www.DataSheet4U.com IHW20T120 Soft Switching Series Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode • • • • • • Short circuit withstand time – 10µs Designed for : - Soft Switching Applications - Induction Heating Trench and Fieldstop technology for 1200 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - easy parallel switching capability due to positive temperature coefficient in VCE(sat) Very soft, fast recovery anti-parallel EmCon™ HE diode Low EMI Application specific optimisation of inverse diode Type IHW20T120 C G E VCE IC VCE(sat),Tj=25°C Tj,max Marking Package Ordering Code 1200V 20A 1.7V 150°C H20T120 TO-247AC Q67040-S4652 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V DC collector current IC A TC = 25°C 40 TC = 100°C 20 Pulsed collector current, tp limited by Tjmax ICpuls 60 Turn off safe operating area - 60 VCE ≤ 1200V, Tj ≤ 150°C Diode forward current IF TC = 25°C 23 TC = 100°C 13 Diode pulsed current, tp limited by Tjmax IFpuls Diode surge non repetitive current, tp limited by Tjmax IFSM 36 A TC = 25°C, tp = 10ms, sine halfwave 50 TC = 25°C, tp ≤ 2.5µs, sine halfwave 130 TC = 100°C, tp ≤ 2.5µs, sine halfwave 120 VGE ±20 V tSC 10 µs Power dissipation, TC = 25°C Ptot 178 W Operating junction temperature Tj -40...+150 °C Storage temperature Tstg -55...+150 °C Soldering temperature, 1.6mm (0.063 in.) from case for 10s - Gate-emitter voltage Short circuit withstand time 1) VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C 1) 260 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.7 K/W RthJCD 1.3 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, TO-247AC RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 1200 - - T j = 25° C - 1.7 2.2 T j = 12 5° C - 2.0 - T j = 15 0° C - 2.2 - T j = 25° C - 1.7 2.2 T j = 12 5° C - 1.7 - T j = 15 0° C - 1.7 - 5.0 5.8 6.5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V, I C = 50 0µA Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V V G E = 15V, I C = 20A V G E = 0V, I F = 9A Gate-emitter threshold voltage VGE(th) I C = 30 0µA, V C E =V G E Zero gate voltage collector current ICES V C E = 1200V , V G E = 0V µA T j = 25° C - - 250 T j = 15 0° C - - 2500 Gate-emitter leakage current IGES V C E = 0V ,V G E = 2 0V - - 600 nA Transconductance gfs V C E = 20V, I C = 20A - 13 - S Power Semiconductors 2 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series Dynamic Characteristic pF Input capacitance Ciss V C E = 25V, - 1460 - Output capacitance Coss V G E = 0V, - 78 - Reverse transfer capacitance Crss f= 1 M Hz - 65 - Gate charge QGate V C C = 9 60V, I C = 20A - 120 - nC nH V G E = 1 5V Internal emitter inductance LE T O -247A C - - 13 IC(SC) V G E = 1 5V,t S C ≤10µs V C C = 600V, T j = 25° C - 120 - measured 5mm (0.197 in.) from case Short circuit collector current1) A Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j = 25° C, - 50 - Rise time tr V C C = 6 00V, I C = 20A, - 30 - Turn-off delay time td(off) V G E = - 1 5/ 1 5V, - 560 - Fall time tf R G = 2 8Ω , - 70 - Turn-on energy Eon - 1.8 - Turn-off energy Eoff - 1.5 - Total switching energy Energy losses include “tail” and diode reverse recovery. Ets - 3.3 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j = 25° C, - 140 Diode reverse recovery charge Qrr V R = 8 00V, I F = 9A, - 950 nC Diode peak reverse recovery current Irrm di F / dt = 75 0A / µs - 13.3 A 1) ns Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 3 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. Unit IGBT Characteristic Turn-on delay time td(on) T j = 15 0° C - 50 - Rise time tr V C C = 6 00V, - 32 - Turn-off delay time td(off) I C = 20A, - 660 - Fall time tf V G E = - 1 5/ 1 5V, - 130 - Turn-on energy Eon R G = 28Ω - 2.6 - Turn-off energy Eoff Total switching energy Ets Energy losses include “tail” and diode reverse recovery. - 2.6 - - 5.2 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j = 15 0° C - 210 - ns Diode reverse recovery charge Qrr V R = 8 00V, I F = 1 8A , - 1600 - nC Diode peak reverse recovery current Irrm di F / dt = 75 0A / µs - 16.5 - A Power Semiconductors 4 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series 70A t p =2µs 60A T C =80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 50A 40A T C =110°C 30A Ic 20A 10A 10µs 50µs 200µs 1A 500µs 2ms Ic 10A DC 0A 10H z 100H z 1kH z 10kH z 0,1A 1V 100kHz 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. IGBT Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 600V, VGE = 0/+15V, RG = 28Ω) 180W 40A 160W IC, COLLECTOR CURRENT Ptot, DISSIPATED POWER 140W 120W 100W 80W 60W 40W 30A 20A 10A 20W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 150°C) 5 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series 60A 60A 50A 50A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT V GE =17V 15V 40A 13V 11V 30A 9V 7V 20A 10A 0V 1V 2V 3V 4V 5V 15V 13V 11V 30A 9V 7V 20A 0A 6V 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) 1V 2V 3V 4V 5V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) 3,5V VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE 60A 50A IC, COLLECTOR CURRENT 40A 10A 0A 40A 30A 20A T J = 1 5 0 °C 10A 0A V GE =17V 2 5 °C 0V 2V 4V 6V 8V 10V 12V 2,5V IC =20A 2,0V IC =10A 1,5V 1,0V IC =5A 0,5V 0,0V -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors IC =40A 3,0V 6 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series t d(off) 1µs td(off) t, SWITCHING TIMES t, SWITCHING TIMES 1000ns tf 100ns t d(on) tf 100ns td(on) tr tr 10ns 0A 10A 10ns 10Ω 20A t, SWITCHING TIMES td(off) tf 100ns td(on) tr 10ns 0°C 50°C 100°C 85Ω 110Ω 7V 6V max. 5V typ. 4V min. 3V 2V 1V 0V -50°C 150° TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=20A, RG=35Ω, Dynamic test circuit in Figure E) Power Semiconductors 60Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=35Ω, Dynamic test circuit in Figure E) 35Ω 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) 7 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series 7 mJ 8,0m J 6,0m J E ts * 4,0m J E off 2,0m J E on * 5 mJ 4 mJ 10A 15A 20A 25A 30A 35A E on* 2 mJ 1 mJ 40 IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=35Ω, Dynamic test circuit in Figure E) 30Ω 55Ω 80Ω 5m J *) E on and E ts include losses *) E on a n d E ts in c lu d e lo s s e s due to diode recovery E, SWITCHING ENERGY LOSSES d u e to d io d e re c o v e ry 5mJ E, SWITCHING ENERGY LOSSES 5Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) 6mJ 4mJ 3mJ E * ts 2mJ E o ff 1mJ E off 3 mJ 0 mJ 0,0m J 5A E ts* due to diode recovery 6 mJ due to diode recovery E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) E on and E ts include losses *) E on and E ts include loss es E on * 4m J 3m J E ts * 2m J E off 1m J E on * 0mJ 5 0 °C 1 0 0 °C 0m J 400V 1 5 0 °C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=20A, RG=35Ω, Dynamic test circuit in Figure E) Power Semiconductors 500V 600V 700V 800V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ=150°C, VGE=0/15V, IC=20A, RG=35Ω, Dynamic test circuit in Figure E) 8 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series C iss 15V 240V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 1nF 960V 10V C oss 100pF C rss 5V 0V 0nC 50nC 100nC 10pF 150nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC=20 A) 0V 10V 20V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) IC(sc), short circuit COLLECTOR CURRENT 15µs 10µs 5µs tSC, SHORT CIRCUIT WITHSTAND TIME 200A 0µs 12V 14V 150A 125A 100A 75A 50A 25A 0A 12V 16V VGE, GATE-EMITTETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 175A 14V 16V 18V VGE, GATE-EMITTETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 9 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series 0 D=0.5 0.2 -1 10 K/W R,(K/W) 0.3841 0.2088 0.1079 0.1 0.05 R1 τ, (s) -2 6.54*10 -3 3.12*10 -4 2.26*10 R2 0.02 0.01 C1= τ1/R1 C2= τ2/R2 single pulse ZthJC, TRANSIENT THERMAL RESISTANCE ZthJC, TRANSIENT THERMAL RESISTANCE 0 10 K/W 10 K/W D=0.5 0.2 -1 10 K/W τ, (s) -2 5.53*10 -3 7.07*10 -4 8.85*10 -5 8.48*10 R,(K/W) 0.2440 0.4622 0.4972 0.0946 0.1 0.05 R1 0.02 R2 0.01 C1= τ1/R1 single pulse C2= τ2/R2 -2 10 K/W 10µs 100µs 1ms 10ms 100ms 10µs trr, REVERSE RECOVERY TIME 500ns 400ns 300ns 200ns TJ=150°C 100ns 0ns 200A/µs TJ=25°C 400A/µs 600A/µs 10ms 100ms TJ=150°C 2µC 1µC TJ=25°C 0µC 200A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) Power Semiconductors 1ms tP, PULSE WIDTH Figure 24. Typical Diode transient thermal impedance as a function of pulse width (D=tP/T) Qrr, REVERSE RECOVERY CHARGE tP, PULSE WIDTH Figure 23. IGBT transient thermal resistance (D = tp / T) 100µs 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) 10 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series 25A TJ=25°C 20A 15A 10A 5A 0A 200A/µs 400A/µs 600A/µs TJ=25°C dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT TJ=150°C -600A/µs -500A/µs TJ=150°C -400A/µs -300A/µs -200A/µs -100A/µs -0A/µs 200A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) TJ=25°C 150°C 2,0V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 20A 10A IF=15A 1,5V 8A 5A 2,5A 1,0V 0,5V 0A 0V 1V 0,0V 2V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature 11 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series TO-247AC dimensions [mm] symbol max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 Q 12 0.0299 max H ∅P Power Semiconductors [inch] min 3.61 6.12 0.1421 6.22 Rev. 2 0.2409 0.2449 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Power Semiconductors 13 Rev. 2 Apr-04 www.DataSheet4U.com IHW20T120 Soft Switching Series Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 14 Rev. 2 Apr-04