IRF IRFR1010Z

PD - 96897
AUTOMOTIVE MOSFET
IRFR1010Z
IRFU1010Z
Features
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
l175°C Operating Temperature
lFast Switching
lRepetitive Avalanche Allowed up to Tjmax
l
l
D
VDSS = 55V
RDS(on) = 7.5mΩ
G
Description
Specifically designed for Automotive applications,
this HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating . These features combine to make this design an extremely efficient and
reliable device for use in Automotive applications
and a wide variety of other applications.
Absolute Maximum Ratings
ID = 42A
S
D-Pak
IRFR1010Z
Parameter
Max.
ID @ T C = 25°C Continuous Drain Current, V GS @ 10V (Silicon Limited)
ID @ T C = 100°C Continuous Drain Current, V GS @ 10V
ID @ T C = 25°C
IDM
42
c
d
E AS (Thermally limited) Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
E AS (Tested )
c
IAR
Avalanche Current
E AR
TJ
Repetitive Avalanche Energy
T STG
Storage Temperature Range
360
h
Parameter
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
j
110
mJ
A
°C
Mounting Torque, 6-32 or M3 screw
R θJA
W/°C
V
-55 to + 175
300 (1.6mm from case )
y
ij
y
10 lbf in (1.1N m)
Thermal Resistance
R θJA
0.9
± 20
mJ
Soldering Temperature, for 10 seconds
j
W
220
Operating Junction and
Junction-to-Case
140
See Fig.12a, 12b, 15, 16
g
R θJC
A
65
Continuous Drain Current, V GS @ 10V (Package Limited)
Pulsed Drain Current
Linear Derating Factor
Gate-to-Source Voltage
Units
91
P D @T C = 25°C Power Dissipation
V GS
I-Pak
IRFU1010Z
Typ.
Max.
–––
1.11
–––
40
–––
110
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
www.irf.com
1
9/29/04
IRFR/U1010Z
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
–––
VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.051
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
5.8
7.5
mΩ
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 100µA
VGS = 10V, ID = 42A
gfs
Forward Transconductance
31
–––
–––
S
VDS = 25V, ID = 42A
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 55V, VGS = 0V
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
63
95
Qgs
Gate-to-Source Charge
–––
17
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
23
–––
td(on)
Turn-On Delay Time
–––
17
–––
VDD = 28V
tr
Rise Time
–––
76
–––
ID = 42A
td(off)
Turn-Off Delay Time
–––
42
–––
tf
Fall Time
–––
48
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
IGSS
e
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
ID = 42A
nC
VDS = 44V
VGS = 10V
ns
nH
RG = 7.6 Ω
e
e
D
6mm (0.25in.)
G
from package
S
and center of die contact
Ciss
Input Capacitance
–––
2840
–––
VGS = 0V
Coss
Output Capacitance
–––
470
–––
Crss
Reverse Transfer Capacitance
–––
250
–––
Coss
Output Capacitance
–––
1630
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
360
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
560
–––
VGS = 0V, VDS = 0V to 44V
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
42
ISM
(Body Diode)
Pulsed Source Current
–––
–––
360
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 42A, VGS = 0V
trr
Reverse Recovery Time
–––
24
36
ns
TJ = 25°C, IF = 42A, VDD = 28V
Qrr
Reverse Recovery Charge
–––
20
30
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
showing the
integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U1010Z
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
1
0.1
100
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
1
Tj = 175°C
1
10
0.1
100
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
120
Gfs , Forward Transconductance (S)
ID, Drain-to-Source Current(Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
TJ = 175°C
10
TJ = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
2
4
6
8
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
TJ = 25°C
100
80
TJ = 175°C
60
40
20
VDS = 10V
380µs PULSE WIDTH
0
0
20
40
60
80
100
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
3
IRFR/U1010Z
5000
VGS, Gate-to-Source Voltage (V)
4000
C, Capacitance(pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
3000
2000
Coss
1000
Crss
VDS = 44V
16
VDS= 28V
VDS= 11V
12
8
4
0
0
1
ID= 42A
10
0
100
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.00
100.00
TJ = 175°C
10.00
TJ = 25°C
VGS = 0V
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
60
80
100
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
0.10
40
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1.00
20
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100
100µsec
10
1msec
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U1010Z
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
LIMITED BY PACKAGE
ID , Drain Current (A)
80
60
40
20
0
25
50
75
100
125
150
ID = 42A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.3854 0.000251
0.3138
0.001092
0.4102
0.015307
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U1010Z
D.U.T
RG
VGS
20V
DRIVER
L
VDS
+
V
- DD
IAS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
500
15V
ID
7.6A
11A
BOTTOM 42A
TOP
400
300
200
100
0
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
DUT
0
1K
VGS(th) Gate threshold Voltage (V)
10 V
ID = 1.0mA
3.5
ID = 250µA
ID = 100µA
3.0
2.5
2.0
1.5
VCC
1.0
-75
-50
-25
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage vs. Temperature
www.irf.com
IRFR/U1010Z
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses
0.01
0.05
10
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 42A
100
80
60
40
20
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U1010Z
D.U.T
Driver Gate Drive
ƒ
+
‚
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
D=
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
VDS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U1010Z
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
2.38 (.094)
2.19 (.086)
6.73 (.265)
6.35 (.250)
1.14 (.045)
0.89 (.035)
-A1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
0.58 (.023)
0.46 (.018)
4
6.45 (.245)
5.68 (.224)
6.22 (.245)
5.97 (.235)
1.02 (.040)
1.64 (.025)
1
2
10.42 (.410)
9.40 (.370)
3
LEAD ASSIGNMENTS
1 - GATE
0.51 (.020)
MIN.
-B1.52 (.060)
1.15 (.045)
4 - DRAIN
3X
2X
2 - DRAIN
3 - SOURCE
1.14 (.045)
0.76 (.030)
0.89 (.035)
0.64 (.025)
0.25 (.010)
0.58 (.023)
0.46 (.018)
M A M B
NOTES:
2.28 (.090)
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4.57 (.180)
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRFR120
WITH AS SEMBLY
LOT CODE 1234
ASS EMBLED ON WW 16, 1999
IN THE AS SEMBLY LINE "A"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
12
N ote: "P" in ass embly line
pos ition indicates "Lead-Free"
AS SEMBLY
LOT CODE
916A
34
DAT E CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
INTERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFR120
12
ASS EMBLY
LOT CODE
www.irf.com
P916A
34
DATE CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 9 = 1999
WEEK 16
A = ASS EMBLY SITE CODE
9
IRFR/U1010Z
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
6.73 (.265)
6.35 (.250)
2.38 (.094)
2.19 (.086)
-A-
0.58 (.023)
0.46 (.018)
1.27 (.050)
0.88 (.035)
5.46 (.215)
5.21 (.205)
LEAD ASSIGNMENTS
4
6.22 (.245)
5.97 (.235)
1.52 (.060)
1.15 (.045)
1
2
1 - GATE
2 - DRAIN
6.45 (.245)
5.68 (.224)
3 - SOURCE
4 - DRAIN
3
-B-
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2.28 (.090)
1.91 (.075)
9.65 (.380)
8.89 (.350)
2 CONTROLLING DIMENSION : INCH.
3 CONFORMS TO JEDEC OUTLINE TO-252AA.
4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP,
SOLDER DIP MAX. +0.16 (.006).
3X
1.14 (.045)
0.76 (.030)
3X
0.25 (.010)
2.28 (.090)
1.14 (.045)
0.89 (.035)
0.89 (.035)
0.64 (.025)
M A M B
0.58 (.023)
0.46 (.018)
2X
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120
WIT H AS S EMBLY
LOT CODE 5678
AS S EMBLED ON WW 19, 1999
IN T HE AS SEMBLY LINE "A"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
919A
56
78
AS S EMBLY
LOT CODE
Note: "P" in ass embly line
pos ition indicates "Lead-Free"
DAT E CODE
YEAR 9 = 1999
WEEK 19
LINE A
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
56
AS S EMBLY
LOT CODE
10
78
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 19
A = AS S EMBLY S ITE CODE
www.irf.com
IRFR/U1010Z
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
„ Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
max. junction temperature. (See fig. 11).
‚ Limited by TJmax, starting TJ = 25°C, L = 0.13mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
RG = 25Ω, IAS = 42A, VGS =10V. Part not
avalanche performance.
recommended for use above this value.
† This value determined from sample failure population. 100%
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
tested to this value in production.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material) .
For recommended footprint and soldering techniques refer to
application note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
 Repetitive rating; pulse width limited by
Data and specifications subject to change without notice.
This product has been designed for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.9/04
www.irf.com
11