IL74 DUAL CHANNEL ILD74 QUAD CHANNEL ILQ74 SINGLE CHANNEL PHOTOTRANSISTOR OPTOCOUPLER FEATURES • 7400 Series T2L Compatible • Transfer Ratio, 35% Typical • Coupling Capacitance, 0.5 pF • Single, Dual, & Quad Channel • Industry Standard DIP Package • Underwriters Lab File #E52744 V • VDE Approvals #0884 (Optional with Option 1, Add -X001 Suffix) Dimensions in inches (mm) Pin One ID. The IL74 is an optically coupled pair with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL74 is especially designed for driving medium-speed logic, where it may be used to eliminate troublesome gound loop and noise problems. Also it can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation. 1 6 Base Anode 1 .248 (6.30) .256 (6.50) 5 Collector Cathode 2 4 5 6 4 Emitter NC 3 .335 (8.50) .343 (8.70) D E DESCRIPTION 2 3 .300 (7.62) typ. .039 (1.00) min. .130 (3.30) .150 (3.81) 4° typ. 18° typ. .020 (.051) min. .031 (0.80) .035 (0.90) .018 (0.45) .022 (0.55) .300 (7.62) .347 (8.82) .100 (2.54) typ. 4 Pin One I.D. 1 2 3 .268 (6.81) .255 (6.48) 5 The ILD74 has two isolated channels in a single DIP package; the ILQ74 has four isolated channels per package. 7 6 .110 (2.79) .150 (3.81) .010 (.25) .014 (.35) Anode 1 8 Emitter Cathode 2 7 Collector Cathode 3 6 Collector Anode 4 5 Emitter 8 .390 (9.91) .379 (9.63) .305 typ. (7.75) typ. .045 (1.14) .150 (3.81) .030 (.76) .130 (3.30) 4° Typ. .040 (1.02) .030 (.76 ) .022 (.56) .018 (.46) 3°–9° 10 ° Typ. .135 (3.43) .115 (2.92) .012 (.30) .008 (.20) .100 (2.54) Typ. Anode 1 7 8 6 5 4 3 2 1 .240 (6.10) .260 (6.60) 9 10 11 12 13 14 15 .780 (19.81) .800 (20.32) .040 (1.02) .050 (1.27) .048 (1.22) .052 (1.32) 5–1 Cathode 2 15 Collector Cathode 3 14 Collector pin one ID. Anode 4 13 Emitter Anode 5 12 Emitter Cathode 6 11 Collector Cathode 10 Collector 7 Anode 8 9 Emitter .300 (7.62) typ. .034 (.86) .130 (3.30) .150 (3.81) .280 (7.11) .330 (8.38) .014 (.35) typ. .016 (.41) .020 (.51) 16 16 Emitter .033 (.84) typ. .020 (.51) .030 (.76) .0255 (.65) typ. .100 (2.54) typ. .130 (3.30) .150 (3.81) 3° to 9° .008 (.20) .012 (.31) Maximum Ratings Figure 1. Forward voltage versus forward current 1.4 VF - Forward Voltage - V Emitter (each channel) Peak Reverse Voltage .....................................3.0 V Continuous Forward Current .........................60 mA Power Dissipationat 25°C...........................100 mW Derate Linearly from 25°C....................1.33 mW/°C Detector (each channel) Collector-Emitter Breakdown Voltage ..............20 V Emitter-Base Breakdown Voltage .......................5 V Collector-Base Breakdown Voltage .................70 V Power Dissipation at 25°C..........................150 mW Derate Linearly from 25°C......................2.0 mW/°C 1.0 0.9 Ta = 85°C 0.8 0.7 NCTR - Normalized CTR 1.0 CTRce(sat) Vce = 0.4V 0.5 NCTR(SAT) NCTR VF 1.3 1.5 V IF=20 mA Reverse Current IR 0.1 100 µA VR=3.0 V Capacitance CO 25 pF VR=0 Emitter Detector 50 Leakage Current, Collector-Emitter ICEO 5.0 Capacitance, Collector-Emitter CCE 10.0 V 500 NCTR - Normalized CTR 1.5 Condition BVCEO IC=1 mA nA VCE=5 V, IF=0 pF VCE=0, F=1 MHz 1.0 100 Ta = 50°C 0.5 NCTR(SAT) NCTR 0.0 .1 DC Current Transfer Ratio CTRDC % Saturation Voltage, Collector-Emitter VCEsat 0.3 Resistance, Input to Output RIO 100 GΩ Capacitance, Input to Output CIO 0.5 pF Switching Times tON,tOFF 3.0 µs 0.5 V IF=16 mA, VCE=5 V IC=2 mA, IF=16 mA 100 Normalized to: Vce = 10V, IF = 10mA Ta = 25°C 1.0 CTRce(sat) Vce = 0.4V 0.5 Ta = 70°C NCTR(SAT) NCTR 0.0 RE=100 Ω, VCE=10 V, IC=2 mA 1 10 IF - LED Current - mA Figure 4. Normalized non-saturated and saturated CTR at TA=70°C versus LED current NCTR - Normalized CTR 35 1 10 IF - LED Current - mA Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 1.5 Package 12.5 100 Figure 3. Normalized non-saturated and saturated CTR at TA=50°C versus LED current Unit Breakdown Voltage, Collector-Emitter 1 10 IF - Forward Current - mA Normalized to: Vce = 10V, IF = 10mA Ta = 25°C 0.0 .1 Max. 20 Ta = 25°C 1.1 1.5 Typ. Forward Voltage 1.2 Figure 2. Normalized non-saturated and saturated CTR at TA=25°C versus LED current Electrical Characteristics (TA=25°C) Min. Ta = -55°C .1 Package Isolation Test Voltage (t=1 sec.) ........ 5300 VACRMS Isolation Resistance VIO=500 V, TA=25°C ............................... ≥1012 Ω VIO=500 V, TA=100°C ............................. ≥1011 Ω Total Package Dissipation at 25°C Ambient (LED Plus Detector) IL74.........................................................200 mW ILD74 ......................................................400 mW IL74Q ......................................................500 mW Derate Linearly from 25°C IL74.....................................................2.7 mW/°C ILD74 ................................................5.33 mW/°C ILQ74 ................................................6.67 mW/°C Creepage ............................................... 7 mm min. Clearance............................................... 7 mm min. Storage Temperature ...................–55°C to +150°C Operating Temperature ...............–55°C to +100°C Lead Soldering Time at 260°C .................... 10 sec. Symbol 1.3 .1 1 10 IF - LED Current - mA 100 IL/ILD/ILQ74 5–2 Figure 5. Normalized non-saturated and saturated CTR at TA=85°C versus LED current Figure 9. Collector base photocurrent versus LED current 1000 Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 1.0 0.5 Ta = 85°C NCTR(SAT) NCTR 0.0 .1 1 10 IF - LED Current - mA 100 Icb = 1.0357 *IF ^1.3631 10 1 .1 .01 100 .1 100 1 10 IF - LED Current - mA Figure 10. Normalized photocurrent versus If and temperature Figure 6. Collector-emitter current versus temperature and LED current 10 35 Normalized to: 30 25 Normalized Photocurrent Ice - Collector Current - mA Ta = 25°C Icb - Collector Base Photocurrent - µA NCTR - Normalized CTR 1.5 50°C 20 15 70°C 25°C 85°C 10 5 0 0 10 20 30 40 IF - LED Current - mA 50 If = 10ma, Ta = 25°C 1 NIB-Ta=-20°C .1 NIb,Ta=25°C NIb,Ta=50°C NIb,Ta=70°C 60 .01 .1 1 100 10 If LED Current mA Figure 11. Normalized non-saturated HFE versus base current and temperature 5 10 4 10 3 10 10 2 10 10 1.2 NHFE - Normalized HFE Iceo - Collector-Emitter - nA Figure 7. Collector-emitter leakage current versus temperature g p Vce = 10V 1 TYPICAL 0 10 -1 10 -2 -20 70°C 50°C 1.0 -20°C 0.8 0.6 0.4 1 0 20 40 60 80 100 Ta - Ambient Temperature - °C 10 100 Ib - Base Current - µA 1000 Figure 12. Normalized saturated HFE versus base current and temperature Figure 8. Normalized CTRcb versus LED current and temperature 1.5 1.5 Normalized to: IF =10 mA Vcb = 9.3 V Ta = 25°C 1.0 0.5 NHFE(sat) - Normalized Saturated HFE NCTRcb - Normalized CTRcb 25°C Normalized to: Ib = 20µA Vce = 10 V Ta = 25°C 25°C 50°C 70°C 0.0 .1 1 10 IF - LED Current - mA 100 70°C 1.0 50°C 25°C Normalized to: Vce = 10V Ib = 20µA Ta = 25°C -20°C 0.5 Vce = 0.4V 0.0 1 10 100 Ib - Base Current - (µA) 1000 IL/ILD/ILQ74 5–3 2.5 tpHL 100 2.0 1.5 10 tpLH 1 1.0 .1 1 10 1000 tpLH - Propagation Delay - µs Ta = 25°C, IF = 10mA Vcc = 5 V, Vth = 1.5 V tpHL - Propagation Delay - µs tpLH - Propagation Delay - µs 1000 Figure 14. Propagation delay versus collector load resistor 100 RL - Collector Load Resistor - KΩ 2.5 Ta = 25°C, IF = 10mA Vcc = 5 V, Vth = 1.5 V tpHL 100 2.0 1.5 10 tpLH 1 1.0 .1 1 10 RL - Collector Load Resistor - KΩ tpHL - Propagation Delay - µs Figure 13. Propagation delay versus collector load resistor 100 IL/ILD/ILQ74 5–4