IRF IRGSL4B60KD1PBF

PD - 95616A
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
IRGB4B60KD1PbF
IRGS4B60KD1PbF
IRGSL4B60KD1PbF
C
Features
•
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Maximum Junction Temperature rated at 175°C.
Lead-Free
VCES = 600V
IC = 7.6A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 2.1V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
D2Pak
TO-220
IRGB4B60KD1 IRGS4B60KD1
TO-262
IRGSL4B60KD1
Absolute Maximum Ratings
Parameter
Max.
Units
600
V
VCES
Collector-to-Emitter Voltage
IC @ TC = 25°C
Continuous Collector Current
11
IC @ TC = 100°C
Continuous Collector Current
7.6
ICM
22
ILM
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current
IF @ TC = 25°C
Diode Continuous Forward Current
11
IF @ TC = 100°C
Diode Continuous Forward Current
6.7
IFM
Diode Maximum Forward Current
22
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
63
W
PD @ TC = 100°C Maximum Power Dissipation
Operating Junction and
TJ
31
TSTG
c
A
22
-55 to +175
Storage Temperature Range
°C
Storage Temperature Range, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
Units
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
2.4
°C/W
RθJC
Junction-to-Case- Diode
–––
–––
6.1
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient
–––
–––
62
RθJA
Junction-to-Ambient (PCB Mount, steady state)
–––
–––
40
Wt
Weight
–––
1.44
–––
www.irf.com
d
g
1
8/30/04
IRGB/S/SL4B60KD1PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
—
—
0.28
—
V
Conditions
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 4.0A, VGE = 15V, TJ = 25°C
—
2.1
2.5
VCE(on)
Collector-to-Emitter Voltage
—
2.5
2.8
—
2.6
2.9
VGE(th)
Gate Threshold Voltage
3.5
4.5
5.5
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-8.1
—
gfe
Forward Transconductance
—
1.7
—
—
1.0
150
ICES
Zero Gate Voltage Collector Current
—
136
600
—
722
2400
VFM
Diode Forward Voltage Drop
—
1.4
2.0
—
1.3
1.8
IF = 4.0A, TJ = 150°C
—
1.2
1.7
IF = 4.0A, TJ = 175°C
—
—
±100
IGES
Gate-to-Emitter Leakage Current
Ref.Fig.
VGE = 0V, IC = 500µA
V
IC = 4.0A, VGE = 15V, TJ = 150°C
V
VCE = VGE, IC = 250µA
5,6,7
9,10,11
IC = 4.0A, VGE = 15V, TJ = 175°C
9,10,11
mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
S VCE = 50V, IC = 4.0A, PW = 80µs
12
VGE = 0V, VCE = 600V
µA
VGE = 0V, VCE = 600V, TJ = 150°C
V
IF = 4.0A
VGE = 0V, VCE = 600V, TJ = 175°C
nA
8
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
Qg
Total Gate Charge (turn-on)
—
12
—
Qge
Gate-to-Emitter Charge (turn-on)
—
1.7
—
Qgc
Gate-to-Collector Charge (turn-on)
—
6.5
—
VGE = 15V
Eon
Turn-On Switching Loss
—
73
80
IC = 4.0A, VCC = 400V
Eoff
Turn-Off Switching Loss
—
47
53
Ref.Fig.
IC = 4.0A
nC
µJ
23
VCC = 400V
CT1
CT4
VGE = 15V, RG = 100Ω, L = 2.5mH
e
Etot
Total Switching Loss
—
120
130
TJ = 25°C
td(on)
Turn-On delay time
—
22
28
IC = 4.0A, VCC = 400V
tr
Rise time
—
18
23
td(off)
Turn-Off delay time
—
100
110
tf
Fall time
—
66
80
Eon
Turn-On Switching Loss
—
130
150
Eoff
Turn-Off Switching Loss
—
83
140
Etot
Total Switching Loss
—
220
280
TJ = 150°C
td(on)
Turn-On delay time
—
22
27
IC = 4.0A, VCC = 400V
VGE = 15V, RG = 100Ω, L = 2.5mH
CT4
TJ = 150°C
WF1
tr
Rise time
—
18
22
td(off)
Turn-Off delay time
—
120
130
tf
Fall time
—
79
89
Cies
Input Capacitance
—
190
—
Coes
Output Capacitance
—
25
—
Cres
Reverse Transfer Capacitance
—
6.2
—
RBSOA
Reverse Bias Safe Operating Area
ns
VGE = 15V, RG = 100Ω, L = 2.5mH
CT4
TJ = 25°C
IC = 4.0A, VCC = 400V
µJ
ns
CT4
VGE = 15V, RG = 100Ω, L = 2.5mH
e
13,15
WF1,WF2
14,16
WF2
VGE = 0V
pF
VCC = 30V
22
f = 1.0MHz
TJ = 150°C, IC = 22A, Vp = 600V
FULL SQUARE
4
VCC=500V,VGE = +15V to 0V,RG = 100Ω
SCSOA
Short Circuit Safe Operating Area
10
Erec
Reverse Recovery Energy of the Diode
—
trr
Diode Reverse Recovery Time
—
Irr
Peak Reverse Recovery Current
—
Note  to ƒ are on page 16
2
—
—
µs
TJ = 150°C, Vp = 600V, RG = 100Ω
CT3
VCC=360V,VGE = +15V to 0V
WF4
100
µJ
TJ = 150°C
93
—
ns
VCC = 400V, IF = 4.0A, L = 2.5mH
6.3
7.9
A
VGE = 15V, RG = 100Ω
81
CT2
17,18,19
20,21
CT4,WF3
www.irf.com
IRGB/S/SL4B60KD1PbF
70
12
60
10
50
Ptot (W)
IC (A)
8
6
4
40
30
20
2
10
0
0
0
20
40
60
0
80 100 120 140 160 180
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
IC A)
IC (A)
100µs
1
1ms
1
10ms
0.1
DC
0
0.01
0
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB/S/SL4B60KD1PbF
30
25
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
20
ICE (A)
20
ICE (A)
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
15
15
10
10
5
5
0
0
0
2
4
6
8
10
12
0
2
4
VCE (V)
30
25
15
IF (A)
ICE (A)
12
35
10
20
-40°C
25°C
150°C
15
10
5
5
0
0
0
2
4
6
8
10
12
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
10
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
25
6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
VCE (V)
VCE (V)
IRGB/S/SL4B60KD1PbF
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
6
6
4
4
2
2
0
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
30
ID, Drain-to-Source Current (Α)
18
16
VCE (V)
14
12
10
ICE = 2.0A
ICE = 4.0A
8
ICE = 8.0A
6
4
25
T J = 25°C
20
15
TJ = 150°C
10
5
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGS , Gate-to-Source Voltage (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGB/S/SL4B60KD1PbF
350
1000
300
Swiching Time (ns)
Energy (µJ)
td OFF
EON
250
200
150
EOFF
100
tF
100
tdON
10
tR
50
0
1
1
2
3
4
5
6
7
8
9
10
0
2
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V,
RG= 100Ω; VGE= 15V
8
10
1000
300
EON
Swiching Time (ns)
250
Energy (µJ)
6
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=2.5mH; VCE= 400V
RG= 100Ω; VGE= 15V
350
200
EOFF
150
100
tdOFF
100
tF
tdON
50
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 4.0A; VGE= 15V
6
4
IC (A)
IC (A)
500
0
100
200
300
400
500
RG ( Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=2.5mH; VCE= 400V
ICE= 4.0A; VGE= 15V
www.irf.com
IRGB/S/SL4B60KD1PbF
7
10
9
IRR (A)
7
6
5
RG = 100Ω
6
RG = 200Ω
5
IRR (A)
8
RG = 330Ω
4
4
RG = 470Ω
3
3
2
2
1
0
1
2
3
4
5
6
7
8
9
0
10
100
200
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
400
500
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 4.0A
700
7
600
6
200Ω
Q RR (µC)
5
4
100Ω
8.0A
330Ω
500
IRR (A)
300
RG (Ω)
IF (A)
470Ω
400
4.0A
300
2.0A
3
200
100
2
100
150
200
250
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF = 4.0A; TJ = 150°C
www.irf.com
300
0
50
100 150 200 250 300 350 400
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGB/S/SL4B60KD1PbF
Energy (µJ)
150
125
100Ω
100
200Ω
75
330Ω
470 Ω
50
25
0
0
1
2
3
4
5
6
7
8
9
10
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
16
1000
14
Cies
300V
400V
100
10
Coes
VGE (V)
Capacitance (pF)
12
Cres
10
8
6
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
2
4
6
8
10
12
14
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 4.0A; L = 3150µH
www.irf.com
IRGB/S/SL4B60KD1PbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.01
τC
τ
Ri (°C/W) τi (sec)
0.0429
0.000001
1.3417
0.000178
1.0154
0.000627
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
τJ
0.05
0.02
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
0.01
R4
R4
τ4
τ4
Ri (°C/W)
0.0904
1.6662
3.5994
0.7454
τi (sec)
0.000003
0.000117
0.001610
0.048846
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB/S/SL4B60KD1PbF
L
L
VCC
DUT
0
+
-
80 V
DUT
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
L
- 5V
360V
DC
480V
Rg
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C.SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB/S/SL4B60KD1PbF
700
14
700
12
600
10
500
14
tf
600
tr
500
Ice
90% Ice
200
Vce (V)
6
5% Ice
400
8
10% Ice
5% Vce
300
6
4
200
4
100
2
100
2
0
0
0
Ice (A)
8
5% Vce
300
10
90% Ice
Ice (A)
Vce (V)
400
12
Vce
Vce
Ice
Eoff Loss
-100
-2
0.4
0.6
0.8
1
-100
0.35
1.2
0.55
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
6
QR R
tR R
400
4
-100
350
35
300
30
2
-6
0.15
0.25
-8
0.35
Time (uS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
20
150
15
100
10
50
5
0
0
-4
-500
-600
0.05
-2
200
I(A)
CE (A)
10% Peak
IR R
Peak
IR R
25
Ice
I
-300
VCE (V)
0
If (A)
-200
Vf (V)
40
Vce
250
-400
0.65
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
0
-2
0.45
Time (uS)
100
0
Eon
Loss
-5
-50
30
40
50
60
70
Time (uS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGB/S/SL4B60KD1PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
1.40 (.055)
1.15 (.045)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
12
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
www.irf.com
IRGB/S/SL4B60KD1PbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information (Lead-Free)
T H IS IS AN IR F 5 3 0 S W IT H
L O T CO D E 8 0 2 4
AS S E M B L E D O N W W 0 2 , 2 0 0 0
IN T H E AS S E M B L Y L IN E "L "
IN T E R N AT IO N AL
R E CT IF IE R
L O GO
N ote: "P " in as s em bly lin e
po s i tion in dicates "L ead-F r ee"
P AR T N U M B E R
F 53 0 S
AS S E M B L Y
L O T CO D E
D AT E CO D E
Y E AR 0 = 2 0 0 0
W E E K 02
L IN E L
OR
IN T E R N AT IO N AL
R E C T IF IE R
L O GO
AS S E M B L Y
L OT COD E
www.irf.com
P AR T N U M B E R
F 530S
D AT E CO D E
P = D E S IG N AT E S L E AD -F R E E
P R O D U C T (O P T IO N AL )
Y E AR 0 = 2 0 0 0
W E E K 02
A = AS S E M B L Y S IT E CO D E
13
IRGB/S/SL4B60KD1PbF
TO-262 Package Outline
TO-262 Part Marking Information
E X AMP L E :
T H IS IS AN I R L 3 1 0 3L
L OT COD E 1 78 9
AS S E M B L E D ON W W 1 9 , 1 9 9 7
IN T H E AS S E MB L Y L IN E "C"
N ote: "P " in as s em bly line
pos ition indicates "L ead-F ree"
IN T E R N AT ION AL
R E CT I F IE R
L OGO
AS S E MB L Y
L OT COD E
P AR T N U MB E R
D AT E COD E
Y E AR 7 = 1 9 97
WE E K 1 9
L IN E C
OR
IN T E R N AT ION AL
R E CT I F IE R
L OGO
AS S E MB L Y
L OT COD E
14
P AR T N U MB E R
D AT E CO D E
P = D E S I GN AT E S L E AD -F R E E
P R OD U CT (OP T ION AL )
Y E AR 7 = 1 9 97
WE E K 19
A = AS S E MB L Y S IT E COD E
www.irf.com
IRGB/S/SL4B60KD1PbF
D2Pak Tape & Reel Infomation
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 100Ω.
‚ When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer
to application note #AN-994.
ƒ Energy losses include "tail" and diode reverse recovery, using Diode FD059H06A5.
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/04
www.irf.com
15
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/