IGW40T120 TrenchStop Series ^ Low Loss IGBT in Trench and Fieldstop technology C • • • • • • • Short circuit withstand time – 10µs Designed for : G E - Frequency Converters - Uninterrupted Power Supply Trench and Fieldstop technology for 1200 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior NPT technology offers easy parallel switching capability due to positive temperature coefficient in VCE(sat) Low EMI Low Gate Charge Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type IGW40T120 VCE IC VCE(sat),Tj=25°C Tj,max 1200V 40A 1.8V 150°C P-TO-247-3-1 (TO-247AC) Package Ordering Code TO-247AC Q67040-S4519 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V DC collector current IC A TC = 25°C 75 TC = 100°C 40 Pulsed collector current, tp limited by Tjmax ICpul s 105 Turn off safe operating area - 105 VGE ±20 V tSC 10 µs Ptot 270 W °C VCE ≤ 1200V, Tj ≤ 150°C Gate-emitter voltage 1) Short circuit withstand time VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction temperature Tj -40...+150 Storage temperature Tstg -55...+150 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 1) 260 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.45 K/W Characteristic IGBT thermal resistance, RthJC junction – case Thermal resistance, TO-247AC RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 1200 - - T j =2 5 °C - 1.8 2.3 T j =1 2 5° C - 2.1 - T j =1 5 0° C - 2.3 - 5.0 5.8 6.5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 1 .5m A Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 40 A Gate-emitter threshold voltage VGE(th) I C = 1. 5m A, V C E = V G E Zero gate voltage collector current ICES V C E = 12 0 0V , V G E = 0V mA T j =2 5 °C - - 0.4 T j =1 5 0° C - - 4.0 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 600 nA Transconductance gfs V C E = 20 V , I C = 40 A - 21 - S Integrated gate resistor RGint Power Semiconductors 6 2 Ω Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ Dynamic Characteristic Ciss V C E = 25 V , - 2500 - Coss V G E = 0V , - 130 - Reverse transfer capacitance Crss f= 1 MH z - 110 - Gate charge QGate V C C = 96 0 V, I C =4 0 A - 203 - nC nH Input capacitance Output capacitance pF V G E = 15 V Internal emitter inductance LE T O - 24 7A C - - 13 IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C = 6 0 0 V, T j = 25 ° C - 210 - measured 5mm (0.197 in.) from case Short circuit collector current 1) A Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 48 - - 34 - - 480 - - 70 - - 3.3 - - 3.2 - - 6.5 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 60 0 V, I C = 4 0 A, V G E = 0/ 15 V , R G = 15 Ω, 2) L σ =1 8 0n H, 2) C σ = 3 9p F Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 52 - - 40 - - 580 - - 120 - - 5.0 - - 5.4 - - 10.4 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) 2) T j =1 5 0° C V C C = 60 0 V, I C = 4 0 A, V G E = 0/ 15 V , R G = 1 5Ω , 2) L σ =1 8 0n H, 2) C σ = 3 9p F Energy losses include “tail” and diode reverse recovery. ns mJ Allowed number of short circuits: <1000; time between short circuits: >1s. Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. Power Semiconductors 3 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ 100A tp=3µs 100A 80A 10µs TC=110°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT TC=80°C 60A 40A Ic 20A 10A 50µs 150µs 500µs 1A 20ms Ic DC 0A 10Hz 100Hz 1kHz 10kHz 0,1A 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 600V, VGE = 0/+15V, RG = 15Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) 70A 60A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 250W 200W 150W 100W 50W 0W 25°C 50A 40A 30A 20A 10A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 4 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 150°C) Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series 100A 100A 90A 90A 80A VGE=17V 70A 15V 60A 13V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT ^ 11V 50A 9V 40A 7V 30A VGE=17V 70A 15V 60A 13V 11V 50A 9V 40A 7V 30A 20A 20A 10A 10A 0A 0A 0V 1V 2V 3V 4V 5V 6V 0V 100A 90A 80A 70A 60A 50A 40A 30A 20A TJ=150°C 25°C 10A 0A 0V 2V 4V 6V 8V 10V 12V 2V 3V 4V 5V 6V 3,5V IC=80A 3,0V 2,5V 2,0V IC=40A 1,5V IC=25A 1,0V IC=10A 0,5V 0,0V -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 1V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT 80A 5 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES 1000 ns tf td(on) tr 10ns 1ns 0A 20A 40A td(off) 100 ns tf td(on) tr 10 ns 1 ns 60A 5Ω IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=15Ω, Dynamic test circuit in Figure E) 15Ω 25Ω 35Ω 45Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=40A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE t, SWITCHING TIMES td(off) 100ns tf td(on) tr 10ns 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=40A, RG=15Ω, Dynamic test circuit in Figure E) Power Semiconductors 7V 6V max. 5V typ. 4V min. 3V 2V 1V 0V -50°C 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 1.5mA) 6 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ Ets* 20,0mJ 15,0mJ Eon* 10,0mJ Eoff 5,0mJ 0,0mJ 10A 20A 30A 40A 50A 60A E off E on* E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES Eoff 5 mJ 15mJ 10mJ 5mJ Eon* 5Ω 15Ω 25Ω 35Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=40A, Dynamic test circuit in Figure E) *) E on and E ts include losses due to diode recovery E ts * Ets* 10 mJ 0 mJ 70A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=15Ω, Dynamic test circuit in Figure E) 15mJ *) Eon and Ets include losses due to diode recovery 15 mJ 25,0mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) Eon and Etsinclude losses due to diode recovery *) Eon and Ets include losses due to diode recovery 10mJ Ets* 5mJ E off Eon* 0mJ 50°C 100°C 0mJ 400V 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=40A, RG=15Ω, Dynamic test circuit in Figure E) Power Semiconductors 500V 600V 700V 800V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ=150°C, VGE=0/15V, IC=40A, RG=15Ω, Dynamic test circuit in Figure E) 7 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ 1nF 15V 240V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 960V 10V Crss 5V 0V 0nC 50nC 100nC 150nC 200nC IC(sc), short circuit COLLECTOR CURRENT 10µs 5µs 12V 14V 10V 20V 300A 200A 100A 0A 16V VGE, GATE-EMITTETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) 15µs 0µs 10pF 250nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC=40 A) tSC, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 12V 14V 16V 18V VGE, GATE-EMITTETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 8 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series VCE 600V 60A 400V 40A 200V 20A 0V 600V 60A 40A IC 400V 200V 20A VCE IC 0A 0us 0.5us 1us 1.5us t, TIME Figure 21. Typical turn on behavior (VGE=0/15V, RG=15Ω, Tj = 150°C, Dynamic test circuit in Figure E) ZthJC, TRANSIENT THERMAL RESISTANCE IC, COLLECTOR CURRENT VCE, COLLECTOR-EMITTER VOLTAGE ^ 0A 0us 0V 0.5us 1us 1.5us t, TIME Figure 22. Typical turn off behavior (VGE=15/0V, RG=15Ω, Tj = 150°C, Dynamic test circuit in Figure E) D=0.5 -1 10 K/W 0.2 0.1 0.05 -2 10 K/W R,(K/W) 0.159 0.133 0.02 0.120 0.01 0.038 single pulse R1 τ, (s)= 1.10*10-1 1.56*10-2 1.35*10-3 1.51*10-4 R2 C 1 = τ 1 /R 1 C 2 = τ 2 /R 2 10ms 100ms -3 10 K/W 10µs 100µs 1ms tP, PULSE WIDTH Figure 23. IGBT transient thermal resistance (D = tp / T) Power Semiconductors 9 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ dimensions TO-247AC [mm] symbol min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 Q 10 0.0299 max H ∅P Power Semiconductors [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Preliminary / Rev. 1 Jul-02 IGW40T120 TrenchStop Series ^ τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Power Semiconductors Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =39pF. 11 Preliminary / Rev. 1 Jul-02 IGW40T120 ^ TrenchStop Series Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 12 Preliminary / Rev. 1 Jul-02