400 MHz to 2700 MHz ¼ Watt RF Driver Amplifier ADL5320 Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM Operation: 400 MHz to 2700 MHz Gain of 16.9 dB at 880 MHz OIP3 of 45.0 dBm at 880 MHz P1dB of 25.4 dBm at 880 MHz Noise figure: 4.1 dB at 880 MHz Power supply voltage: 3.3 V to 5 V Power supply current: 44 mA to 104 mA Dynamically adjustable bias No bias resistor required Thermally efficient, MSL-1 rated SOT-89 package Operating temperature range: −40°C to +105°C ESD rating of ±4 kV (Class 3A) GND (2) ADL5320 2 3 RFIN GND RFOUT 05840-001 BIAS 1 Figure 1. APPLICATIONS Wireless infrastructure Automated test equipment ISM/AMR applications GENERAL DESCRIPTION Rev. B –20 –30 –40 SOURCE VCC = 5V VCC = 3.3V –50 –60 –70 –80 –90 –20 –15 –10 –5 0 5 POUT (dBm) 10 15 20 05840-131 The ADL5320 is also rated to operate across the wide temperature range of −40°C to +105°C for reliable performance in designs that experience higher temperatures, such as power amplifiers. The 1∕4 watt driver amplifier also covers the 400 MHz to 2700 MHz wide frequency range and only requires a few external components to be tuned to a specific band within that wide range. This high performance, broadband RF driver amplifier is well suited for a variety of wired and wireless applications including cellular infrastructure, ISM band power amplifiers, defense equipment, and instrumentation equipment. A fully populated evaluation board is available. The ADL5320 also delivers excellent adjacent channel power ratio (ACPR) vs. output power and bias voltage. The driver can deliver greater than 17 dBm of output power at 2140 MHz while achieving an ACPR of −55 dBc at 5 V. If the bias is reduced to 3.3 V, the −55 dBc ACPR output power reduces to 9 dBm. ACPR @ 5MHz CARRIER OFFSET (dBc) The ADL5320 incorporates a dynamically adjustable biasing circuit that allows for the customization of OIP3 and P1dB performance from 3.3 V to 5 V without the need for an external bias resistor. This feature gives the designer the ability to tailor driver amplifier performance to the specific needs of the design. This feature also creates the opportunity for dynamic biasing of the driver amplifier, where a variable supply is used to allow for full 5 V biasing under large signal conditions and then can reduce the supply voltage when signal levels are smaller and lower power consumption is desirable. This scalability reduces the need to evaluate and inventory multiple driver amplifiers for different output power requirements from 22 dBm to 26 dBm output power levels. Figure 2. ACPR vs. Output Power, Single Carrier W-CDMA TM1-64 at 2140 MHz Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2008–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADL5320 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 High Temperature and 3.3 V Operation ................................. 11 Applications ....................................................................................... 1 Applications Information .............................................................. 12 Functional Block Diagram .............................................................. 1 Basic Layout Connections ......................................................... 12 General Description ......................................................................... 1 Revision History ............................................................................... 2 Soldering Information and Recommended PCB Land Pattern ................................................................................ 13 Specifications..................................................................................... 3 Matching Procedure ................................................................... 14 Typical Scattering Parameters..................................................... 4 Optimizing OP1dB .................................................................... 15 Absolute Maximum Ratings ............................................................ 5 W-CDMA ACPR Performance ................................................ 15 Thermal Resistance ...................................................................... 5 Evaluation Board ............................................................................ 16 ESD Caution .................................................................................. 5 Outline Dimensions ....................................................................... 18 Pin Configuration and Function Descriptions ............................. 6 Ordering Guide .......................................................................... 18 Typical Performance Characteristics ............................................. 7 REVISION HISTORY 10/13—Rev. A to Rev. B Changed 1805 MHz to 2110 MHz .............................. Throughout Changes to Figure 27 ...................................................................... 10 Changes to Figure 34 and Table 6 ................................................. 12 Changes to Figure 35 ...................................................................... 13 Changes to Matching Procedures Section ................................... 14 Added Optimizing OP1dB Section, Table 10, Table 11, Table 12, and Figure 39; Renumbered Sequentially ................... 15 Changes to Evaluation Board Section ............................................. 16 Updated Outline Dimensions ....................................................... 18 Changes to Ordering Guide .......................................................... 18 6/12—Rev. 0 to Rev. A Changes to Features Section and General Description Section........ 1 Added Application Section and Figure 2; Renumbered Sequentially ....................................................................................... 1 Changes to Specifications Section .................................................. 3 Deleted θJC (Junction to Paddle) Parameter, Table 3.................... 5 Changes to Operating Temperature Range Parameter, Table 3 .................................................................................................5 Added Thermal Resistance Section and Table 4; Renumbered Sequentially ........................................................................................5 Added EPAD Notation to Figure 3 .................................................6 Added Figure 27 ............................................................................. 10 Added High Temperature and 3.3 V Operation Section and Figure 28 to Figure 33 .................................................................... 11 Added Applications Information Section and Figure 35 .......... 12 Changes to Soldering Information and Recommended PCB Land Pattern .................................................................................... 12 Changed −82 dBc to −80 dBc in W-CDMA ACPR Performance Section .............................................................................................. 14 Added Figure 39 ............................................................................. 14 Updated Outline Dimensions ....................................................... 17 2/08—Revision 0: Initial Version Rev. B | Page 2 of 20 Data Sheet ADL5320 SPECIFICATIONS TA = 25°C, unless otherwise noted. Table 1. Parameter OVERALL FUNCTION Frequency Range FREQUENCY = 880 MHz Gain 1 vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure FREQUENCY = 2140 MHz Gain1 vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure FREQUENCY = 2600 MHz Gain1 vs. Frequency vs. Temperature vs. Supply Output 1 dB Compression Point Output Third-Order Intercept Noise Figure POWER INTERFACE Supply Voltage Supply Current vs. Temperature Power Dissipation 1 Test Conditions/Comments Min 3.3 V Typ 400 ±50 MHz −40°C ≤ TA ≤ +85°C 3.2 V to 3.4 V, 4.75 V to 5.25 V Δf = 1 MHz, POUT = 10 dBm per tone ±50 MHz −40°C ≤ TA ≤ +85°C 3.2 V to 3.4 V, 4.75 V to 5.25 V Δf = 1 MHz, POUT = 10 dBm per tone ±100 MHz −40°C ≤ TA ≤ +85°C 3.2 V to 3.4 V, 4.75 V to 5.25 V Δf = 1 MHz, POUT = 10 dBm per tone Max Min 2700 400 5V Typ Max Unit 2700 MHz 15.6 ±0.2 ±0.6 ±0.2 21.5 34 3.2 16.3 16.9 ±0.3 ±0.6 ±0.1 25.4 45 4.1 17.5 dB dB dB dB dBm dBm dB 12.2 ±0.3 ±0.7 ±0.15 22.6 32 3.7 12.4 13.2 ±0.33 ±0.8 ±0.06 25.7 42 4.4 14.0 dB dB dB dB dBm dBm dB 10.7 ±0.2 ±0.6 ±0.2 25.7 29 4.1 11.5 12.5 ±0.6 ±1.1 ±0.1 27.4 37 5.1 13.4 dB dB dB dB dBm dBm dB 3.3 44 ±5.0 145 4.5 5 104 ±6.0 520 5.5 124 V mA mA mW Pin RFOUT −40°C ≤ TA ≤ +85°C VSUP = 3.3 V, VSUP = 5 V Guaranteed maximum and minimum specified limits on this parameter are based on six sigma calculations. Rev. B | Page 3 of 20 ADL5320 Data Sheet TYPICAL SCATTERING PARAMETERS VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device. Table 2. Freq (MHz) 400 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500 2550 2600 2650 2700 S11 Magnitude (dB) −1.42 −1.38 −1.42 −1.48 −1.54 −1.62 −1.70 −1.80 −1.90 −2.01 −2.13 −2.27 −2.43 −2.63 −2.84 −3.09 −3.39 −3.73 −4.13 −4.59 −5.13 −5.76 −6.48 −7.36 −8.45 −9.74 −11.32 −13.34 −16.00 −19.89 −26.68 −33.34 −23.21 −18.39 −15.39 −13.26 −11.63 −10.31 −9.20 −8.23 −7.38 −6.61 −5.89 −5.23 −4.62 −4.05 Angle (°) −179.88 +175.04 +173.05 +171.25 +169.59 +168.11 +166.66 +165.36 +163.99 +162.65 +161.32 +159.98 +158.61 +157.11 +155.60 +153.91 +152.08 +150.14 +147.98 +145.57 +143.05 +140.31 +137.18 +133.46 +129.65 +125.36 +120.71 +115.47 +109.24 +100.84 +83.39 −26.40 −71.32 −83.50 −92.08 −100.04 −107.86 −115.84 −123.94 −132.24 −140.88 −149.66 −158.59 −167.51 −176.26 +175.18 S21 Magnitude (dB) +14.16 +13.97 +13.81 +13.66 +13.49 +13.32 +13.17 +13.05 +12.94 +12.84 +12.73 +12.65 +12.62 +12.59 +12.56 +12.55 +12.56 +12.57 +12.61 +12.66 +12.72 +12.79 +12.83 +12.89 +12.93 +12.98 +12.99 +12.99 +12.97 +12.93 +12.86 +12.76 +12.64 +12.49 +12.31 +12.11 +11.88 +11.62 +11.33 +11.01 +10.64 +10.24 +9.78 +9.27 +8.70 +8.07 Angle (°) +134.74 +126.21 +122.24 +118.41 +114.71 +111.12 +107.64 +104.27 +100.86 +97.48 +94.09 +90.72 +87.34 +83.90 +80.41 +76.75 +73.03 +69.24 +65.23 +61.05 +56.75 +52.20 +47.46 +42.49 +37.41 +32.12 +26.74 +21.16 +15.43 +9.57 +3.65 −2.46 −8.60 −14.83 −21.09 −27.46 −33.90 −40.49 −47.09 −53.81 −60.65 −67.57 −74.53 −81.60 −88.50 −95.43 Rev. B | Page 4 of 20 S12 Magnitude (dB) −32.56 −32.02 −31.84 −31.70 −31.56 −31.43 −31.29 −31.16 −31.01 −30.85 −30.69 −30.52 −30.32 −30.15 −29.95 −29.74 −29.54 −29.33 −29.12 −28.91 −28.69 −28.48 −28.28 −28.10 −27.95 −27.81 −27.70 −27.61 −27.56 −27.55 −27.58 −27.65 −27.75 −27.89 −28.07 −28.29 −28.54 −28.82 −29.15 −29.50 −29.89 −30.31 −30.76 −31.23 −31.73 −32.22 Angle (°) +13.47 +8.58 +6.81 +5.25 +3.85 +2.63 +1.35 +0.20 −0.95 −2.23 −3.43 −4.80 −6.24 −7.92 −9.61 −11.56 −13.63 −15.87 −18.39 −21.17 −24.17 −27.48 −31.05 −34.99 −39.05 -43.45 −48.12 −53.06 −58.23 −63.67 −69.38 −75.33 −81.44 −87.92 −94.55 −101.56 −108.80 −116.46 −124.41 −132.81 −141.70 −150.89 −160.57 −170.68 +178.90 +168.34 S22 Magnitude (dB) −3.42 −3.71 −3.84 −3.96 −4.08 −4.19 −4.30 −4.41 −4.52 −4.62 −4.71 −4.81 −4.89 −4.98 −5.06 −5.12 −5.18 −5.25 −5.28 −5.29 −5.27 −5.19 −5.12 −5.06 −4.94 −4.80 −4.65 −4.47 -4.30 −4.14 −3.99 −3.86 −3.74 −3.65 −3.58 −3.54 −3.50 −3.47 −3.44 −3.42 −3.40 −3.36 −3.31 −3.24 −3.17 −3.09 Angle (°) +176.22 +175.38 +175.10 +174.89 +174.74 +174.71 +174.74 +174.89 +175.10 +175.37 +175.78 +176.29 +176.85 +177.52 +178.29 +179.17 −179.85 −178.72 −177.52 −176.26 −174.93 −173.52 −172.60 −171.45 −170.38 −169.52 −168.95 −168.68 −168.76 −169.26 −170.11 −171.37 −172.97 −175.01 −177.37 +179.90 +176.83 +173.43 +169.75 +165.83 +161.63 +157.29 +152.82 +148.32 +143.81 +139.40 Data Sheet ADL5320 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage, VSUP Input Power (50 Ω Impedance) Internal Power Dissipation (Paddle Soldered) Maximum Junction Temperature Operating Temperature Range Storage Temperature Range Rating 6.5 V 20 dBm 683 mW 150°C −40°C to +105°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 4 lists the junction-to-air thermal resistance (θJA) and the junction-to-paddle thermal resistance (θJC) for the ADL5320. Table 4. Thermal Resistance Package Type 3-Lead SOT-89 θJA1 35 θJC2 11 Unit °C/W Measured on Analog Devices, Inc., evaluation board. For more information about board layout, see the Soldering Information and Recommended PCB Land Pattern section. 2 Based on simulation with JEDEC standard JESD51. 1 ESD CAUTION Rev. B | Page 5 of 20 ADL5320 Data Sheet PIN CONFIGURATION AND FUNCTION DESCRIPTIONS RFIN 1 ADL5320 GND 2 TOP VIEW (2) GND (Not to Scale) NOTES 1. THE EXPOSED PAD IS INTERNALLY CONNECTED TO GND. SOLDER TO A LOW IMPEDANCE GROUND PLANE. 05840-002 RFOUT 3 Figure 3. Pin Configuration Table 5. Pin Function Descriptions Pin No. 1 2 3 Mnemonic RFIN GND RFOUT Exposed Paddle Description RF Input. Requires a dc blocking capacitor. Ground. Connect to a low impedance ground plane. RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the external power supply. RF path requires a dc blocking capacitor. Expose Paddle. Internally connected to GND. Solder to a low impedance ground plane. Rev. B | Page 6 of 20 Data Sheet ADL5320 TYPICAL PERFORMANCE CHARACTERISTICS 50 50 30 OIP3 (10dBm) OIP3 (–40°C) 35 OIP3 (+85°C) OIP3 (dBm) 40 30 P1dB 25 20 28 35 27 30 15 26 GAIN P1dB (–40°C) 10 P1dB (+85°C) 05840-003 25 NF 5 0 800 29 OIP3 (+25°C) 820 840 P1dB (dBm) 45 40 860 880 900 FREQUENCY (MHz) 920 940 25 P1dB (+25°C) 20 800 960 Figure 4. Gain, P1dB, OIP3, and Noise Figure vs. Frequency, 800 MHz to 960 MHz 820 840 860 880 900 FREQUENCY (MHz) 920 940 24 960 05840-006 GAIN, NF (dB); P1dB, OIP3 (dBm) 45 Figure 7. OIP3 and P1dB vs. Frequency and Temperature, 800 MHz to 960 MHz 50 19.0 930MHz 18.5 –40°C 17.5 +25°C 17.0 OIP3 (dBm) GAIN (dB) 880MHz 46 18.0 +85°C 16.5 16.0 42 960MHz 850MHz 830MHz 38 15.5 05840-004 14.5 14.0 800 820 840 860 880 900 FREQUENCY (MHz) 920 940 30 –2 960 05870-007 34 15.0 0 2 4 6 8 10 12 14 16 18 20 22 POUT (dBm) Figure 5. Gain vs. Frequency and Temperature, 800 MHz to 960 MHz Figure 8. OIP3 vs. POUT and Frequency, 800 MHz to 960 MHz –25.0 0 7.0 –5 6.5 –25.5 S22 –26.5 –15 –27.0 –20 S12 –27.5 –25 S11 –28.0 5.5 NF (dB) –10 S11 (dB) AND S22 (dB) S12 (dB) 6.0 –26.0 +85°C 5.0 4.5 +25°C 4.0 3.5 –40°C –30 –29.0 700 750 800 850 900 FREQUENCY (MHz) 950 –40 1000 05840-005 –35 –28.5 Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, 800 MHz to 960 MHz Rev. B | Page 7 of 20 2.5 2.0 700 750 800 850 900 FREQUENCY (MHz) 950 Figure 9. Noise Figure vs. Frequency and Temperature, 800 MHz to 960 MHz 1000 05840-008 3.0 ADL5320 Data Sheet 45 OIP3 (10dBm) 35 28.5 OIP3 (–40°C) 43 28.0 41 OIP3 (+85°C) OIP3 (+25°C) 30 OIP3 (dBM) P1dB 25 20 27.5 39 27.0 37 P1dB (–40°C) 26.5 35 26.0 15 33 10 31 5 NF 0 2060 25.5 P1dB (+25°C) 2080 2100 2120 2140 2160 FREQUENCY (MHz) 2180 2200 2220 25.0 P1dB (+85°C) 29 2060 Figure 10. Gain, P1dB, OIP3, and Noise Figure vs. Frequency, 2060 MHz to 2200 MHz 2080 2100 2120 2140 2160 FREQUENCY (MHz) 2180 2200 24.5 2220 05840-012 GAIN 05840-009 GAIN, NF (dB); P1dB, OIP3 (dBm) 40 29.0 P1dB (dBm) 45 Figure 13. OIP3 and P1dB vs. Frequency and Temperature, 2060 MHz to 2200 MHz 16 43 2190MHz 41 15 2140MHz 2060MHz 2090MHz –40°C 39 +25°C 13 +85°C 35 11 33 2080 2100 2120 2140 2160 FREQUENCY (MHz) 2180 2200 2220 05840-010 12 31 –2 2 4 6 8 10 12 14 16 18 20 22 POUT (dBm) Figure 11. Gain vs. Frequency and Temperature, 2060 MHz to 2200 MHz –23 Figure 14. OIP3 vs. POUT and Frequency, 2060 MHz to 2200 MHz 0 8.0 7.5 –5 –24 –15 S11 –26 –20 S12 –25 –27 6.5 6.0 NF (dB) –25 S11 (dB) AND S22 (dB) 7.0 –10 S22 –30 2000 2050 2100 2150 FREQUENCY (MHz) 2200 2250 05840-011 1950 5.0 +25°C 4.5 4.0 –40°C 3.0 –35 –40 2300 +85°C 5.5 3.5 –28 –29 1900 0 Figure 12. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, 2060 MHz to 2200 MHz Rev. B | Page 8 of 20 2.5 2.0 1900 1950 2000 2050 2100 2150 FREQUENCY (MHz) 2200 2250 Figure 15. Noise Figure vs. Frequency and Temperature, 2060 MHz to 2200 MHz 2300 05840-014 10 2060 S12 (dB) 2220MHz 37 05840-013 OIP3 (dBm) GAIN (dB) 14 Data Sheet ADL5320 39 OIP3 (–40°C) 31 37 OIP3 (+25°C) 30 OIP3 (dBm) 20 15 35 P1dB (–40°C) 28 33 P1dB (+25°C) 32 GAIN 10 29 34 27 31 5 NF 0 2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 P1dB (+85°C) 26 30 29 2500 2550 2600 FREQUENCY (MHz) FREQUENCY (MHz) Figure 16. Gain, P1dB, OIP3, and Noise Figure vs. Frequency, 2500 MHz to 2700 MHz 05840-018 25 30 OIP3 (+85°C) 36 P1dB 05840-015 GAIN, NF (dB); P1dB, OIP3 (dBm) 38 OIP3 (10dBm) 35 32 P1dB (dBm) 40 25 2700 2650 Figure 19. OIP3 and P1dB vs. Frequency and Temperature, 2500 MHz to 2700 MHz 15 46 44 14 –40°C 42 +25°C 40 OIP3 (dBm) GAIN (dB) 13 12 +85°C 2600MHz 2700MHz 38 36 11 2500MHz 34 10 2550 2600 FREQUENCY (MHz) 2650 2700 30 –3 Figure 17. Gain vs. Frequency and Temperature, 2500 MHz to 2700 MHz –25.0 3 5 7 9 11 13 POUT (dBm) 15 17 19 21 23 8.0 7.5 –5 7.0 S22 –26.5 –15 –27.0 S11 –27.5 –20 S12 –28.0 –25 –28.5 6.5 +85°C 6.0 NF (dB) –10 S11 (dB) AND S22 (dB) –26.0 5.5 +25°C 5.0 4.5 –40°C 4.0 3.5 –30 –29.0 3.0 2450 2500 2550 2600 2650 FREQUENCY (MHz) 2700 2750 –40 2800 05840-017 –35 –29.5 Figure 18. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, 2500 MHz to 2700 MHz Rev. B | Page 9 of 20 2.5 2.0 2400 2450 2500 2550 2600 2650 FREQUENCY (MHz) 2700 2750 2800 Figure 21. Noise Figure vs. Frequency and Temperature, 2500 MHz to 2700 MHz 05840-020 S12 (dB) 1 Figure 20. OIP3 vs. POUT and Frequency, 2500 MHz to 2700 MHz 0 –25.5 –30.0 2400 –1 05840-019 9 2500 05840-016 32 ADL5320 Data Sheet 18 50 16 40 12 PERCENTAGE (%) 10 8 6 4 30 20 10 05840-021 2 0 42.0 42.8 43.6 44.4 45.2 46.0 46.8 0 47.6 05840-024 PERCENTAGE (%) 14 3.80 3.88 3.96 4.04 4.12 4.20 4.28 NF (dB) OIP3 (dBm) Figure 22. OIP3 Distribution at 880 MHz Figure 25. Noise Figure Distribution at 880 MHz 60 120 115 5.25V SUPPLY CURRENT (mA) PERCENTAGE (%) 50 40 30 20 110 5.0V 105 100 95 4.75V 90 10 24.4 24.8 25.2 25.6 26.0 26.4 80 –40 –30 –20 –10 26.8 P1dB (dBm) Figure 23. P1dB Distribution at 880 MHz 0 10 20 30 40 TEMPERATURE (°C) 50 60 70 80 05840-025 05840-022 0 85 Figure 26. Supply Current vs. Supply Voltage and Temperature (Using 880 MHz Matching Components) 240 30 5V, +25°C 220 200 SUPPLY CURRENT (mA) 20 15 10 180 3.3V, –40°C 5V, +85°C 3.3V, +85°C 5V, +105°C 3.3V, +105°C 160 140 120 100 80 0 05840-040 60 5 40 05840-023 PERCENTAGE (%) 25 3.3V, +25°C 5V, –40°C 16.65 16.75 16.85 16.95 17.05 17.15 20 –6 –4 –2 0 17.25 2 4 6 8 10 12 14 16 18 20 22 24 26 28 POUT PER TONE (dBm) GAIN (dB) Figure 27. Supply Current vs. POUT and Temperature (2140 MHz Matching Components) Figure 24. Gain Distribution at 880 MHz Rev. B | Page 10 of 20 Data Sheet ADL5320 HIGH TEMPERATURE AND 3.3 V OPERATION The ADL5320 has excellent performance at temperatures higher than 85°C. At 105°C, the gain and P1dB decrease by 0.2 dB, the OIP3 decreases by 0.4 dB, and the noise figure increases by 0.2 dB, compared with the data at 85°C. Figure 28, Figure 29, and Figure 30 show the performance at 105°C. 16 15.0 14.5 15 14.0 GAIN (dB) 14 13.5 13 GAIN (dB) 25°C 85°C 105°C 12 –40°C 13.0 12.5 +25°C 12.0 11.5 11 +85°C 11.0 +105°C 2120 2140 2160 2180 2200 2220 FREQUENCY (MHz) 10.0 2060 2080 2100 2120 2140 2160 2180 2200 2220 FREQUENCY (MHz) Figure 28. Gain vs. Frequency and Temperature, 5 V Supply, 2060 MHz to 2200 MHz 45 29.0 28.5 27 26 37 27.0 35 26.5 P1dB (dBm) 39 105°C 25 31 24 30 –40°C 23 25°C 26.0 33 85°C 28 22 31 +85°C 2080 2100 2120 2140 2160 2180 2200 29 2220 05840-134 FREQUENCY (MHz) 21 2060 6.5 6.0 6.0 NOISE FIGURE (dB) 6.5 105°C 85°C 25°C 4.0 3.5 2160 2180 2200 27 2220 +105°C 5.0 +85°C 4.5 4.0 +25°C 3.5 –40°C 3.0 2.5 2.5 2.0 1900 2140 5.5 3.0 1950 2000 2050 2100 2150 2200 2250 05840-135 NOISE FIGURE (dB) 7.0 4.5 2120 Figure 32. OIP3 and P1dB vs. Frequency and Temperature, 3.3 V Supply, 2060 MHz to 2200 MHz 7.0 5.0 2100 FREQUENCY (MHz) Figure 29. OIP3 and P1dB vs. Frequency and Temperature, 5 V Supply, 2060 MHz to 2200 MHz 5.5 2080 +105°C 2300 FREQUENCY (MHz) Figure 30. Noise Figure vs. Frequency and Temperature, 5 V Supply, 2060 MHz to 2200 MHz Rev. B | Page 11 of 20 2.0 1900 1950 2000 2050 2100 2150 2200 2250 2300 FREQUENCY (MHz) Figure 33. Noise Figure vs. Frequency and Temperature, 3.3 V Supply, 2060 MHz to 2200 MHz 05840-138 25.0 2060 29 +25°C 105°C 25.5 32 –40°C OIP3 (dBm) 85°C +105°C +25°C 41 27.5 33 +85°C 43 25°C 28.0 P1dB (dBm) Figure 31. Gain vs. Frequency and Temperature, 3.3 V Supply, 2060 MHz to 2200 MHz OIP3 (dBm) 2100 05840-137 2080 05840-136 10.5 05840-133 10 2060 ADL5320 Data Sheet APPLICATIONS INFORMATION BASIC LAYOUT CONNECTIONS GND The basic connections for operating the ADL5320 are shown in Figure 34. Table 6 lists the required matching components. Capacitors C1, C2, C3, C4, and C7 are Murata GRM155 series (0402 size) and Inductor L1 is a Coilcraft 0603CS series (0603 size). For all frequency bands, the placement of C3 and C7 are critical. From 2300 MHz to 2700 MHz, the placement of C2 is also important. Table 7 lists the recommended component placement for various frequencies. VSUP (2) GND C6 10µF C5 10nF C41 ADL5320 2 RFOUT 3 λ22 1 λ42 C2 λ32 C31 A 5 V dc bias is supplied through L1 which is connected to RFOUT (Pin 3). In addition to C4, 10 nF and 10 µF power supply decoupling capacitors are also required. The typical current consumption for the ADL5320 is 110 mA. 1SEE 2SEE C71 TABLE 6 FOR FREQUENCY SPECIFIC COMPONENTS. TABLE 7 FOR RECOMMENDED COMPONENT SPACING. Figure 34. Basic Connections Table 6. Recommended Components for Basic Connections Frequency (MHz) 450 to 500 800 to 960 2110 to 2170 2300 to 2400 2500 to 2700 C1 (pF) 100 47 22 12 12 C2 (pF) 100 47 22 2.2 1.0 C3 (pF) 18 6.8 0.5 1.2 1.8 C4 (pF) 100 100 22 12 12 C5 (nF) 10 10 10 10 10 C6 (μF) 10 10 10 10 10 C7 (pF) 6.8 2.2 1.5 1.0 0.5 L1 (nH) 47 47 15 15 15 Table 7. Matching Component Spacing Frequency (MHz) 450 to 500 800 to 960 2110 to 2170 2300 to 2400 2500 to 2700 λ1 (mils) 391 200 300 225 142 λ2 (mils) 75 75 75 75 75 Rev. B | Page 12 of 20 RFOUT λ3 (mils) 364 100 175 125 89 λ4 (mils) 50 350 275 125 75 05840-026 λ12 1 GND RFIN RFIN L11 C11 Data Sheet ADL5320 SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN 1.80mm Figure 35 shows the recommended land pattern for the ADL5320. To minimize thermal impedance, the exposed paddle on the SOT-89 package underside is soldered down to a ground plane along with Pin 2. If multiple ground layers exist, stitch them together using vias. For more information on land pattern design and layout, refer to the Application Note AN-772, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP). 3.48mm 0.635mm 5.37mm 0.20mm 0.62mm 0.86mm 1.27mm The land pattern on the ADL5320 evaluation board provides a measured thermal resistance (θJA) of 35°C/W. To measure θJA, the temperature at the top of the SOT-89 package is found with an IR temperature gun. Thermal simulation suggests a junction temperature 10°C higher than the top of the package temperature. With additional ambient temperature and input/output power measurements, θJA can be determined. 0.762mm 0.86mm 3.00mm Figure 35. Recommended Land Pattern Rev. B | Page 13 of 20 05840-041 1.50mm ADL5320 Data Sheet MATCHING PROCEDURE 05840-028 The ADL5320 is designed to achieve excellent gain and IP3 performance. To achieve this, both input and output matching networks must present specific impedance to the device. The matching components listed in Table 7 were chosen to provide −10 dB input return loss while maximizing OIP3. The load-pull plots (Figure 36, Figure 37, and Figure 38) show the load impedance points on the Smith chart where optimum OIP3, gain, and output power can be achieved. These load impedance values (that is, the impedance that the device sees when looking into the output matching network) are listed in Table 8 and Table 9 for maximum gain and maximum OIP3, respectively. The contours show how each parameter degrades as it is moved away from the optimum point. Figure 36. Load-Pull Contours, 880 MHz 05840-029 From the data shown in Table 8 and Table 9, it becomes clear that maximum gain and maximum OIP3 do not occur at the same impedance. This can also be seen on the load-pull contours in Figure 36, Figure 37, and Figure 38. Thus, output matching generally involves compromising between gain and OIP3. In addition, the load-pull plots demonstrate that the quality of the output impedance match must be compromised to optimize gain and/or OIP3. In most applications, where line lengths are short and where the next device in the signal chain presents a low input return loss, compromising on the output match is acceptable. To adjust the output match for operation at a different frequency or if a different trade-off between OIP3, gain, and output impedance is desired, the following procedure is recommended. Figure 37. Load-Pull Contours, 2140 MHz 1. 2. 3. 4. Install the recommended tuning components for a 800 MHz to 960 MHz tuning band, but do not install C3 and C7. Connect the evaluation board to a vector network analyzer so that input and output return loss can be viewed simultaneously. Starting with the recommended values and positions for C3 and C7, adjust the positions of these capacitors along the transmission line until the return loss and gain are acceptable. Push-down capacitors that are mounted on small sticks can be used in this case as an alternative to soldering. If moving the component positions does not yield satisfactory results, then the values of C3 and C7 should be increased or decreased (most likely increased in this case as the user is tuning for a lower frequency). Repeat this process until the desired gain and return loss are achieved. Once the desired gain and return loss are realized, OIP3 should be measured. Most likely, it will be necessary to go back and forth between return loss/gain and OIP3 measurements (probably compromising most on output return loss) until an acceptable compromise is achieved. 05840-030 For example, to optimize the ADL5320 for optimum OIP3 and gain at 700 MHz, take the following steps: Figure 38. Load-Pull Contours, 2600 MHz Table 8. Load Conditions for Gain MAX Frequency (MHz) 880 2140 2600 ΓLoad (Magnitude) 0.5147 0.6611 0.5835 ΓLoad (°) 159.88 134.40 133.80 Gain MAX (dB) 17.76 13.78 12.36 Table 9. Load Conditions for IP3 MAX Frequency (MHz) 880 2140 2600 Rev. B | Page 14 of 20 ΓLoad (Magnitude) 0.4156 0.5035 0.4595 ΓLoad (°) −138.22 +110.27 +102.48 IP3 MAX (dBm) 46.29 42.72 43.01 Data Sheet ADL5320 OPTIMIZING OP1dB W-CDMA ACPR PERFORMANCE In some applications, power handling (P1dB) is a more important parameter than IP3. In such cases, it is possible to retune the output load to increase the compression point of the ADL5320. Table 10 shows the performance of the ADL5320 after tuning the output load for higher OP1dB. Table 11 lists the component spacing, and Table 12 lists the component values. Figure 40 shows a plot of adjacent channel power ratio (ACPR) vs. POUT for the ADL5320. The signal type being used is a single W-CDMA carrier (Test Model 1−64) at 2140 MHz. This signal is generated by a very low ACPR source. ACPR is measured at the output by a high dynamic range spectrum analyzer, which incorporates an instrument noise correction function. Table 10. OP1dB, Gain, and IP3 Results with Optimized OP1dB The ADL5320 achieves an ACPR of −80 dBc at 0 dBm output, at which point device noise and not distortion is beginning to dominate the power in the adjacent channels. At an output power of 10 dBm, ACPR is still very low at −70 dBc, making the device particularly suitable for PA driver applications. Frequency (MHz) 880 2140 2600 Gain (dB) 17.9 13.5 12.4 OIP3 (dBm) 36 40 35 OP1dB (dBm) 28.5 28 28.2 λ1 (mils) 200 300 142 λ2 (mils) 75 75 75 GND λ3 (mils) 339 89 89 λ4 (mils) 100 275 75 VSUP (2) GND C6 10µF C5 10nF C41 3 λ22 C31 1SEE 2SEE λ32 1 λ42 C2 SOURCE VCC = 5V VCC = 3.3V –50 –60 –70 –80 –15 –10 –5 0 5 POUT (dBm) 10 15 20 Figure 40. ACPR vs. POUT, Single Carrier W-CDMA (Test Model 1−64) at 2140 MHz Evaluation Board RFOUT C71 05840-039 2 RFOUT 1 GND λ12 RFIN L11 C11 –40 –90 –20 ADL5320 RFIN –30 TABLE 12 FOR FREQUENCY SPECIFIC COMPONENTS. TABLE 11 FOR RECOMMENDED COMPONENT SPACING. Figure 39. Component Values and Spacing for Increased OP1dB Table 12. Matching Component Values for Optimized OP1dB Frequency (MHz) 800 to 960 2110 to 2170 2500 to 2700 C1 (pF) 47 22 12 C2 (pF) 47 22 1.0 C3 (pF) 6.8 0.5 1.8 05840-031 Frequency (MHz) 800 to 960 2110 to 2170 2500 to 2700 ACPR @ 5MHz CARRIER OFFSET (dBc) –20 Table 11. Matching Component Spacing for Optimized OP1dB C4 (pF) 100 22 12 Rev. B | Page 15 of 20 C5 (nF) 10 10 10 C6 (μF) 10 10 10 C7 (pF) 5.6 1.8 1.0 L1 (nH) 47 15 15 ADL5320 Data Sheet EVALUATION BOARD The schematic of the ADL5320 evaluation board is shown in Figure 41. This evaluation board uses 25 mil wide traces and is made from FR4 material. The evaluation board comes tuned for operation in the 2110 MHz to 2170 MHz tuning band. Tuning options for other frequency bands are also provided in Table 13. The recommended placement for these components is provided in Table 14. The inputs and outputs should be ac-coupled with appropriately sized capacitors. DC bias is provided to the amplifier via an inductor connected to the RFOUT pin. A bias voltage of 5 V is recommended. GND 10uF 10nF 22pF C1 22pF 15nH C3 0.5pF C2 22pF C7 1.5pF VSUP C5 10nF 05840-033 (2) GND C6 10µF C4 22pF 2 C3 0.5pF L1 15nH 3 λ2 λ3 λ4 C2 22pF RFOUT Figure 42. Evaluation Board Layout and Default Component Placement for Operation from 2110 MHz to 2170 MHz 05840-032 1 RFOUT λ1 GND RFIN C1 22pF RFIN ADL5320 C7 1.5pF Figure 41. Evaluation Board, 2110 MHz to 2170 MHz Table 13. Evaluation Board Configuration Options Component C1, C2 C4, C5, C6 L1 C3, C7 R1 VSUP, GND Function AC coupling capacitors Power supply bypassing capacitors DC bias inductor Tuning capacitors 450 MHz to 500 MHz 0402, 100 pF 800 MHz to 960 MHz 0402, 47 pF 2110 MHz to 2170 MHz (Default Configuration) 0402, 22pF C4 = 0603 100 pF, C5 = 0603 10 nF, C6 = 1206 10 µF 0603, 47 nH C3 = 0402 18 pF, C7 = 0402 6.8 pF C4 = 0603 100 pF, C5 = 0603 10 nF, C6 = 1206 10 µF 0603, 47 nH C3 = 0402 6.8 pF, C7 = 0402 2.2 pF C4 = 0402 22pF, C5 = 0603 10 nF, C6 = 1206 10 µF 0603, 15 nH C3 = 0402 0.5 pF, C7 = 0402 1.5 pF Power supply connections VSUP red test loop, GND black test loop VSUP red test loop, GND black test loop VSUP red test loop, GND black test loop 2300 MHz to 2400 MHz C1= 0402 12 pF, C2 = 0402 2.2 pF C4 = 0603 12 pF, C5 = 0603 10 nF, C6 = 1206 10 µF 0603, 15 nH C3 = 0402 1.2 pF, C7 = 0402 1.0 pF R1 = 0402 0 Ω VSUP red test loop, GND black test loop 2500 MHz to 2700 MHz C1 = 0402 12 pF, C2 = 0402 1.0 pF C4 = 0603 12 pF, C5 = 0603 10 nF, C6 = 1206 10 µF 0603, 15 nH C3 = 0402 1.8 pF, C7 = 0402 0.5 pF R1 = 0402 0 Ω VSUP red test loop, GND black test loop Table 14. Recommended Component Spacing on Evaluation Board Frequency (MHz) 450 to 500 800 to 960 2110 to 2170 2300 to 2400 2500 to 2700 λ1 (mils) 391 200 300 225 142 λ2 (mils) 75 75 75 75 75 Rev. B | Page 16 of 20 λ3 (mils) 364 100 175 125 89 λ4 (mils) 50 350 275 125 75 Data Sheet ADL5320 10uF 10uF 10nF 10nF 100pF C1 100pF 15nH C3 1.2pF C7 1pF C2 2.2pF R1 0Ω 05840-037 05840-035 C7 6.8pF C3 18pF 12pF C1 12pF C2 100pF 47nH Figure 43. Evaluation Board Layout and Component Placement 450 MHz to 500 MHz Operation 10uF 10uF 10nF 10nF 100pF C1 47pF 47nH C2 47pF 12pF C1 12pF C7 2.2pF 15nH C3 1.8pF C7 0.5pF C2 1.0pF R1 0Ω 05840-036 05840-034 C3 6.8pF Figure 45. Evaluation Board Layout and Component Placement 2300 MHz to 2400 MHz Operation Figure 44. Evaluation Board Layout and Component Placement 800 MHz to 960 MHz Operation Figure 46. Evaluation Board Layout and Component Placement 2500 MHz to 2700 MHz Operation Rev. B | Page 17 of 20 ADL5320 Data Sheet OUTLINE DIMENSIONS 1.75 1.55 (2) 4.25 3.94 1 2 2.413 2.380 2.337 2.60 2.30 3 1.20 0.75 1.50 TYP 1.270 1.252 1.219 BOTTOM VIEW 0.635 0.569 0.508 3.00 TYP TOP VIEW 2.29 2.14 4.60 4.40 1.60 1.40 0.44 0.35 PKG-003480 0.52 0.32 COMPLIANT TO JEDEC STANDARDS TO-243 09-12-2013-C END VIEW 0.56 0.36 Figure 47. 3−Lead Small Outline Transistor Package [SOT-89] (RK-3) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADL5320ARKZ-R7 ADL5320-EVALZ 1 Temperature Range −40°C to +105°C Package Description 3-Lead SOT-89, 7“ Tape and Reel Evaluation Board Z = RoHS Compliant Part. Rev. B | Page 18 of 20 Package Option RK-3 Data Sheet ADL5320 NOTES Rev. B | Page 19 of 20 ADL5320 Data Sheet NOTES ©2008–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05840-0-10/13(B) Rev. B | Page 20 of 20