Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK HMC556 v00.0106 MIXERS - I/Q MIXERS / IRM - CHIP 3 GaAs MMIC I/Q MIXER 36 - 41 GHz Typical Applications Features The HMC556 is ideal for: Wide IF Bandwidth: DC - 3.5 GHz • Microwave Radio Image Rejection: 17.5 dB • Satellite Communication Systems High LO to RF Isolation: 33 dB • Military End Use High Input IP3: +23 dBm • Test Equipment & Sensors Passive Topology: No DC Bias Required Compact Size: 1.49 x 1.12 x 0.1 mm Functional Diagram General Description The HMC556 is a compact I/Q MMIC mixer which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The chip utilizes two double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs MESFET process. All data shown below is taken with the chip mounted in a 50 Ohm test fixture and includes the effects of 1 mil diameter x 12 mil length bond wires on each port. A low frequency quadrature hybrid was used to produce a 100 MHz USB IF output. This compact mixer is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies, and is ideal for microwave radio applications. The redundant IF port connections located on opposing sides of the HMC556 chip, provide added layout flexibility. Electrical Specifi cations, TA = +25° C, IF= 100 MHz, LO = +17 dBm* Parameter Min. Frequency Range, RF/LO Frequency Range, IF Max. Min. 11 10 1 dB Compression (Input) 14 Typ. Max. 38 - 41 DC - 3.5 Conversion Loss (As IRM) Image Rejection Typ. 36 - 38 GHz DC - 3.5 13 11 11 +16 GHz 13 dB 18 dB +16 dBm LO to RF Isolation 27 34 28 32 dB LO to IF Isolation 14 20 13 18 dB dBm IP3 (Input) +20 +23 Amplitude Balance 0.2 0.5 dB Phase Balance 17 9 Deg * Unless otherwise noted, all measurements performed as downconverter. 3 - 124 Units For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com HMC556 v00.0106 GaAs MMIC I/Q MIXER 36 - 41 GHz Data taken as IRM with External IF Hybrid Conversion Gain vs. Temperature Image Rejection vs. Temperature 25 -10 -15 -20 20 3 15 10 +25C +85C -55C 5 0 34 35 36 37 38 39 40 41 42 34 35 36 RF FREQUENCY (GHz) Conversion Gain vs. LO Drive 39 40 41 42 0 +15dBm +17dBm +19dBm -5 RETURN LOSS (dB) CONVERSION GAIN (dB) 38 Return Loss 0 -10 -15 -20 -5 -10 RF LO -15 -20 34 35 36 37 38 39 40 41 42 34 35 36 RF FREQUENCY (GHz) 38 39 40 Input IP3 vs. LO Drive 30 18 25 IP3 (dBm) 20 16 14 +25C +85C -55C 12 37 FREQUENCY (GHz) Input P1dB vs. Temperature P1dB (dBm) 37 RF FREQUENCY (GHz) MIXERS - I/Q MIXERS / IRM - CHIP +25C +85C -55C -5 IMAGE REJECTION (dB) CONVERSION GAIN (dB) 0 20 15 LO = +15dBm LO = +17dBm LO = +19dBm 10 10 5 34 35 36 37 38 39 RF FREQUENCY (GHz) 40 41 42 34 35 36 37 38 39 40 41 42 RF FREQUENCY (GHz) For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 3 - 125 HMC556 v00.0106 GaAs MMIC I/Q MIXER 36 - 41 GHz Quadrature Channel Data Taken Without IF Hybrid Isolations IF Bandwidth* 0 0 RETURN LOSS CONVERSION GAIN LO/IF1 -20 RESPONSE (dB) LO/IF2 -30 -40 LO/RF -50 -5 -10 RF/IF1 RF/IF2 -60 -70 34 35 36 37 38 39 40 41 -15 0.5 42 1 1.5 RF FREQUENCY (GHz) 2.5 3 25 PHASE BALANCE (degrees) 2 1 0 -1 LO = +15dBm LO = +17dBm LO = +19dBm -2 -3 20 15 10 LO = +15dBm LO = +17dBm LO = +19dBm 5 0 34 35 36 37 38 39 40 41 42 34 35 36 RF FREQUENCY (GHz) 37 38 39 40 41 42 RF FREQUENCY (GHz) Upconverter Performance Conversion Gain vs. LO Drive* Upconverter Performance Sideband Rejection vs. LO Drive* 0 SIDEBAND REJECTION (dBc) 0 +15dBm +17dBm +19dBm -5 -10 -15 -20 -5 -10 -15 -20 -25 -30 LO = +15dBm LO = +17dBm LO = +19dBm -35 -40 34 35 36 37 38 39 40 RF FREQUENCY (GHz) 41 42 34 35 36 37 38 39 40 RF FREQUENCY (GHz) * Conversion gain data taken with external IF hybrid 3 - 126 3.5 Phase Balance vs. LO Drive 3 CONVERSION GAIN (dB) 2 IF FREQUENCY (GHz) Amplitude Balance vs. LO Drive AMPLITUDE BALANCE (dB) MIXERS - I/Q MIXERS / IRM - CHIP 3 ISOLATION (dB) -10 For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 41 42 HMC556 v00.0106 MxN Spurious Outputs RF Input +19 dBm IF1 / IF2 Input +24 dBm mRF LO Drive +27 dBm Channel Temperature 150°C Continuous Pdiss (T=85°C) (derate 8.95 mW/°C above 85°C) 582 mW Thermal Resistance (RTH) (channel to die bottom) 111.6 °C/W Storage Temperature -65 to +150 °C Operating Temperature -55 to +85 °C ESD Sensitivity (HBM) Class 1A nLO 0 1 2 3 4 0 xx -12 xx xx xx 1 22 0 44 xx xx 2 xx 55 60 56 xx 3 xx xx 87 78 89 4 xx xx xx 85 104 RF = 39.1 GHz @ -10 dBm LO = 39 GHz @ +17 dBm Data taken without IF hybrid All values in dBc below IF power level ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS Outline Drawing NOTES: 1. ALL DIMENSIONS ARE IN INCHES [MM] 2. DIE THICKNESS IS .004” 3. TYPICAL BOND PAD IS .004” 4. BACKSIDE METALIZATION: GOLD 5. BOND PAD METALIZATION: GOLD 6. BACKSIDE METAL IS GROUND 7. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS. 8. OVERALL DIE SIZE ±.002” 3 MIXERS - I/Q MIXERS / IRM - CHIP Absolute Maximum Ratings GaAs MMIC I/Q MIXER 36 - 41 GHz 9. THIS DIE IS DESIGNED FOR PICK-UP WITH VACUUM (EDGE) COLLET TOOLS. TO PRECLUDE THE RISK OF PERMANENT DAMAGE, NO CONTACT TO THE DIE SURFACE IS ALLOWED WITHIN THIS RECTANGULAR AREA. Die Packaging Information [1] Standard Alternate WP-3 (Waffle Pack) [2] [1] Refer to the “Packaging Information” section for die packaging dimensions. [2] For alternate packaging information contact Hittite Microwave Corporation. For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 3 - 127 HMC556 v00.0106 GaAs MMIC I/Q MIXER 36 - 41 GHz Pad Descriptions Pad Number Function Description 1 RF This pad is AC coupled and matched to 50 Ohms from 36 to 41 GHz. 4 LO This pad is AC coupled and matched to 50 Ohms from 36 to 41 GHz. 2 (5) IF2 3 (6) IF1 MIXERS - I/Q MIXERS / IRM - CHIP 3 3 - 128 GND Interface Schematic This pad is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. For operation to DC, this pad must not source/sink more than 3mA of current or die non-function and possible die failure will result. Pads 5 and 6 are alternate IF ports. The backside of the die must be connected to RF/DC ground. Assembly Diagrams For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com HMC556 v00.0106 GaAs MMIC I/Q MIXER 36 - 41 GHz Mounting & Bonding Techniques for Millimeterwave GaAs MMICs 50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 1). If 0.254mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the surface of the substrate. One way to accomplish this is to attach the 0.102mm (4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 2). 0.102mm (0.004”) Thick GaAs MMIC Wire Bond 0.076mm (0.003”) RF Ground Plane Microstrip substrates should be brought as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm (3 mils). Handling Precautions 0.127mm (0.005”) Thick Alumina Thin Film Substrate Follow these precautions to avoid permanent damage. Figure 1. Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. Static Sensitivity: Follow ESD precautions to protect against > ± 250V ESD strikes. Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up. General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers. 0.102mm (0.004”) Thick GaAs MMIC Wire Bond 0.076mm (0.003”) RF Ground Plane 0.150mm (0.005”) Thick Moly Tab Mounting 0.254mm (0.010”) Thick Alumina Thin Film Substrate The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat. Figure 2. Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment. Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer’s schedule. 3 MIXERS - I/Q MIXERS / IRM - CHIP The die should be attached directly to the ground plane eutectically or with conductive epoxy (see HMC general Handling, Mounting, Bonding Note). Wire Bonding Ball or wedge bond with 0.025 mm (1 mil) diameter pure gold wire is recommended. Thermosonic wirebonding with a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31 mm (12 mils). For price, delivery, and to place orders, please contact Hittite Microwave Corporation: 20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com 3 - 129