IRF IRGR4045DPBF

IRGR4045DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
VCES = 600V
Features










IC  6.0A, TC = 100°C
Low VCE (on) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5μs SCSOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (on) Temperature Coefficient.
Ultra Fast Soft Recovery Co-pak Diode
Tighter Distribution of Parameters
Lead-Free, RoHS Compliant
Tjmax = 175°C
G
VCE(on) typ.  1.7V
E
n-channel
C
E
Benefits
G
 High Efficiency in a Wide Range of Applications
 Suitable for a Wide Range of Switching Frequencies due
to Low VCE (ON) and Low Switching Losses
 Rugged Transient Performance for Increased Reliability
 Excellent Current Sharing in Parallel Operation
 Low EMI
D-Pak
IRGR4045DPbF
G
Gate
C
Colletor
E
Emitter
Absolute Maximum Ratings
Parameter
VCES
Collector-to-Emitter Breakdown Voltage
IC@ TC = 25°C
IC@ TC = 100°C
ICM
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current, VGE = 15V
ILM
IF@TC=25°C
IF@TC=100°C
IFM
Clamped Inductive Load Current, VGE = 20V
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
VGE
PD @ TC =25°
PD @ TC =100°
TJ
TSTG
Units
Max.
600
12
V
6.0
18
24
c
A
8.0
4.0
24
d
± 20
± 30
77
39
Continuous Gate-to-Emitter Voltage
Transient Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
V
W
°C
-55 to + 175
Storage Temperature Range
Soldering Temperature, for 10 seconds
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
R JC
R JC
R JA
R JA
e
e
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
g
Min.
Typ.
Max.
–––
–––
1.9
–––
–––
–––
–––
–––
–––
6.8
50
110
Units
°C/W
*Qualification standards can be found at http://www.irf.com/
1
www.irf.com
October 10, 2012
IRGR4045DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter BreakdownVoltage
V(BR)CE S/T J
Min. Typ. Max. Units
600
—
—
T emperature Coeff. of B reakdown Voltage
—
0.36
—
—
1.7
2.0
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.07
—
—
2.14
—
VGE(th)
Gate Threshold Voltage
3.5
—
6.5
VGE (th)/T J
Threshold Voltage temp. coefficient
—
-13
—
gfe
Forward Transconductance
—
5.8
—
S
—
—
25
μA
—
—
250
—
1.60
2.30
—
1.30
—
—
—
±100
ICES
VFM
IGES
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
V GE = 0V, Ic =100 μA
f
o
V/°C V GE = 0V, Ic = 250μA ( 25 -175 C )
V
IC = 6.0A, V GE = 15V, TJ = 25°C
IC = 6.0A, V GE = 15V, TJ = 150°C
V
IC = 6.0A, V GE = 15V, TJ = 175°C
V CE = V GE, IC = 150μA
R ef . F i g
f
CT 6
5,6,7,9,
10 ,11
9,10,11,12
o
mV/°C V CE = V GE, IC = 250μA ( 25 -175 C )
V CE = 25V, IC = 6.0A, PW =80s
V GE = 0V,V CE = 600V
V GE = 0V, V CE = 600V, TJ =175°C
V
IF = 6.0A
nA
IF = 6.0A, TJ = 175°C
V GE = ± 20 V
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Total Gate Charge (turn-on)
Qge
Gate-to-Emitter Charge (turn-on)
Qgc
Gate-to-Collector Charge (turn-on)
h Units
Min. Typ. Max.
—
13
19.5
—
3.1
4.65
—
6.4
9.6
Eon
Turn-On Switching Loss
—
56
86
Eoff
Turn-Off Switching Loss
—
122
143
Etotal
Total Switching Loss
—
178
229
td(on)
Turn-On delay time
—
27
35
tr
Rise time
—
11
15
td(off)
Turn-Off delay time
—
75
93
tf
Fall time
—
17
22
Eon
Turn-On Switching Loss
—
140
—
Eoff
Turn-Off Switching Loss
—
189
—
Etotal
Total Switching Loss
—
329
—
td(on)
Turn-On delay time
—
26
—
tr
Rise time
—
12
—
td(off)
Turn-Off delay time
—
95
—
tf
Fall time
—
32
—
Cies
Input Capacitance
—
350
—
Coes
Output Capacitance
—
29
—
Cres
Reverse Transfer Capacitance
—
10
—
nC
Conditions
IC = 6.0A
24
VCC = 400V
CT 1
VGE = 15V
IC = 6.0A, VCC = 400V, VGE = 15V
μJ
RG = 47, L=1mH, LS = 150nH, TJ = 25°C
Reverse Bias Safe Operating Area
CT 4
E nergy los s es include tail and diode revers e recovery
IC = 6.0A, VCC = 400V
ns
RG = 47, L=1mH, LS = 150nH
CT 4
TJ = 25°C
IC = 6.0A, VCC = 400V, VGE = 15V
μJ
13,15
RG = 47, L=1mH, LS = 150nH, TJ = 175°C
E nergy los s es include tail and diode revers e recovery
IC = 6.0A, VCC = 400V
ns
RG = 47, L=1mH, LS = 150nH
TJ = 175°C
VGE = 0V
pF
CT 4
WF 1,WF 2
14,16
CT 4
WF 1,WF 2
23
VCC = 30V
f = 1Mhz
TJ = 175°C, IC = 24A
RBSOA
R ef . F i g
FULL SQUARE
VCC = 500V, Vp =600V
4
CT 2
RG = 100, VGE = +20V to 0V
VCC = 400V, Vp =600V
22
SCSOA
Short Circuit Safe Operating Area
—
5
—
μs
Erec
Reverse recovery energy of the diode
—
178
—
μJ
TJ = 175 C
trr
Diode Reverse recovery time
—
74
—
ns
VCC = 400V, IF = 6.0A
20,21
Irr
Peak Reverse Recovery Current
—
12
—
A
VGE = 15V, Rg = 47, L=1mH, LS=150nH
WF 3
RG = 100, VGE = +15V to 0V
o
CT 3, WF 4
17,18,19
Notes:

‚
ƒ
„
…
†
VCC = 80% (VCES ), VGE = 15V, L = 1.0mH, RG = 47
Pulse width limited by max. junction temperature.
R is measured at T J approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
Maximum limits are based on statistical sample size characterization.
2
www.irf.com
IRGR4045DPbF
14
80
12
70
60
10
50
Ptot (W)
IC (A)
8
6
40
30
4
20
2
10
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10μsec
10
10
IC A)
IC (A)
100μsec
DC
1
1
Tc = 25°C
Tj = 175°C
Single Pulse
0
0.1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 175°C, VGE = 20V
Fig. 3 - Forward SOA,
TC = 25°C, TJ  175°C, VGE = 15V
20
20
Top
V
= 18V
GE
V
= 15V
GE
VGE = 12V
15
V
= 10V
GE
Bottom VGE = 8.0V
10
ICE (A)
ICE (A)
15
5
Top
Bottom
10
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
5
0
0
0
www.irf.com
1000
2
4
6
8
10
0
2
4
6
8
10
VCE (V)
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
3
IRGR4045DPbF
20
Top
Bottom
18
16
-40°C
25°C
175°C
14
12
IF (A)
ICE (A)
15
20
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
10
10
8
6
5
4
2
0
0
0
2
4
6
8
10
0.0
1.0
2.0
VF (V)
VCE (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80μs
10
10
8
8
ICE = 3.0A
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
6
ICE = 6.0A
ICE = 12A
4
2
6
ICE = 3.0A
ICE = 6.0A
ICE = 12A
4
2
0
0
5
10
15
20
5
10
VGE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
IC, Collector-to-Emitter Current (A)
10
8
VCE (V)
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
ICE = 3.0A
ICE = 6.0A
6
ICE = 12A
4
2
18
T J = 25°C
T J = 175°C
16
14
12
10
8
6
4
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
3.0
20
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
www.irf.com
IRGR4045DPbF
400
1000
350
Swiching Time (ns)
Energy (μJ)
300
250
200
EOFF
150
tdOFF
100
tF
tdON
10
tR
EON
100
50
1
0
2
4
6
8
10
12
14
2
4
8
10
12
14
IC (A)
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L=1mH; VCE= 400V
RG= 47; VGE= 15V
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 1mH; VCE = 400V, RG = 47; VGE = 15V.
220
1000
200
EOFF
Swiching Time (ns)
180
Energy (μJ)
6
160
EON
140
120
tdOFF
100
tF
tdON
10
tR
100
80
60
1
0
25
50
75
100
125
0
25
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 1mH; VCE = 400V, ICE = 6.0A; VGE = 15V
100
125
Fig. 16- Typ. Switching Time vs. RG
TJ = 175°C; L=1mH; VCE= 400V
ICE= 6.0A; VGE= 15V
22
30
20
25
RG = 10
18
20
16
15
IRR (A)
IRR (A)
75
RG ()
Rg ()
RG = 22
10
RG = 47
5
RG = 100
14
12
10
8
6
0
2
4
6
8
10
12
IF (A)
Fig. 17 - Typical Diode IRR vs. IF
TJ = 175°C
www.irf.com
50
14
0
25
50
75
100
125
RG (
Fig. 18 - Typical Diode IRR vs. RG
TJ = 175°C; IF = 6.0A
5
IRGR4045DPbF
1200
20
18
1000
12A
10
QRR (nC)
IRR (A)
16
14
12
22
800
47
6.0A
600
10
100
400
3.0A
8
200
6
0
200
400
600
800
1000
0
1200
500
1500
diF /dt (A/μs)
diF /dt (A/μs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V; TJ = 175°C
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
ICE= 6.0A; TJ = 175°C
50
20
350
300
40
Time (μs)
RG = 47
10
30
5
20
Current (A)
Isc
RG = 22
200
Tsc
15
RG = 10
250
Energy (μJ)
1000
150
RG = 100
100
10
0
50
2
4
6
8
10
12
8
14
10
12
IF (A)
18
Fig. 22- Typ. VGE vs. Short Circuit Time
VCC=400V, TC =25°C
1000
16
VGE, Gate-to-Emitter Voltage (V)
Cies
Capacitance (pF)
16
VGE (V)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 175°C
100
Coes
10
Cres
1
V CES = 400V
14
V CES = 300V
12
10
8
6
4
2
0
0
100
200
300
400
VCE (V)
Fig. 23- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
14
500
0
2
4
6
8
10
12
14
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 6.0A, L=600μH
www.irf.com
IRGR4045DPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
J
0.02
0.01
R1
R1
J
1
R3
R3
Ri (°C/W) i (sec)
R4
R4
C

2
1
2
3
3
4
4
Ci= iRi
Ci iRi
SINGLE PULSE
( THERMAL RESPONSE )
0.01
R2
R2
0.0301
0.000004
0.7200
0.000067
0.7005
0.000898
0.4479
0.005416
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
0.20
1
0.10
0.05
J
0.02
0.1
0.01
R1
R1
J
1
R2
R2
R3
R3
C

2
1
2
3
3
Ci= iRi
Ci iRi
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
Ri (°C/W) i (sec)
R4
R4
4
4
0.2056
0.000019
1.4132
0.000095
3.3583
0.001204
1.8245
0.009127
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGR4045DPbF
L
L
DUT
0
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.5 - Resistive Load Circuit
8
VCC
80 V
+
-
DUT
Rg
480V
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
Fig.C.T.6 - Typical Filter Circuit for
V(BR)CES Measurement
www.irf.com
IRGR4045DPbF
600
12
600
500
10
500
400
8
400
6
300
90% ICE
200
4
5% ICE
100
VCE (V)
VCE (V)
tf
300
30
25
tr
TEST
CURRENT
90% test
current
2
100
0
0
-2
-100
10
10% test
current
0
0.2
0.4
0.6
0.8
0
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
100
t RR
-5
-400
-10
-500
-15
-20
0.05
0.15
0.25
time (µS)
WF.3- Typ. Diode Recovery Waveform
@ TJ = 175°C using CT.4
www.irf.com
Vce (V)
VF (V)
10%
Peak
IRR
Peak
IRR
-600
-0.05
450
5
0
80
500
10
QRR
-200
-300
4.7
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
15
-100
4.5
-5
time (µs)
time(µs)
0
Eon Loss
4.3
1
5
5% VCE
Eoff Loss
-100
-0.2
15
200
5% VCE
0
20
VCE
70
400
60
350
50
300
40
250
200
ICE
30
20
150
10
100
0
50
-10
0
-20
-2 -1 0 1 2 3 4 5 6 7 8
Time (uS)
WF.4- Typ. Short Circuit Waveform
@ TJ = 25°C using CT.3
9
IRGR4045DPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGEHIRUH
(;$03/(
7+,6,6$1,5)5
:,7+$66(0%/<
/27&2'(83
,17(51$7,21$/
5(&7,),(5
/2*2
,5)8
8
3
'$7(&2'(
<($5
:((.
$66(0%/<
/27&2'(
1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGDIWHU
(;$03/(
7+,6,6$1,5)5
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
,17+($66(0%/</,1($
,5)8
$
'$7(&2'(
<($5
:((.
/,1($
$66(0%/<
/27&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRGR4045DPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2012
www.irf.com
11