PD - 94620B INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE IRGIB7B60KD C VCES = 600V Features • • • • • Low VCE (on) Non Punch Through IGBT Technology. 10µs Short Circuit Capability. Square RBSOA. Positive VCE (on) Temperature Coefficient. Maximum Junction Temperature rated at 175°C. IC = 8.0A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB FullPak Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 12 IC @ TC = 100°C Continuous Collector Current 8.0 ICM c 24 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current IF @ TC = 25°C Diode Continuous Forward Current 9.0 6.0 24 IF @ TC = 100°C Diode Continuous Forward Current IFM Diode Maximum Forward Current VISOL RMS Isolation Voltage, Terminal to Case, t=1 min. 2500 VGE Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 39 PD @ TC = 100°C Maximum Power Dissipation 20 TJ Operating Junction and TSTG Storage Temperature Range A 18 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal / Mechanical Characteristics Min. Typ. Max. RθJC Junction-to-Case- IGBT Parameter ––– ––– 3.8 RθJC Junction-to-Case- Diode ––– ––– 6.0 RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient, typical socket mount ––– ––– 62 Wt Weight ––– 2.0 ––– www.irf.com Units °C/W g 1 09/17/03 IRGIB7B60KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage — — Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient — Forward Transconductance — — Zero Gate Voltage Collector Current — — Diode Forward Voltage Drop — — — Gate-to-Emitter Leakage Current — — 0.57 1.8 2.2 2.3 4.5 -9.5 3.7 1.0 200 720 1.25 1.20 1.20 — Conditions Ref.Fig. — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 8.0A, VGE = 15V, TJ = 25°C 2.2 2.5 V IC = 8.0A, VGE = 15V, TJ = 150°C IC = 8.0A, VGE = 15V, TJ = 175°C 2.5 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 8.0A, PW = 80µs VGE = 0V, VCE = 600V 150 500 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 1100 1.45 V IF = 5.0A, VGE = 0V IF = 5.0A, TJ = 150°C, VGE = 0V 1.40 IF = 5.0A, TJ = 175°C, VGE = 0V 1.30 ±100 nA VGE = ±20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Note to are on page 12 2 Min. Typ. Max. Units — 29 44 — 3.7 5.6 — 14 21 — 160 268 — 160 268 — 320 433 — 23 27 — 22 26 — 140 150 — 32 42 — 220 330 — 270 381 — 490 711 — 22 27 — 21 25 — 180 198 — 40 56 — 7.5 — — 440 660 — 38 57 — 16 24 FULL SQUARE 10 — — — — — — 70 100 95 13 620 — — 133 120 17 800 nC µJ ns µJ ns Conditions IC = 8.0A VCC = 400V VGE = 15V IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 25°C Ref.Fig. 23 CT1 CT4 d IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C IC = 8.0A, VCC = 400V VGE = 15V, RG = 50Ω, L = 1.1mH TJ = 150°C d CT4 CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 nH pF µs A µJ ns A nC Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 54A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 50Ω TJ = 150°C, Vp = 600V, RG = 100Ω VCC=360V,VGE = +15V to 0V 22 4 CT2 CT3 WF4 WF4 TJ = 150°C VCC = 400V, IF = 8.0A, L = 1.07mH VGE = 15V, RG = 50Ω di/dt = 500A/µS 17,18,19 20,21 CT4,WF3 www.irf.com IRGIB7B60KD 14 50 12 40 10 Ptot (W) IC (A) 8 6 30 20 4 10 2 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 100 µs 10 1ms IC A) IC (A) 10 1 10ms 0.1 1 DC 0 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGIB7B60KD 40 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 ICE (A) ICE (A) 25 35 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 0 1 2 VCE (V) 4 5 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 30 40 35 -40°C 25°C 150°C 25 30 20 20 15 IF (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 25 ICE (A) 3 15 10 10 5 5 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 0.0 0.5 1.0 1.5 2.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com 20 20 18 18 16 16 14 14 12 VCE (V) VCE (V) IRGIB7B60KD ICE = 4.0A ICE = 8.0A 10 8 ICE = 16A 12 ICE = 4.0A 10 ICE = 8.0A 8 ICE = 16A 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 100 18 16 80 ICE = 4.0A ICE = 8.0A 12 10 ICE (A) VCE (V) 14 ICE = 16A 8 T J = 25°C TJ = 150°C 60 40 6 4 T J = 150°C 20 T J = 25°C 2 0 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 360V; tp = 10µs 5 IRGIB7B60KD 600 1000 Swiching Time (ns) 500 Energy (µJ) 400 EOFF 300 200 tdOFF 100 tF EON tdON 100 tR 0 10 0 5 10 15 20 0 5 IC (A) 700 20 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.1mH; VCE= 400V RG= 50Ω; VGE= 15V 10000 500 Swiching Time (ns) EON 600 Energy (µJ) 15 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.1mH; VCE= 400V, RG= 50Ω; VGE= 15V EOFF 400 300 200 1000 tdOFF tdON 100 tF 100 tR 0 10 0 100 200 300 400 RG ( Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V 6 10 500 0 100 200 300 400 500 RG ( Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.1mH; VCE= 400V ICE= 8.0A; VGE= 15V www.irf.com IRGIB7B60KD 16 20 18 14 RG = 50 Ω 16 12 8 IRR (A) IRR (A) 14 RG = 150 Ω 10 RG = 270 Ω 6 10 8 6 RG = 470 Ω 4 12 4 2 2 0 0 0 5 10 15 20 0 100 200 300 500 RG (Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 8.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 1500 16 14 50Ω 12 16A 150Ω 1000 270Ω Q RR (nC) 10 IRR (A) 400 8 6 470 Ω 8.0A 500 4.0A 4 2 0 0 0 100 200 300 400 500 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; IF= 8.0A; TJ = 150°C www.irf.com 600 0 100 200 300 400 500 600 700 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGIB7B60KD 250 470Ω Energy (µJ) 200 270Ω 150 Ω 150 50 Ω 100 50 0 0 5 10 15 20 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 14 12 Cres 10 100 VGE (V) Capacitance (pF) 300V Coes 400V 8 6 10 4 2 0 1 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 5 10 15 20 25 30 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 8.0A; L = 600µH www.irf.com IRGIB7B60KD Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 R1 R1 0.05 τJ 0.01 0.02 0.1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.01 τi (sec) 0.367 0.000164 0.425 0.000652 1.070 0.081521 1.928 2.124500 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( Z thJC ) D = 0.50 1 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 τi (sec) 0.001 0.068689 Ri (°C/W) 2.530 1.354 2.114 Ci= τi/Ri Ci i/Ri 0.01 2.758 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB7B60KD L L VCC DUT 80 V + - 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB7B60KD 600 tf 600 10 500 Vce 400 24 Vce Ice 8 400 16 90% Ice 90% Ice 6 200 4 5% Ice 100 Vce (V) 5% Vce Ice (A) 300 Vce (V) 20 tr 10% Ice 300 12 200 8 Ice (A) 500 12 2 Ice 100 0 4 5% Vce 0 Eof f Loss -100 0 -2 -200 -100 -4 0 0.2 0.4 0.6 0.8 0 Eon Loss 0.3 1 0.5 -4 0.9 0.7 Time (uS) Time (uS) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 100 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 15 400 10 350 80 QR R 0 tR R -100 5 -200 0 300 60 -400 Peak IRR -5 200 40 150 -10 20 100 -500 Ice (A) 10% Peak IRR Vce (V) -300 IF (A) VF (V) 250 -15 50 -600 -0.15 -0.05 0.05 0.15 -20 0.25 time (µS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 0 0.00 10.00 20.00 30.00 40.00 0 50.00 Time (uS) Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 11 IRGIB7B60KD TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information Notes : T his part marking information applies to all devices produced before 02/26/2001 and currently for parts manufactured in GB. Notes: T his part marking information applies to devices produced after 02/26/2001 in location other than GB. EXAMPLE: T HIS IS AN IRFI840G WIT H ASS EMBLY LOT CODE E401 EXAMPLE: T HIS IS AN IRFI840G WITH AS S EMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN T HE AS S E MBLY LINE "K" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFI840G E 401 INT ERNATIONAL RECT IF IER LOGO 9245 DAT E CODE (YYWW) YY = YEAR WW = WEEK AS S EMBLY LOT CODE PART NUMBER IRFI840G 924K 34 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K Notes: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. Energy losses include "tail" and diode reverse recovery. TO-220AB FullPak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/03 12 www.irf.com