INFINEON IL74

IL74
DUAL CHANNEL ILD74
QUAD CHANNEL ILQ74
SINGLE CHANNEL
PHOTOTRANSISTOR OPTOCOUPLER
FEATURES
• 7400 Series T2L Compatible
• Transfer Ratio, 35% Typical
• Coupling Capacitance, 0.5 pF
• Single, Dual, & Quad Channel
• Industry Standard DIP Package
• Underwriters Lab File #E52744
V
•
VDE Approvals #0884
(Optional with Option 1, Add -X001 Suffix)
Dimensions in inches (mm)
Pin One ID.
The IL74 is an optically coupled pair with a Gallium Arsenide infrared LED and a silicon NPN
phototransistor. Signal information, including a
DC level, can be transmitted by the device while
maintaining a high degree of electrical isolation
between input and output. The IL74 is especially
designed for driving medium-speed logic, where
it may be used to eliminate troublesome gound
loop and noise problems. Also it can be used to
replace relays and transformers in many digital
interface applications, as well as analog applications such as CRT modulation.
1
6 Base
Anode 1
.248 (6.30)
.256 (6.50)
5 Collector
Cathode 2
4
5
6
4 Emitter
NC 3
.335 (8.50)
.343 (8.70)
D E
DESCRIPTION
2
3
.300 (7.62)
typ.
.039
(1.00)
min.
.130 (3.30)
.150 (3.81)
4°
typ.
18° typ.
.020 (.051) min.
.031 (0.80)
.035 (0.90)
.018 (0.45)
.022 (0.55)
.300 (7.62)
.347 (8.82)
.100 (2.54) typ.
4
Pin One I.D.
1
2
3
.268 (6.81)
.255 (6.48)
5
The ILD74 has two isolated channels in a single
DIP package; the ILQ74 has four isolated channels per package.
7
6
.110 (2.79)
.150 (3.81)
.010 (.25)
.014 (.35)
Anode
1
8 Emitter
Cathode
2
7 Collector
Cathode
3
6 Collector
Anode
4
5 Emitter
8
.390 (9.91)
.379 (9.63)
.305 typ.
(7.75) typ.
.045 (1.14) .150 (3.81)
.030 (.76) .130 (3.30)
4°
Typ.
.040 (1.02)
.030 (.76 )
.022 (.56)
.018 (.46)
3°–9°
10 °
Typ.
.135 (3.43)
.115 (2.92)
.012 (.30)
.008 (.20)
.100 (2.54) Typ.
Anode 1
7
8
6
5
4
3
2
1
.240 (6.10)
.260 (6.60)
9
10
11
12
13
14
15
.780 (19.81)
.800 (20.32)
.040 (1.02)
.050 (1.27)
.048 (1.22)
.052 (1.32)
5–1
Cathode 2
15 Collector
Cathode 3
14 Collector
pin one
ID. Anode 4
13 Emitter
Anode 5
12 Emitter
Cathode 6
11 Collector
Cathode
10 Collector
7
Anode 8
9
Emitter
.300 (7.62)
typ.
.034 (.86)
.130 (3.30)
.150 (3.81)
.280 (7.11)
.330 (8.38)
.014
(.35)
typ.
.016 (.41)
.020 (.51)
16
16 Emitter
.033 (.84)
typ.
.020 (.51)
.030 (.76)
.0255 (.65)
typ.
.100 (2.54) typ.
.130 (3.30)
.150 (3.81)
3° to 9°
.008 (.20)
.012 (.31)
Maximum Ratings
Figure 1. Forward voltage versus forward current
1.4
VF - Forward Voltage - V
Emitter (each channel)
Peak Reverse Voltage .....................................3.0 V
Continuous Forward Current .........................60 mA
Power Dissipationat 25°C...........................100 mW
Derate Linearly from 25°C....................1.33 mW/°C
Detector (each channel)
Collector-Emitter Breakdown Voltage ..............20 V
Emitter-Base Breakdown Voltage .......................5 V
Collector-Base Breakdown Voltage .................70 V
Power Dissipation at 25°C..........................150 mW
Derate Linearly from 25°C......................2.0 mW/°C
1.0
0.9
Ta = 85°C
0.8
0.7
NCTR - Normalized CTR
1.0
CTRce(sat) Vce = 0.4V
0.5
NCTR(SAT)
NCTR
VF
1.3
1.5
V
IF=20 mA
Reverse Current
IR
0.1
100
µA
VR=3.0 V
Capacitance
CO
25
pF
VR=0
Emitter
Detector
50
Leakage Current,
Collector-Emitter
ICEO
5.0
Capacitance,
Collector-Emitter
CCE
10.0
V
500
NCTR - Normalized CTR
1.5
Condition
BVCEO
IC=1 mA
nA
VCE=5 V,
IF=0
pF
VCE=0,
F=1 MHz
1.0
100
Ta = 50°C
0.5
NCTR(SAT)
NCTR
0.0
.1
DC Current Transfer Ratio
CTRDC
%
Saturation Voltage,
Collector-Emitter
VCEsat
0.3
Resistance, Input
to Output
RIO
100
GΩ
Capacitance, Input
to Output
CIO
0.5
pF
Switching Times
tON,tOFF
3.0
µs
0.5
V
IF=16 mA,
VCE=5 V
IC=2 mA,
IF=16 mA
100
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
1.0
CTRce(sat) Vce = 0.4V
0.5
Ta = 70°C
NCTR(SAT)
NCTR
0.0
RE=100 Ω,
VCE=10 V,
IC=2 mA
1
10
IF - LED Current - mA
Figure 4. Normalized non-saturated and saturated
CTR at TA=70°C versus LED current
NCTR - Normalized CTR
35
1
10
IF - LED Current - mA
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
1.5
Package
12.5
100
Figure 3. Normalized non-saturated and saturated
CTR at TA=50°C versus LED current
Unit
Breakdown
Voltage,
Collector-Emitter
1
10
IF - Forward Current - mA
Normalized to:
Vce = 10V, IF = 10mA
Ta = 25°C
0.0
.1
Max.
20
Ta = 25°C
1.1
1.5
Typ.
Forward Voltage
1.2
Figure 2. Normalized non-saturated and saturated
CTR at TA=25°C versus LED current
Electrical Characteristics (TA=25°C)
Min.
Ta = -55°C
.1
Package
Isolation Test Voltage (t=1 sec.) ........ 5300 VACRMS
Isolation Resistance
VIO=500 V, TA=25°C ............................... ≥1012 Ω
VIO=500 V, TA=100°C ............................. ≥1011 Ω
Total Package Dissipation
at 25°C Ambient (LED Plus Detector)
IL74.........................................................200 mW
ILD74 ......................................................400 mW
IL74Q ......................................................500 mW
Derate Linearly from 25°C
IL74.....................................................2.7 mW/°C
ILD74 ................................................5.33 mW/°C
ILQ74 ................................................6.67 mW/°C
Creepage ............................................... 7 mm min.
Clearance............................................... 7 mm min.
Storage Temperature ...................–55°C to +150°C
Operating Temperature ...............–55°C to +100°C
Lead Soldering Time at 260°C .................... 10 sec.
Symbol
1.3
.1
1
10
IF - LED Current - mA
100
IL/ILD/ILQ74
5–2
Figure 5. Normalized non-saturated and saturated CTR
at TA=85°C versus LED current
Figure 9. Collector base photocurrent versus LED
current
1000
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
1.0
0.5
Ta = 85°C
NCTR(SAT)
NCTR
0.0
.1
1
10
IF - LED Current - mA
100
Icb = 1.0357 *IF ^1.3631
10
1
.1
.01
100
.1
100
1
10
IF - LED Current - mA
Figure 10. Normalized photocurrent versus If and
temperature
Figure 6. Collector-emitter current versus temperature
and LED current
10
35
Normalized to:
30
25
Normalized Photocurrent
Ice - Collector Current - mA
Ta = 25°C
Icb - Collector Base
Photocurrent - µA
NCTR - Normalized CTR
1.5
50°C
20
15
70°C
25°C
85°C
10
5
0
0
10
20
30
40
IF - LED Current - mA
50
If = 10ma, Ta = 25°C
1
NIB-Ta=-20°C
.1
NIb,Ta=25°C
NIb,Ta=50°C
NIb,Ta=70°C
60
.01
.1
1
100
10
If LED Current mA
Figure 11. Normalized non-saturated HFE versus
base current and temperature
5
10
4
10
3
10
10 2
10
10
1.2
NHFE - Normalized HFE
Iceo - Collector-Emitter - nA
Figure 7. Collector-emitter leakage current versus
temperature
g
p
Vce = 10V
1
TYPICAL
0
10 -1
10 -2
-20
70°C
50°C
1.0
-20°C
0.8
0.6
0.4
1
0
20
40
60
80
100
Ta - Ambient Temperature - °C
10
100
Ib - Base Current - µA
1000
Figure 12. Normalized saturated HFE versus base
current and temperature
Figure 8. Normalized CTRcb versus LED current
and temperature
1.5
1.5
Normalized to:
IF =10 mA
Vcb = 9.3 V
Ta = 25°C
1.0
0.5
NHFE(sat) - Normalized
Saturated HFE
NCTRcb - Normalized CTRcb
25°C
Normalized to:
Ib = 20µA
Vce = 10 V
Ta = 25°C
25°C
50°C
70°C
0.0
.1
1
10
IF - LED Current - mA
100
70°C
1.0
50°C
25°C
Normalized to:
Vce = 10V
Ib = 20µA
Ta = 25°C
-20°C
0.5
Vce = 0.4V
0.0
1
10
100
Ib - Base Current - (µA)
1000
IL/ILD/ILQ74
5–3
2.5
tpHL
100
2.0
1.5
10
tpLH
1
1.0
.1
1
10
1000
tpLH - Propagation Delay - µs
Ta = 25°C, IF = 10mA
Vcc = 5 V, Vth = 1.5 V
tpHL - Propagation Delay - µs
tpLH - Propagation Delay - µs
1000
Figure 14. Propagation delay versus collector load resistor
100
RL - Collector Load Resistor - KΩ
2.5
Ta = 25°C, IF = 10mA
Vcc = 5 V, Vth = 1.5 V
tpHL
100
2.0
1.5
10
tpLH
1
1.0
.1
1
10
RL - Collector Load Resistor - KΩ
tpHL - Propagation Delay - µs
Figure 13. Propagation delay versus collector load resistor
100
IL/ILD/ILQ74
5–4