IRF IRGIB7B60KD

PD - 94620B
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGIB7B60KD
C
VCES = 600V
Features
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Maximum Junction Temperature rated at 175°C.
IC = 8.0A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
FullPak
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
12
IC @ TC = 100°C
Continuous Collector Current
8.0
ICM
c
24
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
IF @ TC = 25°C
Diode Continuous Forward Current
9.0
6.0
24
IF @ TC = 100°C
Diode Continuous Forward Current
IFM
Diode Maximum Forward Current
VISOL
RMS Isolation Voltage, Terminal to Case, t=1 min.
2500
VGE
Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
39
PD @ TC = 100°C Maximum Power Dissipation
20
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
18
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
3.8
RθJC
Junction-to-Case- Diode
–––
–––
6.0
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
62
Wt
Weight
–––
2.0
–––
www.irf.com
Units
°C/W
g
1
09/17/03
IRGIB7B60KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min. Typ. Max. Units
Collector-to-Emitter Breakdown Voltage
600
Temperature Coeff. of Breakdown Voltage —
—
Collector-to-Emitter Voltage
—
—
Gate Threshold Voltage
3.5
Threshold Voltage temp. coefficient
—
Forward Transconductance
—
—
Zero Gate Voltage Collector Current
—
—
Diode Forward Voltage Drop
—
—
—
Gate-to-Emitter Leakage Current
—
—
0.57
1.8
2.2
2.3
4.5
-9.5
3.7
1.0
200
720
1.25
1.20
1.20
—
Conditions
Ref.Fig.
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 8.0A, VGE = 15V, TJ = 25°C
2.2
2.5
V IC = 8.0A, VGE = 15V, TJ = 150°C
IC = 8.0A, VGE = 15V, TJ = 175°C
2.5
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
—
S VCE = 50V, IC = 8.0A, PW = 80µs
VGE = 0V, VCE = 600V
150
500
µA VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
1100
1.45
V IF = 5.0A, VGE = 0V
IF = 5.0A, TJ = 150°C, VGE = 0V
1.40
IF = 5.0A, TJ = 175°C, VGE = 0V
1.30
±100 nA VGE = ±20V, VCE = 0V
5,6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
SCSOA
ISC (Peak)
Erec
trr
Irr
Qrr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
Peak Short Circuit Collector Current
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Diode Reverse Recovery Charge
Note  to ‚ are on page 12
2
Min. Typ. Max. Units
—
29
44
—
3.7
5.6
—
14
21
—
160
268
—
160
268
—
320
433
—
23
27
—
22
26
—
140
150
—
32
42
—
220
330
—
270
381
—
490
711
—
22
27
—
21
25
—
180
198
—
40
56
—
7.5
—
—
440
660
—
38
57
—
16
24
FULL SQUARE
10
—
—
—
—
—
—
70
100
95
13
620
—
—
133
120
17
800
nC
µJ
ns
µJ
ns
Conditions
IC = 8.0A
VCC = 400V
VGE = 15V
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 25°C
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 25°C
Ref.Fig.
23
CT1
CT4
d
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 150°C
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 150°C
d
CT4
CT4
13,15
WF1,WF2
14,16
CT4
WF1
WF2
nH
pF
µs
A
µJ
ns
A
nC
Measured 5mm from package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ = 150°C, IC = 54A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG = 50Ω
TJ = 150°C, Vp = 600V, RG = 100Ω
VCC=360V,VGE = +15V to 0V
22
4
CT2
CT3
WF4
WF4
TJ = 150°C
VCC = 400V, IF = 8.0A, L = 1.07mH
VGE = 15V, RG = 50Ω
di/dt = 500A/µS
17,18,19
20,21
CT4,WF3
www.irf.com
IRGIB7B60KD
14
50
12
40
10
Ptot (W)
IC (A)
8
6
30
20
4
10
2
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
100 µs
10
1ms
IC A)
IC (A)
10
1
10ms
0.1
1
DC
0
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGIB7B60KD
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
ICE (A)
25
35
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
4
5
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
30
40
35
-40°C
25°C
150°C
25
30
20
20
15
IF (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
3
15
10
10
5
5
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
0.0
0.5
1.0
1.5
2.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
VCE (V)
VCE (V)
IRGIB7B60KD
ICE = 4.0A
ICE = 8.0A
10
8
ICE = 16A
12
ICE = 4.0A
10
ICE = 8.0A
8
ICE = 16A
6
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
100
18
16
80
ICE = 4.0A
ICE = 8.0A
12
10
ICE (A)
VCE (V)
14
ICE = 16A
8
T J = 25°C
TJ = 150°C
60
40
6
4
T J = 150°C
20
T J = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGIB7B60KD
600
1000
Swiching Time (ns)
500
Energy (µJ)
400
EOFF
300
200
tdOFF
100
tF
EON
tdON
100
tR
0
10
0
5
10
15
20
0
5
IC (A)
700
20
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V
RG= 50Ω; VGE= 15V
10000
500
Swiching Time (ns)
EON
600
Energy (µJ)
15
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V,
RG= 50Ω; VGE= 15V
EOFF
400
300
200
1000
tdOFF
tdON
100
tF
100
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
6
10
500
0
100
200
300
400
500
RG ( Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
www.irf.com
IRGIB7B60KD
16
20
18
14
RG = 50 Ω
16
12
8
IRR (A)
IRR (A)
14
RG = 150 Ω
10
RG = 270 Ω
6
10
8
6
RG = 470 Ω
4
12
4
2
2
0
0
0
5
10
15
20
0
100
200
300
500
RG (Ω)
IF (A)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 8.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1500
16
14
50Ω
12
16A
150Ω
1000
270Ω
Q RR (nC)
10
IRR (A)
400
8
6
470 Ω
8.0A
500
4.0A
4
2
0
0
0
100
200
300
400
500
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF= 8.0A; TJ = 150°C
www.irf.com
600
0
100
200
300
400
500
600
700
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGIB7B60KD
250
470Ω
Energy (µJ)
200
270Ω
150 Ω
150
50 Ω
100
50
0
0
5
10
15
20
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
1000
16
Cies
14
12
Cres
10
100
VGE (V)
Capacitance (pF)
300V
Coes
400V
8
6
10
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
5
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 8.0A; L = 600µH
www.irf.com
IRGIB7B60KD
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
τJ
0.01
0.02
0.1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ4
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.01
τi (sec)
0.367
0.000164
0.425
0.000652
1.070
0.081521
1.928
2.124500
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
1E+1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
τi (sec)
0.001
0.068689
Ri (°C/W)
2.530
1.354
2.114
Ci= τi/Ri
Ci i/Ri
0.01
2.758
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB7B60KD
L
L
VCC
DUT
80 V
+
-
0
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGIB7B60KD
600
tf
600
10
500
Vce
400
24
Vce
Ice
8
400
16
90% Ice
90% Ice
6
200
4
5% Ice
100
Vce (V)
5% Vce
Ice (A)
300
Vce (V)
20
tr
10% Ice
300
12
200
8
Ice (A)
500
12
2
Ice
100
0
4
5% Vce
0
Eof f Loss
-100
0
-2
-200
-100
-4
0
0.2
0.4
0.6
0.8
0
Eon
Loss
0.3
1
0.5
-4
0.9
0.7
Time (uS)
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
100
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
15
400
10
350
80
QR R
0
tR R
-100
5
-200
0
300
60
-400
Peak
IRR
-5
200
40
150
-10
20
100
-500
Ice (A)
10%
Peak
IRR
Vce (V)
-300
IF (A)
VF (V)
250
-15
50
-600
-0.15
-0.05
0.05
0.15
-20
0.25
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
0
0.00
10.00
20.00
30.00
40.00
0
50.00
Time (uS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGIB7B60KD
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
Notes : T his part marking information applies to all devices produced before 02/26/2001
and currently for parts manufactured in GB.
Notes: T his part marking information applies to devices produced after 02/26/2001 in
location other than GB.
EXAMPLE: T HIS IS AN IRFI840G
WIT H ASS EMBLY
LOT CODE E401
EXAMPLE: T HIS IS AN IRFI840G
WITH AS S EMBLY
LOT CODE 3432
AS S EMBLED ON WW 24 1999
IN T HE AS S E MBLY LINE "K"
INT ERNAT IONAL
RECT IFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
IRFI840G
E 401
INT ERNATIONAL
RECT IF IER
LOGO
9245
DAT E CODE
(YYWW)
YY = YEAR
WW = WEEK
AS S EMBLY
LOT CODE
PART NUMBER
IRFI840G
924K
34
32
DAT E CODE
YEAR 9 = 1999
WEEK 24
LINE K
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.
‚ Energy losses include "tail" and diode reverse recovery.
TO-220AB FullPak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/03
12
www.irf.com