Current Noise Density Correlated Current Noise Density 25 −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C VCM = −1.3 V to +1.3 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −2.0 V to +2.0 V −40°C ≤ TA ≤ +125°C −1.3 110 107 118 109 RINDM RINCM CINDM CINCM VOH VOL ISC ZOUT PSRR ISY 120 135 1 1 5.5 3 RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C 2.45 2.41 2.40 2.36 2.45 −2.49 −2.45 −2.45 −2.41 −2.40 −2.36 ±30 2 f = 1 kHz, AV = 1 VS = ±2.0 V to ±18.0 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 2.49 125 120 145 175 225 310 V V V V V V V V mA Ω dB dB μA μA SR GBP ΦM RL = 10 kΩ, CL = 100 pF AV = 1 RL = 10 kΩ, CL = 20 pF, AV = 1 RL = 10 kΩ, CL = 20 pF, AV = 1 0.28 540 74 V/μs kHz Degrees en p-p en in_uncorr in_corr f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz f = 1 kHz 0.2 12 0.15 0.07 μV p-p nV/√Hz pA/√Hz pA/√Hz Rev. C | Page 3 of 20 AD8622/AD8624 ELECTRICAL CHARACTERISTICS—±15 V OPERATION VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise specified. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Offset Voltage Drift Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Typ Max Unit 10 125 230 1.2 200 500 200 500 +13.8 μV μV μV/°C pA pA pA pA V dB dB dB dB GΩ TΩ pF pF 0.5 45 −40°C ≤ TA ≤ +125°C 35 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Open-Loop Gain AVO Input Resistance, Differential Mode Input Resistance, Common Mode Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Uncorrelated Current Noise Density Correlated Current Noise Density VCM = −13.8 V to +13.8 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −13.5 V to +13.5 V −40°C ≤ TA ≤ +125°C −13.8 125 112 125 120 RINDM RINCM CINDM CINCM VOH VOL ISC ZOUT PSRR ISY 135 137 1 1 5.5 3 RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 100 kΩ to ground −40°C ≤ TA ≤ +125°C RL = 10 kΩ to ground −40°C ≤ TA ≤ +125°C 14.94 14.84 14.86 14.75 14.89 −14.97 −14.89 −14.94 −14.92 −14.90 −14.80 ±40 1.5 f = 1 kHz, AV = 1 VS = ±2.0 V to ±18.0 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 14.97 125 120 145 215 250 350 V V V V V V V V mA Ω dB dB μA μA SR GBP ΦM RL = 10 kΩ, CL = 100 pF, AV = 1 RL = 10 kΩ, CL = 20 pF, AV = 1 RL = 10 kΩ, CL = 20 pF, AV = 1 0.48 560 75 V/μs kHz Degrees en p-p en in_uncorr in_corr f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz f = 1 kHz 0.2 11 0.15 0.06 μV p-p nV/√Hz pA/√Hz pA/√Hz Rev. C | Page 4 of 20 AD8622/AD8624 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage2 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating ±18 V ±VSY ±10 mA ±10 V Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C THERMAL RESISTANCE θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4-layer board. Table 3. Thermal Resistance Package Type 8-Lead SOIC_N (R-8) 8-Lead MSOP (RM-8) 14-Lead TSSOP (RU-14) 16-Lead LFCSP (CP-16-17) 1 The input pins have clamp diodes to the power supply pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V. 2 Differential input voltage is limited to 10 V or the supply voltage, whichever is less. ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. C | Page 5 of 20 θJA 120 142 112 55 θJC 45 45 35 14 Unit °C/W °C/W °C/W °C/W AD8622/AD8624 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 60 60 VSY = ±15V VCM = 0V VSY = ±2.5V VCM = 0V 50 NUMBER OF AMPLIFIERS 40 30 20 40 30 20 –60 –40 –20 0 20 VOS (µV) 40 60 80 100 0 –100 –80 07527-065 0 –100 –80 Figure 5. Input Offset Voltage Distribution –60 –40 –20 0 20 VOS (µV) 60 80 100 Figure 8. Input Offset Voltage Distribution 60 60 VSY = ±15V –40°C ≤ TA ≤ +125°C VSY = ±2.5V –40°C ≤ TA ≤ +125°C 50 NUMBER OF AMPLIFIERS 50 NUMBER OF AMPLIFIERS 40 07527-063 10 10 40 30 20 10 40 30 20 10 0 0.2 0.4 0.6 0.8 TCVOS (µV/°C) 1.0 1.2 0 07527-066 0 0 Figure 6. Input Offset Voltage Drift Distribution 0.2 0.4 0.6 0.8 TCVOS (µV/°C) 1.0 1.2 07527-064 NUMBER OF AMPLIFIERS 50 Figure 9. Input Offset Voltage Drift Distribution 50 50 VSY = ±15V VSY = ±2.5V 40 40 –40°C 30 30 20 20 10 10 VOS (µV) +25°C –10 +85°C –20 0 +85°C –20 +125°C +125°C –30 –30 –40 –40 –50 –2.5 –1.5 –0.5 +25°C –10 0.5 1.5 VCM (V) 2.5 –50 –15 –10 –5 0 VCM (V) 5 10 +15 Figure 10. Input Offset Voltage vs. Common-Mode Voltage Figure 7. Input Offset Voltage vs. Common-Mode Voltage Rev. C | Page 6 of 20 07527-004 0 07527-007 VOS (µV) –40°C AD8622/AD8624 0 10 VSY = ±15V VSY = ±2.5V IB+ –10 0 IB+ IB– –20 –10 –20 –40 –30 –50 –40 –25 0 25 50 75 100 125 TEMPERATURE (°C) –50 –50 07527-008 –60 –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) 07527-011 IB (pA) IB (pA) IB– –30 Figure 14. Input Bias Current vs. Temperature Figure 11. Input Bias Current vs. Temperature 60 50 VSY = ±15V VSY = ±2.5V 25 40 0 20 IB (pA) IB (pA) –25 –50 –75 0 –20 –100 –40 –0.5 0.5 1.5 2.5 VCM (V) –60 –15 OUTPUT VOLTAGE TO SUPPLY RAIL (V) 1 VOL – VEE 0.01 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 5 10 15 VSY = ±15V 10 1 VCC – VOH 0.1 VOL – VEE 0.01 0.001 0.01 07527-013 OUTPUT VOLTAGE TO SUPPLY RAIL (V) 100 VCC – VOH 0 Figure 15. Input Bias Current vs. Common-Mode Voltage VSY = ±2.5V 0.1 –5 VCM (V) Figure 12. Input Bias Current vs. Common-Mode Voltage 10 –10 Figure 13. Output Voltage to Supply Rail vs. Load Current 0.1 1 LOAD CURRENT (mA) 10 100 Figure 16. Output Voltage to Supply Rail vs. Load Current Rev. C | Page 7 of 20 07527-010 –1.5 07527-012 –150 –2.5 07527-009 –125 AD8622/AD8624 0.06 0.16 OUTPUT VOLTAGE TO SUPPLY RAIL (V) 0.05 VCC – VOH 0.04 0.03 0.02 VOL – VEE 0.01 –25 0 25 50 TEMPERATURE (°C) 75 100 125 0.12 VCC – VOH 0.10 0.08 0.06 VOL – VEE 0.04 0.02 0 –50 07527-017 0 –50 VSY = ±15V RL = 10kΩ 0.14 Figure 17. Output Voltage to Supply Rail vs. Temperature –25 0 25 50 TEMPERATURE (°C) 75 100 125 07527-014 OUTPUT VOLTAGE TO SUPPLY RAIL (V) VSY = ±2.5V RL = 10kΩ Figure 20. Output Voltage to Supply Rail vs. Temperature 0.35 0.35 0.30 +125°C 0.30 +85°C 0.25 0.25 +25°C ISY (mA) ISY (mA) 0.20 0.15 –40°C VSY = ±15V 0.20 VSY = ±2.5V 0.10 0.15 0.05 4 6 8 10 VSY (±V) 12 14 16 18 0.05 –50 100 100 VSY = ±2.5V RL = 10kΩ 25 50 75 TEMPERATURE (°C) 100 125 100 100 VSY = ±15V RL = 10kΩ PHASE 80 60 60 60 60 40 40 40 40 20 0 0 –20 –40 1k GAIN (dB) GAIN 20 PHASE (Degrees) 80 PHASE –20 10k 100k FREQUENCY (Hz) 1M –40 10M GAIN 20 0 –20 Figure 19. Open-Loop Gain and Phase vs. Frequency –40 1k –20 10k 100k FREQUENCY (Hz) 1M –40 10M Figure 22. Open-Loop Gain and Phase vs. Frequency Rev. C | Page 8 of 20 80 20 0 07527-018 GAIN (dB) 0 Figure 21. Supply Current vs. Temperature Figure 18. Supply Current vs. Supply Voltage 80 –25 PHASE (Degrees) 2 07527-015 0 07527-044 –0.05 07527-045 0.10 0 AD8622/AD8624 60 60 VSY = ±2.5V RL = 10kΩ 50 AV = 100 40 GAIN (dB) 20 30 AV = 10 10 AV = 1 0 20 AV = 1 0 –10 –20 –20 –30 –30 –40 100 1k 10k 100k FREQUENCY (Hz) 1M 10M AV = 10 10 –10 –40 100 07527-019 GAIN (dB) 30 AV = 100 Figure 23. Closed-Loop Gain vs. Frequency 1k 10k 100k FREQUENCY (Hz) 1M 10M 07527-016 40 VSY = ±15V RL = 10kΩ 50 Figure 26. Closed-Loop Gain vs. Frequency 10k 10k VSY = ±2.5V VSY = ±15V AV = 100 1k 1k AV = 100 AV = 10 AV = 1 ZOUT (Ω) 10 1 100 10 10k FREQUENCY (Hz) 100k 1M 0.1 100 07527-023 1k Figure 24. Output Impedance vs. Frequency 100 100 CMRR (dB) 120 80 60 1M 60 40 20 20 1M 0 10 Figure 25. CMRR vs. Frequency VSY = ±15V 80 40 07527-021 CMRR (dB) 120 100k 100k 140 VSY = ±2.5V 1k 10k FREQUENCY (Hz) 10k FREQUENCY (Hz) Figure 27. Output Impedance vs. Frequency 140 100 1k 07527-020 1 0.1 100 0 10 AV = 1 100 1k 10k FREQUENCY (Hz) Figure 28. CMRR vs. Frequency Rev. C | Page 9 of 20 100k 1M 07527-024 ZOUT (Ω) AV = 10 100 AD8622/AD8624 120 120 VSY = ±2.5V VSY = ±15V 100 100 PSRR+ PSRR+ 80 PSRR (dB) 60 PSRR– PSRR– 40 40 20 20 100 1k 10k FREQUENCY (Hz) 100k 1M 0 10 07527-025 0 10 100 Figure 29. PSRR vs. Frequency 1M 50 VSY = ±2.5V AV = 1 RL = 10kΩ 45 40 VSY = ±15V AV = 1 RL = 10kΩ 40 35 OS– 30 OS+ 25 20 30 15 10 10 5 5 1 CAPACITANCE (nF) 10 100 0 0.01 07527-029 0.1 OS+ 20 15 0 0.01 OS– 25 Figure 30. Small-Signal Overshoot vs. Load Capacitance 0.1 1 CAPACITANCE (nF) 10 100 Figure 33. Small-Signal Overshoot vs. Load Capacitance VSY = ±2.5V AV = 1 RL = 10kΩ CL = 100pF TIME (40µs/DIV) 07527-030 VOLTAGE (5V/DIV) VOLTAGE (500mV/DIV) VSY = ±15V AV = 1 RL = 10kΩ CL = 100pF TIME (40µs/DIV) Figure 31. Large-Signal Transient Response Figure 34. Large-Signal Transient Response Rev. C | Page 10 of 20 07527-026 OVERSHOOT (%) 35 OVERSHOOT (%) 100k Figure 32. PSRR vs. Frequency 50 45 1k 10k FREQUENCY (Hz) 07527-022 60 07527-027 PSRR (dB) 80 AD8622/AD8624 VSY = ±2.5V AV = 1 RL = 10kΩ CL = 100pF TIME (10µs/DIV) 07527-028 VOLTAGE (50mV/DIV) 07527-031 VOLTAGE (50mV/DIV) VSY = ±15V AV = 1 RL = 10kΩ CL = 100pF TIME (10µs/DIV) Figure 35. Small-Signal Transient Response Figure 38. Small-Signal Transient Response 0.4 0.4 INPUT OUTPUT 0 0 INPUT VOLTAGE (V) OUTPUT 0 –1 –10 –2 –20 –3 TIME (20µs/DIV) 07527-032 INPUT VOLTAGE (V) 0 OUTPUT VOLTAGE (V) INPUT VSY = ±15V AV = –100 RL = 10kΩ 0.2 07527-035 0.2 OUTPUT VOLTAGE (V) VSY = ±2.5V AV = –100 RL = 10kΩ TIME (20µs/DIV) Figure 39. Negative Overload Recovery Figure 36. Negative Overload Recovery 0.2 0.2 INPUT 0 INPUT OUTPUT VSY = ±15V AV = –100 RL = 10kΩ TIME (20µs/DIV) 07527-036 0 –1 10 OUTPUT 0 1 VSY = ±2.5V AV = –100 RL = 10kΩ 20 Figure 37. Positive Overload Recovery Rev. C | Page 11 of 20 –10 –20 TIME (20µs/DIV) Figure 40. Positive Overload Recovery 07527-033 2 OUTPUT VOLTAGE (V) INPUT VOLTAGE (V) 3 INPUT VOLTAGE (V) –0.2 –0.2 OUTPUT VOLTAGE (V) 0 AD8622/AD8624 12 12 VSY = ±15V AV = +1 10 10 8 8 0.1% OUTPUT STEP (V) 0.01% 6 4 0.01% 6 4 2 0 5 10 15 20 25 SETTLING TIME (µs) 30 35 0 07527-034 0 0 5 Figure 41. Output Step vs. Settling Time 10 15 20 25 SETTLING TIME (µs) 100 VSY = ±15V 10 1 10 100 1k FREQUENCY (Hz) 1 07527-042 1 10 1 CURRENT NOISE DENSITY (pA/ Hz) RS2 UNCORRELATED RS1 = 0Ω CORRELATED RS1 = RS2 10 100 FREQUENCY (Hz) 1k VSY = ±15V RS2 UNCORRELATED RS1 = 0Ω 0.1 CORRELATED RS1 = RS2 0.01 07527-057 0.01 1 RS1 VSY = ±2.5V 0.1 1k Figure 45. Voltage Noise Density vs. Frequency 1 RS1 100 FREQUENCY (Hz) Figure 42. Voltage Noise Density vs. Frequency 1 10 07527-039 VOLTAGE NOISE DENSITY (nV Hz) VSY = ±2.5V VOLTAGE NOISE DENSITY (nV/ Hz) 35 Figure 44. Output Step vs. Settling Time 100 CURRENT NOISE DENSITY (pA/ Hz) 30 07527-037 2 0.1% 1 10 100 FREQUENCY (Hz) Figure 46. Current Noise Density vs. Frequency Figure 43. Current Noise Density vs. Frequency Rev. C | Page 12 of 20 1k 07527-056 OUTPUT STEP (V) VSY = ±15V AV = –1 AD8622/AD8624 TIME (1s/DIV) 07527-040 07527-043 INPUT NOISE VOLTAGE (50nV/DIV) VSY = ±15V INPUT NOISE VOLTAGE (50nV/DIV) VSY = ±2.5V TIME (1s/DIV) Figure 47. 0.1 Hz to 10 Hz Noise Figure 49. 0.1 Hz to 10 Hz Noise 1 1 VSY = ±2.5V f = 1kHz RL = 10kΩ VSY = ±15V f = 1kHz RL = 10kΩ 0.1 THD + N (%) 0.01 0.0001 0.001 0.001 0.01 0.1 AMPLITUDE (V rms) 1 10 07527-049 0.001 0.01 Figure 48. THD + Noise vs. Amplitude 0.0001 0.001 0.01 0.1 AMPLITUDE (V rms) 1 Figure 50. THD + Noise vs. Amplitude Rev. C | Page 13 of 20 10 07527-046 THD + N (%) 0.1 AD8622/AD8624 0.1 0.1 VSY = ±15V RL = 10kΩ VIN = 300mV rms VSY = ±2.5V RL = 10kΩ VIN = 300mV rms 0.01 THD + N (%) THD + N (%) 0.01 100 1k FREQUENCY (Hz) 10k 100k 100kΩ 1kΩ RL –40 –60 –80 –100 –120 –140 10 VSY = ±2.5V TO ±15V RL = 10kΩ AV = –100 100 1k FREQUENCY (Hz) 10k 100k 07527-048 CHANNEL SEPARATION (dB) –20 100 1k FREQUENCY (Hz) 10k Figure 53. THD + Noise vs. Frequency Figure 51. THD + Noise vs. Frequency 0 0.0001 10 Figure 52. Channel Separation vs. Frequency Rev. C | Page 14 of 20 100k 07527-050 0.0001 10 0.001 07527-051 0.001 AD8622/AD8624 APPLICATIONS INFORMATION INPUT PROTECTION VIN 1 3 500Ω 07527-055 R2 07527-053 MICROPOWER INSTRUMENTATION AMPLIFIER The AD8622 is a dual, high precision, rail-to-rail output op amp operating at just 215 μA quiescent current per amplifier. Its ultralow offset, offset drift, and voltage noise, combined with its very low bias current and high common-mode rejection ratio (CMRR), are ideally suited for high accuracy and micropower instrumentation amplifier. 2 500Ω AD862x TIME (200µs/DIV) Figure 55. No Phase Reversal Figure 54. Input Protection PHASE REVERSAL An undesired phenomenon, phase reversal (also known as phase inversion) occurs in many op amps when one or both of the inputs are driven beyond the specified input voltage range (IVR), in effect reversing the polarity of the output. In some cases, phase reversal can induce lockups and even cause equipment damage as well as self destruction. The AD8622/AD8624 amplifiers have been carefully designed to prevent output phase reversal when both inputs are maintained within the specified input voltage range. In addition, even if one or both inputs exceed the input voltage range but remain within the supply rails, the output still does not phase reverse. Figure 55 shows the input/output waveforms of the AD8622/AD8624 configured as a unity-gain buffer with a supply voltage of ±15 V. Figure 56 shows the classic 2-op-amp instrumentation amplifier with four resistors using the AD8622. The key to high CMRR for this instrumentation amplifier are resistors that are well matched from both the resistive ratio and the relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1 + R2/R1, which is approximately 100. Tighter matching of two op amps in one package, like the AD8622, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about 430 µA of supply current. R3 10.1kΩ R2 1MΩ +15V R4 1MΩ – 1/2 AD8622 V1 R1 10.1kΩ +15V – 1/2 AD8622 + –15V V2 VO + NOTES –15V 1. VO = 100(V2 – V1) 2. TYPICAL: 0.01mV < |V2 – V1| < 149.7mV 3. TYPICAL: –14.97V < VO < +14.97V 4. USE MATCHED RESISTORS. 07527-054 R1 VOUT VOLTAGE (5V/DIV) The maximum differential input voltage that can be applied to the AD8622/AD8624 is determined by the internal diodes connected across its inputs and series resistors at each input. These internal diodes and series resistors limit the maximum differential input voltage to ±10 V and are needed to prevent baseemitter junction breakdown from occurring in the input stage of the AD8622/AD8624 when very large differential voltages are applied. In addition, the internal resistors limit the currents that flow through the diodes. However, in applications where large differential voltages can be inadvertently applied to the device, large currents may still flow through these diodes. In such a case, external resistors must be placed at both inputs of the op amp to limit the input currents to ±10 mA (see Figure 54). VSY = ±15V Figure 56. Micropower Instrumentation Amplifier Rev. C | Page 15 of 20 AD8622/AD8624 HALL SENSOR SIGNAL CONDITIONING netic field. Using the 4.12k:98.8k resistive divider, the bias voltage of the Hall element is reduced to 100 mV, leading to only 250 µA of power consumption. The 3-op-amp in-amp configuration of the AD8622/AD8624 then increases the sensitivity to 55 mV/mT. The key to high CMRR for this in-amp configuration are resistors that are well matched (where R1/R2 = R3/R4) from both the resistive ratio and relative drift. The resistors are important in determining the performance over manufacturing tolerances, time and temperature. At least 1% or better resistors are recommended. Using the AD8622/AD8624 to amplify the sensor signal can reduce power while also achieving higher sensitivity. The total current consumed is just 1.2 mA, resulting in 21× improvement in sensitivity/power. The AD8622/AD8624 is also highly suitable for high accuracy, low power signal conditioning circuits. One such use is in Hall sensor signal conditioning (see Figure 57). The magnetic sensitivity of a Hall element is proportional to the bias voltage applied across it. With 1 V bias voltage, the Hall element consumes about 2.5 mA of supply current and has a sensitivity of 5.5 mV/mT typical. To reduce power consumption, bias voltage must be reduced, but at the risk of lower sensitivity. The only way to achieve higher sensitivity is by introducing a gain using a precision micropower amplifier. The AD8622/AD8624, with all its features, is well suited to amplify the sensitivity of the Hall element. The ADR121 is a precision micropower 2.5 V voltage reference. A precision voltage reference is required to hold a constant current so that the Hall voltage only depends on the intensity of the magVSY VSY + HALL ELEMENT – ADR121 – 2.5V C2 0.1µF C3 0.1µF TO 10µF R8 4.12kΩ + R9 98.8kΩ VSY + 400Ω ×4 R2 9.9kΩ AD862x R7 200Ω AD862x R5 9.9kΩ R1 9.9kΩ R6 9.9kΩ R3 9.9kΩ VSY – VSY – AD862x + VOUT = 2.5V + 55mV × MAGNETIC FIELD (mT) mT – AD862x + NOTES 1. USE MATCHED RESISTORS FOR IN-AMP. 2. FOR INFORMATION ON C1, C2, AND C3, REFER TO ADR121 DATA SHEET. Figure 57. Hall Sensor Signal Conditioning Rev. C | Page 16 of 20 R4 9.9kΩ 07527-052 C1 1µF TO 10µF AD8622/AD8624 SIMPLIFIED SCHEMATIC V+ R3 R2 R1 Q10 Q11 C1 Q3 Q4 –IN x 500Ω 500Ω Q1 D1 INPUT BIAS CANCELLATION CIRCUITRY Q6 Q5 Q8 OUT x Q2 D2 Q7 D3 V– Figure 58. Simplified Schematic Rev. C | Page 17 of 20 Q9 D4 Q12 07527-062 +IN x VB2 VB1 AD8622/AD8624 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 100709-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 60. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. C | Page 18 of 20 012407-A 8 4.00 (0.1574) 3.80 (0.1497) AD8622/AD8624 4.10 4.00 SQ 3.90 PIN 1 INDICATOR 0.35 0.30 0.25 0.65 BSC 16 13 PIN 1 INDICATOR 12 1 EXPOSED PAD 2.70 2.60 SQ 2.50 4 9 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE 0.25 MIN BOTTOM VIEW 012909-B 0.80 0.75 0.70 5 8 0.45 0.40 0.35 TOP VIEW COMPLIANT TO JEDEC STANDARDS MO-220-WGGC. Figure 61. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4mm Body, Very Very Thin Quad (CP-16-17) Dimensions shown in millimeters 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.20 MAX 0.15 0.05 COPLANARITY 0.10 0.30 0.19 0.20 0.09 SEATING PLANE 0.75 0.60 0.45 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 061908-A 1.05 1.00 0.80 Figure 62. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters ORDERING GUIDE Model 1 AD8622ARMZ AD8622ARMZ-REEL AD8622ARMZ-R7 AD8622ARZ AD8622ARZ-REEL AD8622ARZ-REEL7 AD8624ACPZ-R2 AD8624ACPZ-R7 AD8624ACPZ-RL AD8624ARUZ AD8624ARUZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 16-Lead LFCSP_WQ 16-Lead LFCSP_WQ 16-Lead LFCSP_WQ 14-Lead TSSOP 14-Lead TSSOP Z = RoHS Compliant Part. Rev. C | Page 19 of 20 Package Option RM-8 RM-8 RM-8 R-8 R-8 R-8 CP-16-17 CP-16-17 CP-16-17 RU-14 RU-14 Branding A1P A1P A1P AD8622/AD8624 NOTES ©2009–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07527-0-6/11(C) Rev. C | Page 20 of 20