IGW25T120 TrenchStop Series ^ Low Loss IGBT in Trench and Fieldstop technology • • • • • • • • C Approx. 1.0V reduced VCE(sat) compared to BUP314 Short circuit withstand time – 10µs Designed for : G E - Frequency Converters - Uninterrupted Power Supply Trench and Fieldstop technology for 1200 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior NPT technology offers easy parallel switching capability due to positive temperature coefficient in VCE(sat) Low EMI Low Gate Charge Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type IGW25T120 VCE IC VCE(sat),Tj=25°C Tj,max 1200V 25A 1.7V 150°C P-TO-247-3-1 (TO-247AC) Package Ordering Code TO-247AC Q67040-S4517 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V DC collector current IC A TC = 25°C 50 TC = 100°C 25 Pulsed collector current, tp limited by Tjmax ICpul s 75 Turn off safe operating area - 75 VGE ±20 V tSC 10 µs Ptot 190 W °C VCE ≤ 1200V, Tj ≤ 150°C Gate-emitter voltage 1) Short circuit withstand time VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction temperature Tj -40...+150 Storage temperature Tstg -55...+150 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 1) 260 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.65 K/W Characteristic IGBT thermal resistance, RthJC junction – case Thermal resistance, TO-247AC RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 1200 - - T j =2 5 °C - 1.7 2.2 T j =1 2 5° C - 2.0 - T j =1 5 0° C - 2.2 - 5.0 5.8 6.5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 25 A Gate-emitter threshold voltage VGE(th) I C = 1m A, VCE=VGE Zero gate voltage collector current ICES V C E = 12 0 0V , V G E = 0V mA T j =2 5 °C - - 0.25 T j =1 5 0° C - - 2.5 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 600 nA Transconductance gfs V C E = 20 V , I C = 25 A - 16 - S Integrated gate resistor RGint Power Semiconductors 8 2 Ω Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ Dynamic Characteristic Ciss V C E = 25 V , - 1860 - Coss V G E = 0V , - 96 - Reverse transfer capacitance Crss f= 1 MH z - 82 - Gate charge QGate V C C = 96 0 V, I C =2 5 A - 155 - nC nH Input capacitance Output capacitance pF V G E = 15 V Internal emitter inductance LE T O - 24 7A C - - 13 IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C = 6 0 0 V, T j = 25 ° C - 150 - measured 5mm (0.197 in.) from case Short circuit collector current 1) A Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 50 - - 30 - - 560 - - 70 - - 2.0 - - 2.2 - - 4.2 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 60 0 V, I C = 2 5 A V G E =- 15 /1 5 V , R G = 22 Ω, 2) L σ =1 8 0n H, 2) C σ = 3 9p F Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 50 - - 32 - - 660 - - 130 - - 3.0 - - 4.0 - - 7.0 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) 2) T j =1 5 0° C V C C = 60 0 V, I C = 2 5 A, V G E =- 15 /1 5 V , R G = 2 2Ω , 2) L σ =1 8 0n H, 2) C σ = 3 9p F Energy losses include “tail” and diode reverse recovery. ns mJ Allowed number of short circuits: <1000; time between short circuits: >1s. Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. Power Semiconductors 3 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ tp=3µs 60A TC=80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 70A 50A 40A TC=110°C 30A 20A 10A 0A 10Hz Ic 10µs 10A 50µs 150µs 1A 500µs Ic 100Hz 20ms 1kHz 10kHz 0,1A 1V 100kHz DC 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 600V, VGE = 0/+15V, RG = 22Ω) 150W IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 40A 100W 50W 0W 25°C 50°C 75°C 100°C 20A 10A 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 30A 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 150°C) 4 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ 70A 60A VGE=17V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 60A 70A 15V 50A 13V 40A 11V 9V 30A 7V 20A 10A 15V 50A 13V 40A 11V 9V 30A 7V 20A 10A 0A 0A 0V 1V 2V 3V 4V 5V 6V 0V 70A 60A 50A 40A 30A 20A TJ=150°C 25°C 10A 0A 0V 2V 4V 6V 8V 10V 12V 2V 3V 4V 5V 6V 3,0V IC=50A 2,5V 2,0V IC=25A 1,5V IC=15A IC=8A 1,0V 0,5V 0,0V -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 1V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT VGE=17V 5 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ td(off) tf t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns td(on) 10ns tf 100 ns td(on) tr 10 ns tr 1ns 0A 10A 20A 30A 1 ns 40A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=22Ω, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE t, SWITCHING TIMES 100ns tf td(on) tr 0°C 50°C 100°C 25Ω 35Ω 45Ω 7V 6V max. 5V typ. 4V min. 3V 2V 1V 0V -50°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E) Power Semiconductors 15Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=25A, Dynamic test circuit in Figure E) td(off) 10ns 5Ω 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 1.0mA) 6 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ *) Eon and Etsinclude losses due to diode recovery E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 14,0mJ *) Eon and Ets include losses due to diode recovery 12,0mJ 10,0mJ 8,0mJ 6,0mJ Ets* 4,0mJ Eoff 2,0mJ 8 mJ Ets* 6 mJ Eoff 4 mJ Eon* 2 mJ Eon* 0,0mJ 10A 20A 30A 0 mJ 40A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=22Ω, Dynamic test circuit in Figure E) *) E on and E ts include losses due to diode recovery 10mJ 6mJ 5mJ 4mJ E ts * 3mJ E off 2mJ E on* 1mJ 0mJ 100°C 35Ω *) Eon and Ets include losses due to diode recovery 8mJ 7mJ 6mJ 5mJ 4mJ Ets* 3mJ 2mJ Eoff Eon* 0mJ 400V 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E) Power Semiconductors 25Ω 9mJ 1mJ 50°C 15Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=25A, Dynamic test circuit in Figure E) E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 7mJ 5Ω 500V 600V 700V 800V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ=150°C, VGE=0/15V, IC=25A, RG=22Ω, Dynamic test circuit in Figure E) 7 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ 15V 240V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 1nF 960V 10V Crss 5V 0V 0nC 50nC 100nC 150nC 10pF 200nC 15µs 10µs 5µs 0µs 12V 14V 10V 20V 200A 150A 100A 50A 0A 16V VGE, GATE-EMITTETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) IC(sc), short circuit COLLECTOR CURRENT QGE, GATE CHARGE Figure 17. Typical gate charge (IC=25 A) tSC, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 12V 14V 16V 18V VGE, GATE-EMITTETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 8 Preliminary / Rev. 1 Jul-02 IGW25T120 VCE, COLLECTOR-EMITTER VOLTAGE 600V VCE 60A 400V 40A 200V 0V 20A 60A 600V 40A 400V IC 200V 20A VCE IC 0.5us 0us 1us 0A 0us 0A 1.5us t, TIME Figure 21. Typical turn on behavior (VGE=0/15V, RG=22Ω, Tj = 150°C, Dynamic test circuit in Figure E) ZthJC, TRANSIENT THERMAL RESISTANCE IC, COLLECTOR CURRENT TrenchStop Series ^ 0V 0.5us 1us 1.5us t, TIME Figure 22. Typical turn off behavior (VGE=15/0V, RG=22Ω, Tj = 150°C, Dynamic test circuit in Figure E) D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(K/W) 0.229 0.192 single pulse 0.174 0.055 0.01 -2 10 K/W R1 τ, (s)= 1.10*10-1 1.56*10-2 1.35*10-3 1.52*10-4 R2 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 -3 10 K/W 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 23. IGBT transient thermal resistance (D = tp / T) Power Semiconductors 9 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ dimensions TO-247AC [mm] symbol min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 Q 10 0.0299 max H ∅P Power Semiconductors [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Preliminary / Rev. 1 Jul-02 IGW25T120 TrenchStop Series ^ τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn TC Figure A. Definition of switching times Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =39pF. Figure B. Definition of switching losses Power Semiconductors 11 Preliminary / Rev. 1 Jul-02 IGW25T120 ^ TrenchStop Series Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 12 Preliminary / Rev. 1 Jul-02