IRF IRF9310PBF

PD - 97437A
IRF9310PbF
HEXFET® Power MOSFET
VDS
RDS(on) max
(@VGS = 10V)
ID
-30
V
6
'
4.6
mΩ
6
'
6
'
*
'
-20
(@TA = 25°C)
A
SO-8
Applications
• Charge and Discharge Switch for Notebook PC Battery Application
Features and Benefits
Resulting Benefits
Features
Low RDSon (≤ 4.6mΩ)
Industry-Standard SO8 Package
RoHS Compliant Containing no Lead, no Bromide and no Halogen
Orderable part number
Package Type
IRF9310PbF
IRF9310TRPbF
SO8
SO8
Lower Conduction Losses
results in
Multi-Vendor Compatibility
⇒
Environmentally Friendlier
Standard Pack
Form
Quantity
Tube/Bulk
95
4000
Tape and Reel
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
-30
VGS
± 20
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
-16
IDM
Pulsed Drain Current
-160
PD @TA = 25°C
Power Dissipation
PD @TA = 70°C
Power Dissipation
f
f
c
Units
V
-20
2.5
1.6
Linear Derating Factor
0.02
TJ
Operating Junction and
-55 to + 150
TSTG
Storage Temperature Range
A
W
W/°C
°C
Notes  through … are on page 2
www.irf.com
1
03/19/2010
IRF9310PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
-30
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
–––
0.020
3.9
–––
4.6
5.8
-1.8
6.8
-2.4
Static Drain-to-Source On-Resistance
Conditions
Min. Typ. Max. Units
BVDSS
V
VGS = 0V, ID = -250µA
V/°C Reference to 25°C, ID = -1mA
VGS = -10V, ID = -20A
mΩ
VGS = -4.5V, ID = -16A
e
e
VGS(th)
Gate Threshold Voltage
–––
-1.3
∆VGS(th)
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-5.8
–––
–––
–––
V
VDS = VGS, ID = -100µA
––– mV/°C
VDS = -24V, VGS = 0V
-1.0
µA
VDS = -24V, VGS = 0V, TJ = 125°C
-150
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
-100
100
nA
gfs
Qg
Forward Transconductance
Total Gate Charge
39
–––
–––
58
–––
–––
S
nC
Qg
Qgs
Gate-to-Source Charge
–––
–––
110
17
165
–––
nC
–––
–––
28
2.8
–––
–––
Turn-On Delay Time
Rise Time
–––
–––
25
47
–––
–––
td(off)
tf
Turn-Off Delay Time
Fall Time
–––
–––
65
70
–––
–––
Ciss
Input Capacitance
–––
5250
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
1300
880
–––
–––
Qgd
RG
td(on)
tr
h
Total Gate Charge h
h
Gate-to-Drain Charge h
Gate Resistance h
VGS = -20V
VGS = 20V
VDS = -10V, ID = -16A
VDS = -15V, VGS = -4.5V, ID = - 16A
VGS = -10V
VDS = -15V
ID = -16A
Ω
ns
VDD = -15V, VGS = -4.5V
ID = -1.0A
e
RG = 1.8Ω
See Figs. 20a &20b
VGS = 0V
pF
VDS = -15V
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
EAS
IAR
Single Pulse Avalanche Energy
Avalanche Current
Diode Characteristics
c
d
Parameter
Typ.
Max.
Units
–––
–––
630
-16
mJ
A
Conditions
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
–––
–––
-2.5
–––
–––
-160
–––
–––
-1.2
MOSFET symbol
A
c
(Body Diode)
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
–––
71
Qrr
Reverse Recovery Charge
–––
12
showing the
integral reverse
Parameter
Junction-to-Drain Lead
Junction-to-Ambient
f
g
G
p-n junction diode.
e
V
TJ = 25°C, IS = -2.5A, VGS = 0V
107
ns
TJ = 25°C, IF = -2.5A, VDD = -24V
18
nC
di/dt = 100A/µs
Thermal Resistance
RθJL
RθJA
D
S
e
Typ.
Max.
Units
–––
–––
20
50
°C/W
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 4.9mH, RG = 25Ω, IAS = -16A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
… Rθ is measured at TJ of approximately 90°C.
† For DESIGN AID ONLY, not subject to production testing.
2
www.irf.com
IRF9310PbF
1000
1000
TOP
100
BOTTOM
10
VGS
-10V
-4.5V
-3.5V
-3.1V
-2.9V
-2.7V
-2.5V
-2.3V
≤60µs PULSE WIDTH
Tj = 150°C
-ID, Drain-to-Source Current (A)
-ID, Drain-to-Source Current (A)
≤60µs PULSE WIDTH
Tj = 25°C
100
1
0.1
BOTTOM
-2.3V
0.01
1
0.1
1
10
100
0.1
-V DS, Drain-to-Source Voltage (V)
1
10
100
-V DS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
-I D, Drain-to-Source Current (Α)
VGS
-10V
-4.5V
-3.5V
-3.1V
-2.9V
-2.7V
-2.5V
-2.3V
10
-2.3V
100
T J = 150°C
10
T J = 25°C
VDS = -10V
≤60µs PULSE WIDTH
1.0
ID = -20A
VGS = -10V
1.4
1.2
1.0
0.8
0.6
1
2
3
4
5
-60 -40 -20 0
Fig 3. Typical Transfer Characteristics
100000
Fig 4. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
-VGS, Gate-to-Source Voltage (V)
ID= -16A
C oss = C ds + C gd
10000
Ciss
Coss
Crss
1000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
-V GS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
TOP
100
12.0
VDS= -24V
VDS= -15V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
25
50
75
100
125
150
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF9310PbF
1000
-I D, Drain-to-Source Current (A)
-I SD, Reverse Drain Current (A)
1000.00
100.00
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
T J = 150°C
10.00
T J = 25°C
1.00
1msec
10
1
T A = 25°C
0.10
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.1
-VSD, Source-to-Drain Voltage (V)
1
10
100
-VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
2.5
-V GS(th), Gate threshold Voltage (V)
20
15
-I D, Drain Current (A)
10msec
Tj = 150°C
Single Pulse
VGS = 0V
10
5
2.0
ID = -100µA
1.5
1.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T A , Ambient Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Ambient Temperature
Thermal Response ( Z thJA ) °C/W
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
0.1
0.01
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + T A
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
IRF9310PbF
RDS(on), Drain-to -Source On Resistance ( mΩ)
RDS(on) , Drain-to -Source On Resistance (mΩ)
12
ID = -20A
10
8
TJ = 125°C
6
4
TJ = 25°C
2
2
4
6
8
10
12
14
16
18
14
12
10
VGS = -4.5V
8
6
VGS = -10V
4
2
20
0
20
40
80
Fig 13. Typical On-Resistance vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
1000
2700
ID
TOP
-1.8A
-2.7A
BOTTOM -16A
2100
800
Single Pulse Power (W)
2400
1800
1500
1200
900
600
600
400
200
300
0
1E-5
0
25
50
75
100
125
150
1E-4
Starting T J , Junction Temperature (°C)
D.U.T *
1E-2
Driver Gate Drive
+
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
www.irf.com
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
Reverse Polarity of D.U.T for P-Channel
P.W.
Period
*

•
•
•
•
1E+0
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
‚
1E-1
Fig 16. Typical Power vs. Time
+
ƒ
RG
1E-3
Time (sec)
Fig 14. Maximum Avalanche Energy vs. Drain Current
*
100 120 140 160
-I D, Drain Current (A)
-V GS, Gate -to -Source Voltage (V)
EAS , Single Pulse Avalanche Energy (mJ)
60
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for P-Channel HEXFET® Power MOSFETs
5
IRF9310PbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
SS
Qgodr
Fig 18a. Gate Charge Test Circuit
I AS
D.U.T
RG
IAS
-V
GS
-20V
tp
Qgs2 Qgs1
Fig 18b. Gate Charge Waveform
L
VDS
Qgd
VDD
A
DRIVER
0.01Ω
tp
V(BR)DSS
15V
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
VDS
RD
td(on)
VGS
RG
t d(off)
tf
VGS
D.U.T.
10%
+
V DD
-VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 20a. Switching Time Test Circuit
6
tr
90%
VDS
Fig 20b. Switching Time Waveforms
www.irf.com
IRF9310PbF
SO-8 Package Outline(Mosfet & Fetky)
Dimensions are shown in milimeters (inches)
'
,1&+(6
0,1
0$;
$ $ E F
' ( H
%$6,&
H %$6,&
+ . / \
ƒ
ƒ
',0
%
$
+
>@
(
$
; H
H
;E
>@
$
.[ƒ
&
\
>@
$
0,//,0(7(56
0,1
0$;
%$6,&
%$6,&
ƒ
ƒ
;/
;F
& $ %
)22735,17
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
;>@
>@
;>@
;>@
SO-8 Part Marking Information
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 ',6*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRF9310PbF
SO-8 Tape and Reel (Dimensions are shown in milimeters (inches))
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
†
Qualification Information
Consumer ††
Qualification level
Moisture Sensitivity Level
(per JEDEC JESD47F††† guidelines)
MSL1
SO-8
(per JEDEC J-STD-020D†††)
Yes
RoHS Compliant
†
††
†††
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
3/18/2010
Comment
Figure 16, Power vs. Time curve is modified and updated. All other parameters remain unchanged.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/2010
8
www.irf.com