PDF Data Sheet Rev. B

400 MHz to 4000 MHz
½ Watt RF Driver Amplifier
ADL5324
Data Sheet
FEATURES
FUNCTIONAL BLOCK DIAGRAM
Operation from 400 MHz to 4000 MHz
Gain of 14.6 dB at 2140 MHz
OIP3 of 43.1 dBm at 2140 MHz
P1dB of 29.1 dBm at 2140 MHz
Noise figure of 3.8 dB
Dynamically adjustable bias
Adjustable power supply bias: 3.3 V to 5 V
Low power supply current: 62 mA to 133 mA
No bias resistor needed
Operating temperature range of −40°C to +105°C
SOT-89 package, MSL-1 rated
ESD rating of ±3 kV (Class 2)
GND
(2)
ADL5324
2
3
RFIN
GND
RFOUT
10562-001
BIAS
1
Figure 1.
APPLICATIONS
Wireless infrastructure
Automated test equipment
ISM/AMR applications
GENERAL DESCRIPTION
–30
–35
–40
–45
–50
–55
SOURCE
VCC = 3.3V
VCC = 5V
–60
–65
–70
–75
–80
–85
–20
–15
–10
–5
0
5
10
15
20
POUT (dBm)
25
10562–055
The ADL5324 is also rated to operate across the wide temperature
range of −40°C to +105°C for reliable performance in designs
that experience higher temperatures, such as power amplifiers.
The ½ W driver amplifier also covers the wide frequency range
of 400 MHz to 4000 MHz, and only requires a few external
components to be tuned to a specific band within that wide range.
This high performance broadband RF driver amplifier is well
suited for a variety of wired and wireless applications, including
cellular infrastructure, ISM band power amplifiers, defense
equipment, and instrumentation equipment. A fully populated
evaluation board is available.
The ADL5324 also delivers excellent ACPR vs. output power and
bias voltage. The driver can deliver greater than 17 dBm of output
power at 2140 MHz, while achieving an ACPR of −55 dBc at 5 V. If
the bias is reduced to 3.3 V, the −55 dBc ACPR output power
only minimally reduces to 15 dBm.
ACPR @ 5MHz CARRIER OFFSET (dBc)
The ADL5324 incorporates a dynamically adjustable biasing
circuit that allows for the customization of OIP3 and P1dB
performance from 3.3 V to 5 V, without the need for an external
bias resistor. This feature gives the designer the ability to tailor
driver amplifier performance to the specific needs of the design.
This feature also creates the opportunity for dynamic biasing of
the driver amplifier where a variable supply is used to allow for
full 5 V biasing under large signal conditions, and then reduced
supply voltage when signal levels are smaller and lower power
consumption is desirable. This scalability reduces the need to
evaluate and inventory multiple driver amplifiers for different
output power requirements, from 25 dBm to 29 dBm output
power levels.
Figure 2. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64 at 2140 MHz
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062−9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2012 Analog Devices, Inc. All rights reserved.
ADL5324
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................8
Applications ....................................................................................... 1
High Temperature Operation ................................................... 12
Functional Block Diagram .............................................................. 1
Applications Information .............................................................. 13
General Description ......................................................................... 1
Basic Layout Connections ......................................................... 13
Revision History ............................................................................... 2
Soldering Information and Recommended PCB Land Pattern. 13
Specifications..................................................................................... 3
Matching Procedure ................................................................... 15
Typical Scattering Parameters..................................................... 5
W-CDMA ACPR Performance ................................................ 16
Absolute Maximum Ratings ............................................................ 6
Evaluation Board ............................................................................ 17
Thermal Resistance ...................................................................... 6
Outline Dimensions ....................................................................... 20
ESD Caution .................................................................................. 6
Ordering Guide .......................................................................... 20
Pin Configuration and Function Descriptions ............................. 7
REVISION HISTORY
9/12—Rev. A to Rev. B
8/12—Rev. 0 to Rev. A
Changes to Figure 27 ...................................................................... 11
Changed Figure 30 Tex t Reference to Figure 33 Text Reference ... 12
Changed Table 7 Text Reference to Table 6 ................................. 15
Changed Table 9 Text Reference to Table 10 and Table 10 Text
Reference to Table 11 ..................................................................... 17
Changes to Figure 44 ...................................................................... 18
Change 5 V Supply Current from 140 mA to 133 mA and 5 V
Power Dissipation from 700 mW to 665 mW, Table 1 .................4
Changes to Supply Current from 140 mA to 133 mA ............... 13
3/12—Revision 0: Initial Version
Rev. B | Page 2 of 20
Data Sheet
ADL5324
SPECIFICATIONS
VSUP = 5 V and TA = 25°C, unless otherwise noted.
Table 1.
Parameter
FREQUENCY = 457 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 748 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 915 MHz
Gain 1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 1935 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 2140 MHz
Gain1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Test Conditions/Comments
±37 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±20 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±46 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±55 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
±30 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
Rev. B | Page 3 of 20
Min
3.3 V
Typ
Max
Min
5V
Typ
Max
Unit
17.2
+0.0/−0.4
±0.6
±0.3
24.2
30.1
5.6
18.4
+0.0/−0.2
±0.6
±0.07
28.0
40.1
6.8
dB
dB
dB
dB
dBm
dBm
dB
16.5
+0.0/−0.2
±0.4
±0.2
24.2
36.0
4.0
17.5
+0.0/−0.2
±0.4
±0.06
28.0
45.8
5.2
dB
dB
dB
dB
dBm
dBm
dB
15.8
±0.1
±0.4
±0.2
24.2
39.3
4.1
16.0
13.9
+0.0/−0.1
±0.5
±0.2
23.2
34.6
3.1
13.6
+0.1/−0.0
±0.6
±0.2
25.3
34.4
3.2
16.8
+0.1/−0.3
±0.4
±0.06
27.7
45.6
5.1
17.6
15.0
+0.0/−0.1
±0.5
±0.07
27.2
45.5
3.6
13.5
14.6
±0.1
±0.6
±0.06
29.1
43.1
3.8
dB
dB
dB
dB
dBm
dBm
dB
dB
dB
dB
dB
dBm
dBm
dB
15.7
dB
dB
dB
dB
dBm
dBm
dB
ADL5324
Parameter
FREQUENCY = 2630 MHz
Gain1
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
POWER INTERFACE
Supply Voltage
Supply Current
vs. Temperature
Power Dissipation
1
Data Sheet
Test Conditions/Comments
Min
3.3 V
Typ
Max
12.1
±0.1
±0.7
±0.2
23.6
32.4
3.6
±60 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
Min
11.8
11.0
+0.0/−0.7
±1.0
±0.2
25.0
29.3
3.8
±100 MHz
−40°C ≤ TA ≤ +85°C
3.15 V to 3.45 V, 4.75 V to 5.25 V
∆f = 1 MHz, POUT = 10 dBm per tone
5V
Typ
13.3
+0.0/−0.2
±0.7
±0.07
27.8
42.0
4.3
Max
Unit
14.6
dB
dB
dB
dB
dBm
dBm
dB
12.0
+0.0/−0.8
±1.0
±0.05
28.5
36.6
4.4
dB
dB
dB
dB
dBm
dBm
dB
Pin RFOUT
3.15
−40°C ≤ TA ≤ +85°C
VSUP = 5 V
3.3
62
+4/−6
205
Guaranteed maximum and minimum specified limits on this parameter are based on six sigma calculations.
Rev. B | Page 4 of 20
3.45
4.75
5
133
+5/−7
665
5.25
V
mA
mA
mW
Data Sheet
ADL5324
TYPICAL SCATTERING PARAMETERS
VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
Freq (MHz)
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
S11
Magnitude (dB)
−0.73518
−0.6682
−0.69026
−0.73622
−0.78026
−0.8238
−0.8703
−0.9211
−0.97114
−1.05332
−1.13807
−1.23342
−1.34406
−1.47125
−1.61396
−1.78541
−1.98158
−2.19535
−2.43367
−2.68863
−2.95983
−3.25472
−3.56594
−3.90734
−4.28173
−4.69306
−5.13012
−5.54712
−5.86482
−5.98131
−5.80159
−5.34159
−4.7127
−4.03208
−3.37391
−2.79798
−2.30194
Angle (°)
−178.582
178.6472
176.9348
175.8152
175.0847
174.5898
174.2026
173.9872
173.3143
172.9788
172.418
171.5538
170.302
168.6736
166.5204
163.8113
160.6247
157.0149
153.0489
148.8413
144.5491
140.354
136.4445
133.0736
130.4779
128.952
128.7774
130.3019
133.6487
138.5443
144.0974
149.2672
153.2749
155.8906
157.3335
157.8681
157.7622
S21
Magnitude (dB)
13.3917
12.83594
12.14674
11.44082
10.7709
10.17296
9.636511
9.182607
8.797653
8.493785
8.268673
8.117951
8.030017
7.998348
8.012977
8.0503
8.103461
8.162658
8.207579
8.231765
8.231791
8.199665
8.141897
8.052657
7.925075
7.778394
7.590076
7.355608
7.062082
6.680613
6.20792
5.63213
4.988874
4.279792
3.543499
2.803935
2.085365
Angle (°)
135.7023
125.9539
117.8626
111.0321
105.1552
99.91559
95.21821
91.01039
86.68882
82.89921
79.01047
74.96804
70.69309
66.16438
61.23666
55.89288
50.12853
43.95115
37.39437
30.52801
23.39294
16.05117
8.510386
0.787456
−7.06584
−15.0835
−23.2924
−31.6367
−40.2413
−48.9518
−57.556
−65.9828
−73.9355
−81.4065
−88.1911
−94.5028
−100.344
Rev. B | Page 5 of 20
S12
Magnitude (dB)
−34.6804
−34.2707
−34.1019
−34.0009
−33.9042
−33.7964
−33.6656
−33.5057
−33.3176
−33.0916
−32.8261
−32.5253
−32.1979
−31.8306
−31.4647
−31.0967
−30.7409
−30.4109
−30.1134
−29.872
−29.6822
−29.5353
−29.4496
−29.4307
−29.451
−29.5362
−29.673
−29.8658
−30.1507
−30.5191
−30.9857
−31.5373
−32.1461
−32.7942
−33.4212
−33.9833
−34.3781
Angle (°)
12.40754
8.733014
6.416618
5.053048
3.90523
3.162531
2.580227
2.111382
1.186726
0.689198
−0.26086
−1.43036
−3.08241
−5.10232
−7.75224
−10.9203
−14.671
−19.0255
−23.849
−29.1849
−35.0026
−41.1796
−47.7908
−54.7743
−62.1914
−69.9289
−78.1809
−86.8436
−96.2073
−106.08
−116.217
−126.686
−137.413
−148.125
−158.775
−169.303
−179.983
S22
Magnitude (dB)
−3.04567
−3.13245
−3.13132
−3.11375
−3.08891
−3.05337
−3.01719
−2.98741
−2.94972
−2.9749
−2.99624
−3.02533
−3.04592
−3.05748
−3.08106
−3.12034
−3.15588
−3.18172
−3.19212
−3.17831
−3.13204
−3.05541
−2.94631
−2.79325
−2.57604
−2.31023
−2.00734
−1.69231
−1.37649
−1.0663
−0.80053
−0.58238
−0.41604
−0.30331
−0.23714
−0.20674
−0.20598
Angle (°)
175.7277
175.9202
176.4634
177.3131
178.3368
179.4021
−179.377
−177.773
−176.469
−174.745
−173.189
−171.783
−170.675
−169.736
−169.23
−169.149
−169.657
−170.862
−172.621
−174.879
−177.553
179.4875
176.2481
172.8794
169.6831
166.7304
164.1571
162.0214
160.0906
158.4485
157.172
156.1642
155.491
155.1641
155.0734
155.156
155.3378
ADL5324
Data Sheet
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 3.
Parameter
Supply Voltage, VSUP
Input Power (50 Ω Impedance)
Internal Power Dissipation (Paddle Soldered)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
6.5 V
20 dBm
1.9 W
150°C
−40°C to +105°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 4 lists the junction-to-air thermal resistance (θJA) and the
junction-to-paddle thermal resistance (θJC) for the ADL5324.
Table 4. Thermal Resistance
Package Type
3-Lead SOT-89
θJA1
37
1
θJC2
9
Unit
°C/W
Measured on Analog Devices evaluation board. For more information about
board layout, see the Soldering Information and Recommended PCB Land
Pattern section.
2
Based on simulation with JEDEC standard JESD51.
ESD CAUTION
Rev. B | Page 6 of 20
Data Sheet
ADL5324
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RFIN 1
ADL5324
TOP VIEW (2) GND
(Not to Scale)
RFOUT 3
10562-002
GND 2
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No.
1
2
Mnemonic
RFIN
GND
3
RFOUT
Description
RF Input. This pin requires a dc blocking capacitor.
Ground. Connect this pin to a low impedance ground plane.
Note that the paddle, which is exposed, encompasses Pin 2 and the tab at the top side of the package. It should be
soldered to a low impedance ground plane for electrical grounding and thermal transfer.
RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the
external power supply. The RF path requires a dc blocking capacitor.
Rev. B | Page 7 of 20
ADL5324
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
OIP3 (dBm)
34
40
33
35
48
+85°C
32
P1dB (dBm)
25
GAIN (dB)
44
42
–40°C
30
40
29
38
+25°C
15
28
10
–40°C
36
27
34
+85°C
NF (dB)
32
5
26
0
869
25
869
884
900
915
930
946
961
FREQUENCY (MHz)
884
900
915
930
30
961
946
10562-018
20
31
P1dB (dBm)
30
46
+25°C
OIP3 (dBm)
45
10562-015
NOISE FIGURE, GAIN, P1DB, OIP3 (dB, dBm)
50
35
50
FREQUENCY (MHz)
Figure 4. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
869 MHz to 961 MHz
Figure 7. OIP3 and P1dB vs. Frequency and Temperature,
869 MHz to 961 MHz
17.5
55
–40°C
53
51
17.0
49
OIP3 (dBm)
GAIN (dB)
+25°C
16.5
+85°C
47
45
43
41
16.0
39
884
900
915
930
946
961
FREQUENCY (MHz)
35
–5
10562-016
15.5
869
0
5
10
15
20
POUT PER TONE (dBm)
10562-019
869MHz
915MHz
961MHz
37
Figure 8. OIP3 vs. POUT and Frequency, 869 MHz to 961 MHz
Figure 5. Gain vs. Frequency and Temperature, 869 MHz to 961 MHz
0
7
–5
S22
–15
S11
–20
–25
S12
–30
+85°C
6
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–10
+25°C
5
–40°C
4
884
900
915
930
FREQUENCY (MHz)
946
961
Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 869 MHz to 961 MHz
Rev. B | Page 8 of 20
3
869
884
900
915
930
946
FREQUENCY (MHz)
Figure 9. Noise Figure vs. Frequency and Temperature,
869 MHz to 961 MHz
961
10562-020
–40
869
10562-017
–35
Data Sheet
ADL5324
45
46
34
+25°C
40
35
44
32
25
20
42
+85°C
40
31
P1dB (dBm)
P1dB (dBm)
30
30
38
–40°C
+25°C
36
29
GAIN (dB)
15
28
10
34
+85°C
27
32
26
30
NF (dB)
2120
2130
2140
2150
2160
2170
FREQUENCY (MHz)
25
2110
2120
2130
2140
2150
2160
28
2170
10562-030
5
0
2110
FREQUENCY (MHz)
Figure 10. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2110 MHz to 2170 MHz
Figure 13. OIP3 and P1dB vs. Frequency and Temperature,
2110 MHz to 2170 MHz
16.0
50
2110MHz
2140MHz
2170MHz
48
15.5
46
–40°C
44
OIP3 (dBm)
15.0
GAIN (dB)
–40°C
33
OIP3 (dBm)
OIP3 (dBm)
10562-027
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
48
35
50
+25°C
14.5
+85°C
14.0
42
40
38
36
34
13.5
2120
2130
2140
2150
2160
2170
FREQUENCY (MHz)
30
–5
10562-028
13.0
2110
0
5
10
15
20
POUT PER TONE (dBm)
Figure 11. Gain vs. Frequency and Temperature, 2110 MHz to 2170 MHz
10562-031
32
Figure 14. OIP3 vs. POUT and Frequency, 2110 MHz to 2170 MHz
0
6
–10
S22
–15
S11
5
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–5
–20
S12
–25
–30
+85°C
+25°C
4
–40°C
3
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
Figure 12. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2110 MHz to 2170 MHz
Rev. B | Page 9 of 20
2
2110
2120
2130
2140
2150
2160
FREQUENCY (MHz)
Figure 15. Noise Figure vs. Frequency and Temperature,
2110 MHz to 2170 MHz
2170
10562-032
–40
2110
10562-029
–35
ADL5324
Data Sheet
35
31
P1dB (dBm)
32
30
P1dB (dBm)
25
20
+25°C
–40°C
44
42
+85°C
40
30
38
29
–40°C
28
GAIN (dB)
15
46
33
OIP3 (dBm)
40
+25°C
36
OIP3 (dBm)
45
34
27
+85°C
NF (dB)
5
2590
2610
2630
2650
2670
2690
FREQUENCY (MHz)
26
32
25
30
24
2570
2590
2610
2630
2650
2670
28
2690
10562-036
10
0
2570
FREQUENCY (MHz)
Figure 16. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2570 MHz to 2690 MHz
Figure 19. OIP3 and P1dB vs. Frequency and Temperature,
2570 MHz to 2690 MHz
14.5
50
2570MHz
2630MHz
2690MHz
48
–40°C
14.0
46
44
13.5
+25°C
OIP3 (dBm)
GAIN (dB)
48
34
10562-033
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
13.0
+85°C
12.5
42
40
38
36
34
12.0
2590
2610
2630
2650
2670
2690
FREQUENCY (MHz)
30
–5
10562-034
11.5
2570
0
5
10
15
20
POUT PER TONE (dBm)
Figure 17. Gain vs. Frequency and Temperature, 2570 MHz to 2690 MHz
10562-037
32
Figure 20. OIP3 vs. POUT and Frequency, 2570 MHz to 2690 MHz
0
7
–5
S22
–15
6
NOISE FIGURE (dB)
S-PARAMETERS (dB)
–10
S11
–20
S12
–25
–30
+85°C
5
+25°C
4
–40°C
2590
2610
2630
2650
FREQUENCY (MHz)
2670
2690
Figure 18. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2570 MHz to 2690 MHz
Rev. B | Page 10 of 20
3
2570
2590
2610
2630
2650
2670
FREQUENCY (MHz)
Figure 21. Noise Figure vs. Frequency and Temperature,
2570 MHz to 2690 MHz
2690
10562-038
–40
2570
10562-035
–35
Data Sheet
ADL5324
25
30
20
20
PERCENTAGE (%)
15
10
15
10
41.2
41.6
42.0
42.4
42.8
43.2
43.6
44.0
44.4
44.8
OIP3 (dBm)
0
10562-045
0
3.45
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
NOISE FIGURE (dB)
Figure 22. OIP3 Distribution at 2140 MHz
Figure 25. Noise Figure Distribution at 2140 MHz
50
200
45
190
40
180
SUPPLY CURRENT (mA)
PERCENTAGE (%)
3.50
10562-048
5
5
35
30
25
20
15
10
170
160
5.25V
150
5V
140
4.75V
130
120
110
0
100
–40
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
P1dB (dBm)
10562-046
5
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 23. P1dB Distribution at 2140 MHz
10562-049
PERCENTAGE (%)
25
Figure 26. Supply Current vs. Supply Voltage and Temperature, 5 V
(Using 2140 MHz Matching Components)
100
40
90
35
20
15
40
30
5
10
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15.0
15.1
GAIN (dB)
15.2
3.15V
50
20
0
3.3V
60
10
10562-047
PERCENTAGE (%)
25
3.45V
70
0
–40
–20
0
20
40
TEMPERATURE (°C)
60
80
10562-064
SUPPLY CURRENT (mA)
80
30
Figure 27. Supply Current vs. Supply Voltage and Temperature, 3.3 V
(Using 2140 MHz Matching Components)
Figure 24. Gain Distribution at 2140 MHz
Rev. B | Page 11 of 20
ADL5324
Data Sheet
HIGH TEMPERATURE OPERATION
15.0
14.5
14.5
14.0
14.0
25°C
85°C
105°C
13.5
13.0
13.0
12.5
12.5
12.0
2110
2120
2130
2140
2150
2160
2170
12.0
2110
FREQUENCY (MHz)
33
31
43
31
29
38
P1dB (dBm)
OIP3 (dBm)
33
2160
25°C
85°C
105°C
2170
43
38
29
OIP3
33
27
28
25
28
25
P1dB
2130
2140
2150
FREQUENCY (MHz)
2160
23
2170
23
2110
Figure 29. OIP3 and P1dB vs. Frequency and Temperature,
5 V Supply, 2140 MHz
2130
2140
2150
FREQUENCY (MHz)
2160
23
2170
Figure 32. OIP3 and P1dB vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
6
6
25°C
85°C
105°C
25°C
85°C
105°C
5
NOISE FIGURE (dB)
5
4
3
4
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
2
2110
Figure 30. Noise Figure vs. Frequency and Temperature, 5 V Supply,
2140 MHz
2120
2130
2140
2150
FREQUENCY (MHz)
2160
2170
10562-139
3
10562-136
2
2110
2120
10562-138
2120
10562-135
23
2110
NOISE FIGURE (dB)
P1dB (dBm)
27
2150
48
OIP3
P1dB
2140
Figure 31. Gain vs. Frequency and Temperature, 3.3 V Supply, 2140 MHz
48
25°C
85°C
105°C
2130
FREQUENCY (MHz)
Figure 28. Gain vs. Frequency and Temperature, 5 V Supply, 2140 MHz
33
2120
OIP3 (dBm)
13.5
25°C
85°C
105°C
10562-137
GAIN (dB)
15.0
10562-134
GAIN (dB)
The ADL5324 has excellent performance at temperatures above 85°C. At 105°C, the gain and P1dB decrease by 0.2 dB, the OIP3 decreases by
0.1 dB, and the noise figure increases by 0.31 dB compared with the data at 85°C. Figure 28 through Figure 33 show the performance at 105°C.
Figure 33. Noise Figure vs. Frequency and Temperature, 3.3 V Supply,
2140 MHz
Rev. B | Page 12 of 20
Data Sheet
ADL5324
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5324 are shown
in Figure 34. Table 6 lists the required matching components.
Capacitors C1, C2, and C3 are Murata GRM615 series (0402
size) High Q capacitors and C7 is a Murata GRM155 series
(0402 size). Inductor L1 is a Coilcraft 0603CS series (0603 size).
For all frequency bands, the placement of C1 and C2 are critical.
The placement of C3 becomes critical for the following bands:
1880 MHz to 1990 MHz, 2110 MHz to 2170 MHz, 2300 MHz to
2400 MHz, 2570 MHz to 2690 MHz. and 3500 MHz to 3600 MHz.
For operation from 420 MHz to 494 MHz, 728 MHz to 768 MHz,
and 869 MHz to 960 MHz, R2 is replaced with a Coilcraft (0402
size) High Q inductor. Table 7 lists the recommended component
placement for various frequencies.
A 5 V dc bias is supplied through L1, which is connected to
RFOUT (Pin 3). In addition to C4, 10 nF and 10 µF power supply
decoupling capacitors are also required. The typical current
consumption for the ADL5324 is 133 mA.
GND
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
Figure 35 shows the recommended land pattern for the ADL5324.
To minimize thermal impedance, the exposed paddle on the
SOT-89 package underside is soldered to a ground plane along
with Pin 2. If multiple ground layers exist, they should be
stitched together using vias. For more information on land
pattern design and layout, refer to the Application Note AN-772,
A Design and Manufacturing Guide for the Lead Frame Chip
Scale Package (LFCSP).
This land pattern, on the ADL5324 evaluation board, provides
a measured thermal resistance (θJA) of 37°C/W. To measure θJA,
the temperature at the top of the SOT-89 package is found with
an IR temperature gun. Thermal simulation suggests a junction
temperature 10°C higher than the top of package temperature.
With additional ambient temperature and I/O power
measurements, θJA could be determined.
1.80mm
VSUP
(2)
GND
C6 10µF
C5 10nF
3.48mm
C4 100pF
3
0.20mm
5.56mm
R2 C7 RFOUT
0Ω 20pF
C23
2.2pF
1SEE
0.86mm
THE RECOMMENDED COMPONENTS FOR BASIC CONNECTIONS TABLE
FOR FREQUENCY-SPECIFIC COMPONENTS.
2SEE TABLE 6 FOR RECOMMENDED COMPONENT SPACING.
3C1, C2, AND C3 ARE MURATA HIGH Q CAPACITORS GRM615 SERIES.
0.62mm
1.27mm
Figure 34. Basic Connections
1.50mm
3.00mm
Figure 35. Recommended Land Pattern
Rev. B | Page 13 of 20
10562-051
2
L1
15nH
λ22
10562-050
C13
2pF
1
RFOUT
λ12
GND
C33
RFIN R1 2.4pF
0Ω
RFIN
ADL5324
ADL5324
Data Sheet
Table 6. Recommended Components for Basic Connections
Function/
Component
AC Coupling
Capacitors
C3 = 0402
C7 = 0402
Power Supply
Bypassing
Capacitors
C4 = 0402
C5 = 0603
C6 = 1206
DC Bias Inductor
L1 = 0603CS
Tuning
Capacitors
C1 = 0402
C2 = 0402
Jumpers
R1 = 0402
R2 = 0402
Power Supply
Connections
VSUP
GND
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
10 pF
20 pF
10pF 1
20 pF
10 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2pF1
20 pF1
1pF1
20 pF
100 pF
10 nF
10 µF
120 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
20 pF1
6.2 pF1
8 pF1
3.9 pF1
8 pF1
3.6 pF1
2.4 pF1
2.4 pF1
2.0 pF1
2.2 pF1
1.5 pF1
2.0 pF1
1.0 pF1
2.0 pF1
0.5 pF1
0.75 pF1
2Ω
5.6 nH 2
2Ω
2.4 nH 3
2Ω
2.4 nH3
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
4.7 nH3
Red test loop
Black test loop
1
Murata High Q capacitor.
Add a 1.6 nH at input (see Figure 41).
3
Coilcraft 0402CS series.
2
Table 7. Matching Component Spacing
Frequency (MHz)
420 to 494
728 to 768
869 to 961
1880 to 1990
2110 to 2170
2300 to 2400
2570 to 2690
3500 to 3700
λ1 (mils)
419
311
207
75
65
71
245
316
Rev. B | Page 14 of 20
λ2 (mils)
438
422
413
239
193
176
132
125
Data Sheet
ADL5324
4.
The ADL5324 is designed to achieve excellent gain and OIP3
performance. To achieve this, both input and output matching
networks must present specific impedance to the device. The
matching components listed in Table 6 were chosen to provide
−10 dB input return loss while maximizing OIP3.
The load-pull plots (see Figure 36 and Figure 37) show the load
impedance points on the Smith chart where optimum OIP3, gain,
and output power can be achieved. These load impedance values
(that is, the impedance that the device sees when looking into
the output matching network) are listed in Table 8 and Table 9
for maximum gain and maximum OIP3, respectively. The contours
show how each parameter degrades as it is moved away from
the optimum point.
From the data shown in Table 8 and Table 9, it becomes clear that
maximum gain and maximum OIP3 do not occur at the same
impedance. This can also be seen on the load-pull contours in
Figure 36 and Figure 37. Thus, output matching generally involves
compromising between gain and OIP3. In addition, the loadpull plots demonstrate that the quality of the output impedance
match must be compromised to optimize gain and/or OIP3. In
most applications where line lengths are short and where the
next device in the signal chain presents a low input return loss,
compromising on the output match is acceptable.
To adjust the output match for operation at a different frequency,
or if a different trade-off between OIP3, gain, and output
impedance is desired, a four-step procedure is recommended.
Repeat Step 3 as necessary. Once the desired gain and return
loss are realized, measure OIP3. Most likely, it will be
necessary to go back and forth between return loss/gain and
OIP3 measurements (probably compromising most on output
return loss) until an acceptable compromise is achieved.
Fixed Load Pull
Freq = 2.1400 GHz
ZSource_2nd (Ohms) : 50.00 + j 0.00
ZSource_3rd (Ohms) : 50.00 + j 0.00
Load
Gt
max = 16.06 dB
at 2.97 – j 2.70 Ohms
10 contours, 0.50 dB step
(11.50 to 16.00 dB)
Ip3
max = 44.18 dBm
at 9.44 + j 9.65 Ohms
10 contours, 1.00 dBm step
(35.00 to 44.00 dBm)
Specs: OFF
Label:
ADL5324_2P14_LP7
10562-053
MATCHING PROCEDURE
Figure 36. Load-Pull Contours, 2140 MHz
Fixed Load Pull
Freq = 2.6300 GHz
ZSource (Ohms) : 49.84 + j 4.33
ZSource_2nd (Ohms) : 37.79 + j 3.28
ZSource_3rd (Ohms) : 39.74 + j10.00
Load
Gt
max = 13.83 dB
at 4.27 – j 1.99 Ohms
10 contours, 0.50 dB step
(9.00 to 13.50 dB)
Ip3
max = 45.19 dBm
at 2.84 + j 5.89 Ohms
10 contours, 1.00 dBm step
(36.00 to 45.00 dBm)
Specs: OFF
1.
2.
3.
Install the recommended tuning components for an 869 MHz
to 970 MHz tuning band, but do not install C1 and C2.
Connect the evaluation board to a vector network analyzer
so that input and output return loss can be viewed
simultaneously.
Starting with the recommended values and positions for
C1 and C2, adjust the positions of these capacitors along the
transmission line until the return loss and gain are acceptable.
In this case, push-down capacitors mounted on small sticks
can be used as an alternative to soldering. If moving the
component positions does not yield satisfactory results,
then increase or decrease the values of C1 and C2 (in this
case, the values are most likely increased because the user
is tuning for a lower frequency.
26.37 + j30.90
Label:
ADL5324_2p63ghZ_LP3
10562-054
For example, to optimize the ADL5324 for optimum OIP3 and
gain at 750 MHz, use the following steps:
Figure 37. Load-Pull Contours, 2600 MHz
Table 8. Load Conditions for GainMAX
Frequency (MHz)
2140
2630
ΓLoad
(Magnitude)
0.888
0.0843
ΓLoad (°)
−173.55
−175.41
GainMAX (dB)
16.1
13.83
Table 9. Load Conditions for OIP3 MAX
Frequency (MHz)
2140
2630
Rev. B | Page 15 of 20
ΓLoad
(Magnitude)
0.654
0.894
ΓLoad (°)
+163.28
+166.52
IP3MAX (dBm)
44.18
45.19
ADL5324
Data Sheet
–30
Figure 38 shows a plot of adjacent channel power ratio (ACPR) vs.
POUT for the ADL5324. The signal type used is a single W-CDMA
carrier (Test Model 1-64) at 2140 MHz. This signal is generated
by a very low ACPR source. ACPR is measured at the output by
a high dynamic range spectrum analyzer, which incorporates an
instrument noise correction function.
–35
–40
–45
–50
–55
SOURCE
VCC = 3.3V
VCC = 5V
–60
–65
–70
–75
–80
–85
–20
–15
–10
–5
0
5
10
15
20
25
POUT (dBm)
Figure 38. ACPR vs. Output Power, Single Carrier W-CDMA,
TM1-64, at 2140 MHz
Rev. B | Page 16 of 20
10562–155
The ADL5324 achieves an ACPR of −79 dBc at 0 dBm output,
at which point device noise and not distortion is beginning to
dominate the power in the adjacent channels. At an output power
of 10 dBm, ACPR is still very low at −72 dBc, making the device
particularly suitable for PA driver applications.
ACPR @ 5MHz CARRIER OFFSET (dBc)
W-CDMA ACPR PERFORMANCE
Data Sheet
ADL5324
EVALUATION BOARD
The schematic of the ADL5324 evaluation board is shown in
Figure 39. This evaluation board uses 25 mil wide traces and is
made from FR4 material. The evaluation board comes tuned for
operation in the 2110 MHz to 2170 MHz tuning band. Tuning
options for other frequency bands are also provided in Table 10.
The recommended placement for these components is provided
in Table 11. The inputs and outputs should be ac-coupled with
appropriately sized capacitors. dc bias is provided to the amplifier
via an inductor connected to the RFOUT pin. A bias voltage of
5 V is recommended.
GND
100pF
C3
2.4pF
R1
0Ω
L1
15nH
193mils
R2
0Ω
C2
2.2pF
C7
20pF
65mils
C1
2pF
VSUP
(2)
GND
C6 10µF
C5 10nF
C4 100pF
1
2
RFOUT
3
C12
2pF
R2 C7
0Ω 20pF RFOUT
λ24
10562-057
L1
15nH
Figure 40. Evaluation Board Layout and Default Component Placement for
2110 MHz to 2170 MHz
C23
2.2pF
1MURATA HIGH Q CAPACITOR GRM615COG2R4B50 OR EQUIVALENT.
2MURATA HIGH Q CAPACITOR GRM615COG020B50 OR EQUIVALENT.
3MURATA HIGH Q CAPACITOR GRM615COG2R2B50 OR EQUIVALENT.
4SEE TABLE 10 FOR RECOMMENDED COMPONENT SPACING.
10562-056
λ14
GND
1
R1 C3
RFIN 0Ω 2.4pF
RFIN
ADL5324
Figure 39. Evaluation Board, 2110 MHz to 2170 MHz
Table 10. Recommended Components for Basic Connections
Function/
Component
AC Coupling
Capacitors
C3 = 0402
C7 = 0402
Power Supply
Bypassing
Capacitors
C4 = 0402
C5 = 0603
C6 = 1206
DC Bias Inductor
L1 = 0603CS
Tuning Capacitors
C1 = 0402
C2 = 0402
Jumpers
R1 = 0402
R2 = 0402
Power Supply
Connections
VSUP
GND
1
2
3
420 MHz to
494 MHz
728 MHz to
768 MHz
800 MHz to
960 MHz
1880 MHz to
1990 MHz
2110 MHz to
2170 MHz
(Default)
2300 MHz to
2400 MHz
2560 MHz to
2690 MHz
3500 MHz to
3700 MHz
10 pF
20 pF
10pF 1
20 pF
10 pF
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2.4 pF1
20 pF
2pF1
20 pF1
1pF1
20 pF
100 pF
10 nF
10 µF
120 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
18 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
100 pF
10 nF
10 µF
15 nH
20 pF1
6.2 pF1
8 pF1
3.9 pF1
8 pF1
3.6 pF1
2.4 pF1
2.4 pF1
2.0 pF1
2.2 pF1
1.5 pF1
2.0 pF1
1.0 pF1
2.0 pF1
0.5 pF1
0.75 pF1
2Ω
5.6 nH 2
2Ω
2.4 nH 3
2Ω
2.4 nH3
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
0Ω
4.7 nH3
Red test loop
Black test loop
Murata High Q capacitor.
Add a 1.6 nH at input (see Figure 41).
Coilcraft 0402CS series.
Rev. B | Page 17 of 20
ADL5324
Data Sheet
Table 11. Recommended Component Spacing on Evaluation Board
Frequency (MHz)
420 to 494
728 to 768
869 to 961
1880 to 1990
2110 to 2170
2300 to 2400
2570 to 2690
3500 to 3700
λ1 (mils)
419
311
207
75
65
71
245
316
λ2 (mils)
438
422
413
239
193
176
132
125
100pF
L2
2.4nH
100 pF
248 mils
419 mils
C7
20pF
L1
18nH
C3
10pF
C2
6.2pF
311 mils
438 mils
C1
8pF
R1
2Ω
207mils
C7
20pF
C2
3.6pF
413mils
10562-042
C3
10pF
L2
L1
120nH 5.6nH
10562-060
L3 R1
C1
20pF 1.6nH 2Ω
Figure 43. Evaluation Board Layout and Component Placement,
869 MHz to 961 MHz Operation
Figure 41. Evaluation Board Layout and Component Placement,
420 MHz to 494 MHz Operation
100pF
311 mils
L2
L1
18nH 2.4nH
422 mils
C3
2.4pF
C7
20pF
L1
15nH
R1
0Ω
C2
3.9pF
239mils
75mils
C1
2.4pF
100pF
R2
0Ω
C2
2.4pF
C7
20pF
10562-043
C3
10pF
R1
2Ω
10562-061
C1
8pF
Figure 42. Evaluation Board Layout and Component Placement,
728 MHz to 768 MHz Operation
Figure 44. Evaluation Board Layout and Component Placement,
1880 MHz to 1990 MHz Operation
Rev. B | Page 18 of 20
Data Sheet
ADL5324
C3
2.4pF
L1
15nH
R1
0Ω
176mils
C2
2.0pF
100pF
C1
0.5pF
R1
0Ω
C7
20pF
C3
1.0pF
316 mils
L2
L1
15nH 4.7nH
C2
0.75pF
C7
20pF
125 mils
Figure 45. Evaluation Board Layout and Component Placement,
2300 MHz to 2400 MHz Operation
C3
2.0pF
C1
1.0pF
245mils
Figure 47. Evaluation Board Layout and Component Placement,
3500 MHz to 3700 MHz Operation
100pF
C7
L1
15nH 20pF
C2
132mils 2.0pF
R2
0Ω
10562-063
R1
0Ω
10562-148
10562-062
71mils
C1
1.5pF
100pF
R2
0Ω
Figure 46. Evaluation Board Layout and Component Placement,
2560 MHz to 2690 MHz Operation
Rev. B | Page 19 of 20
ADL5324
Data Sheet
OUTLINE DIMENSIONS
*1.75
1.55
(2)
4.25
3.94
1
2
2.60
2.30
3
1.20
0.75
1.50 TYP
3.00 TYP
2.29
2.14
4.60
4.40
1.60
1.40
0.44
0.35
END VIEW
*0.52
0.32
*COMPLIANT TO JEDEC STANDARDS TO-243 WITH THE
EXCEPTION OF DIMENSIONS INDICATED BY AN ASTERISK.
12-18-2008-B
*0.56
0.36
Figure 48. 3-Lead Small Outline Transistor Package [SOT-89]
(RK-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5324ARKZ-R7
ADL5324-EVALZ
1
Temperature Range
−40°C to +105°C
Package Description
3-Lead SOT-89, 7“ Tape and Reel
Evaluation Board
Z = RoHS Compliant Part.
©2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10562-0-9/12(B)
Rev. B | Page 20 of 20
Package Option
RK-3