PD - 94601A IRGR3B60KD2 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. VCES = 600V IC = 4.2A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel Benefits VCE(on) typ. = 1.9V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. D-Pak Absolute Maximum Ratings Parameter Max. Units VCES Collector-to-Emitter Voltage 600 V IC @ TC = 25°C Continuous Collector Current 7.8 A IC @ TC = 100°C Continuous Collector Current 4.2 ICM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current 15.6 ILM IF @ Tc = 25°C Diode Continous Forward Current 6.0 IF @ Tc = 100°C Diode Continuous Forward Current 3.2 IFM Diode Maximum Forward Current 15.6 VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 52 W c 15.6 PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 21 -55 to +150 °C Soldering Temperature Range, for 10 sec. 300 (0.063 in. (1.6mm) from case) Thermal / Mechanical Characteristics Min. Typ. Max. Units RθJC Junction-to-Case- IGBT Parameter ––– ––– 2.4 °C/W RθJC ––– ––– 8.8 RθJA Junction-to-Case- Diode Junction-to-Ambient, (PCB Mount) ––– ––– 50 Wt Weight ––– 0.3 ––– www.irf.com d g 1 03/24/03 IRGR3B60KD2 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — VCE(on) Collector-to-Emitter Voltage — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — — 0.32 — — 1.9 2.2 2.4 2.6 4.5 -8.5 5.5 — gfe ICES VFM IGES Conditions Ref.Fig. V VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 3.0A, VGE = 15V V IC = 3.0A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 250µA mV/°C VCE = VGE, IC = 1mA (25°C-150°C) S VCE = 50V, IC = 3.0A, PW = 80µs Forward Transconductance Zero Gate Voltage Collector Current — — 1.9 1.0 — 150 µA 200 1.5 500 1.8 VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C Diode Forward Voltage Drop — — V 1.5 — 1.8 ±100 IF = 3.0A, VGE = 0V IF = 3.0A, VGE = 0V, TJ = 150°C Gate-to-Emitter Leakage Current — — nA VGE = ±20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Min. Typ. Max. Units Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) — — 13 1.5 20 2.3 Gate-to-Collector Charge (turn-on) Turn-On Switching Loss — — 6.6 62 9.9 75 Turn-Off Switching Loss Total Switching Loss — — 39 100 50 120 Turn-On delay time Rise time — — 18 15 22 21 Turn-Off delay time Fall time — — 110 68 120 80 Turn-On Switching Loss Turn-Off Switching Loss — — 91 98 100 140 Total Switching Loss Turn-On delay time — — 190 18 230 22 Rise time Turn-Off delay time — — 17 120 22 140 Fall time Input Capacitance — — 91 190 105 — Cres Output Capacitance Reverse Transfer Capacitance — — 23 6.6 — — RBSOA Reverse Bias Safe Operating Area Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes SCSOA Short Circuit Safe Operating Area Erec trr Reverse Recovery Energy of the Diode nC µJ — — Ref.Fig. 23 VCC = 400V VGE = 15V CT1 IC = 3.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH CT4 e TJ = 25°C IC = 3.0A, VCC = 400V ns VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 25°C IC = 3.0A, VCC = 400V µJ ns CT4 CT4 VGE = 15V, RG = 100Ω, L = 2.5mH TJ = 150°C e 13,15 WF1,WF2 IC = 3.0A, VCC = 400V VGE = 15V, RG = 100Ω, L = 2.5mH 14,16 TJ = 150°C WF1 CT4 WF2 pF VGE = 0V VCC = 30V 22 f = 1.0MHz TJ = 150°C, IC = 15.6A, Vp = 600V FULL SQUARE 10 Conditions IC = 3.0A µs 4 VCC=500V,VGE=+15V to 0V,RG = 100Ω TJ = 150°C, Vp = 600V, RG = 100Ω CT2 VCC=360V,VGE = +15V to 0V TJ = 150°C WF4 CT3 17,18,19 — 38 44 µJ 20,21 Diode Reverse Recovery Time — 77 84 ns VCC = 400V, IF = 3.0A, L = 2.5mH Irr Diode Peak Reverse Recovery Current — 4.8 5.3 A VGE = 15V, RG = 100Ω CT4,WF3 Energy losses include "tail" and diode reverse recovery. VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 100Ω. When mounted on 1" square PCB (FR-4 or G-10 Material ) . For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com IRGR3B60KD2 10 60 50 8 40 IC (A) Ptot (W) 6 4 30 20 2 10 0 0 0 20 40 60 80 100 120 140 160 0 T C (°C) 20 40 60 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 IC A) IC (A) 10 µs 100 µs 1 1ms 1 10ms 0.1 DC 0.01 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGR3B60KD2 25 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 20 ICE (A) 15 ICE (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 10 5 15 10 5 0 0 0 2 4 6 8 10 12 0 2 4 VCE (V) 8 10 12 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 25 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 15 -40°C 25°C 150°C 20 15 IF (A) ICE (A) 6 10 10 5 5 0 0 0 2 4 6 8 10 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 12 0.0 1.0 2.0 3.0 4.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 1.5A 10 ICE = 3.0A 8 ICE = 6.0A VCE (V) VCE (V) IRGR3B60KD2 12 10 ICE = 1.5A ICE = 3.0A 8 ICE = 6.0A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 25 ID, Drain-to-Source Current (Α) 18 16 VCE (V) 14 12 10 ICE = 1.5A ICE = 3.0A 8 ICE = 6.0A 6 4 20 T J = 25°C 15 T J = 150°C 10 5 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGS , Gate-to-Source Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGR3B60KD2 250 1000 EON Swiching Time (ns) Energy (µJ) 200 150 EOFF 100 tdOFF 100 tF tR tdON 50 0 10 0 1 2 3 4 5 6 7 0 1 2 IC (A) 4 5 6 7 8 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=2.5mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=2.5mH; VCE= 400V RG= 100Ω; VGE= 15V 250 1000 150 Swiching Time (ns) EON 200 Energy (µJ) 3 EOFF 100 tdOFF tF 100 tR 50 tdON 0 10 0 100 200 300 400 RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 3.0A; VGE= 15V 6 500 0 100 200 300 400 500 RG ( Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=2.5mH; VCE= 400V ICE= 3.0A; VGE= 15V www.irf.com IRGR3B60KD2 6 6 RG = 100Ω 5 5 IRR (A) IRR (A) 4 4 RG = 200Ω 3 RG = 330Ω 3 2 RG = 470Ω 2 1 0 1 0 1 2 3 4 5 6 7 0 8 100 200 300 IF (A) 500 Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 3.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 400 6 350 5 300 Q RR (µC) 4 IRR (A) 400 RG (Ω) 3 250 470 Ω 200Ω 330Ω 100Ω 6.0A 3.0A 200 150 1.5A 2 100 1 50 0 0 50 100 150 200 250 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF = 3.0A; TJ = 150°C www.irf.com 300 0 50 100 150 200 250 300 350 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGR3B60KD2 70 100Ω 60 200Ω Energy (µJ) 330Ω 470Ω 50 40 30 20 0 1 2 3 4 5 6 7 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 1000 14 300V 12 400V 100 10 VGE (V) Capacitance (pF) Cies Coes 8 6 10 Cres 4 2 0 1 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 2 4 6 8 10 12 14 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 3.0A; L = 600µH www.irf.com IRGR3B60KD2 Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 τJ 0.10 R1 R1 τJ τ1 0.05 R2 R2 τC τ2 τ1 τ τ2 Ri (°C/W) τi (sec) 0.990 0.000087 1.412 0.000426 Ci= τi/Ri Ci i/Ri 0.1 0.02 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 100 10 D = 0.50 0.20 0.10 1 τJ 0.05 0.02 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri 0.01 0.1 R1 R1 τC τ τ3 Ri (°C/W) τi (sec) 2.301 0.000156 4.212 0.001440 2.278 0.028166 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGR3B60KD2 L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGR3B60KD2 600 12 600 9 tf tr 500 Vce 7.5 11 500 10 Vce 9 Ice 400 400 6 90% Ice 8 90% Ice 5% Ice 200 3 10% Ice 300 6 5 4 200 3 Ice 100 2 100 1.5 0 5% Vce 0 Eon Loss 0.5 0.7 -1 -100 -1.5 0.3 1 0 0 Eof f Loss -100 Ice (A) 4.5 Vce (V) 300 Ice (A) -2 0.8 0.9 1 1.2 1.4 Time (uS) Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 100 15 500 0 12 50 450 9 QR R 6 10% Peak IR R tR R -300 -400 -500 -600 0.00 If (A) Vf (V) -200 3 0 Peak IR R 0.10 -3 0.20 0.30 0.40 -6 0.50 Time (uS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com VCE (V) -100 45 Vce 400 40 350 35 300 30 250 25 ICE (A) Vce (V) 7 5% Vce Ice 200 20 150 15 100 10 50 5 0 0 30 40 50 60 70 Time (uS) Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 11 IRGR3B60KD2 TO-252AA (D-Pak) Package Outline Dimensions are shown in millimeters (inches) 2.38 (.094) 2.19 (.086) 6.73 (.265) 6.35 (.250) 1.14 (.045) 0.89 (.035) -A1.27 (.050) 0.88 (.035) 5.46 (.215) 5.21 (.205) 0.58 (.023) 0.46 (.018) 4 6.45 (.245) 5.68 (.224) 6.22 (.245) 5.97 (.235) 1.02 (.040) 1.64 (.025) 1 2 10.42 (.410) 9.40 (.370) LEAD ASSIGNMENTS 1 - GATE 3 1.52 (.060) 1.15 (.045) 2X 2 - DRAIN 3 - SOURCE 0.51 (.020) MIN. -B- 4 - DRAIN 0.89 (.035) 3X 0.64 (.025) 1.14 (.045) 0.76 (.030) 0.25 (.010) 0.58 (.023) 0.46 (.018) M A M B NOTES: 2.28 (.090) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 4.57 (.180) 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-252AA. 4 DIMENSIONS SHOWN ARE BEFORE SOLDER DIP, SOLDER DIP MAX. +0.16 (.006). TO-252AA (D-Pak) Part Marking Information Notes: T his part marking information applies to devices produced before 02/26/2001 EXAMPLE: THIS IS AN IRF R120 WITH ASSEMBLY LOT CODE 9U1P INTERNATIONAL RECTIFIER LOGO IRFU120 9U 016 1P DATE CODE YEAR = 0 WEEK = 16 AS SEMBLY LOT CODE Notes: T his part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFR120 WITH AS SEMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 1999 IN THE AS S EMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO IRFU120 12 AS S EMBLY LOT CODE 12 PART NUMBER 916A 34 DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A www.irf.com IRGR3B60KD2 D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/03 www.irf.com 13