INFINEON BTS612N1E3230

PROFET® BTS612N1
Smart Two Channel Highside Power Switch
Features
• Overload protection
• Current limitation
• Short circuit protection
• Thermal shutdown
• Overvoltage protection (including load dump)
• Fast demagnetization of inductive loads
• Reverse battery protection1)
• Undervoltage and overvoltage shutdown with
auto-restart and hysteresis
• Open drain diagnostic output
• Open load detection in OFF-state
• CMOS compatible input
• Loss of ground and loss of Vbb protection
• Electrostatic discharge (ESD) protection
Product Summary
Overvoltage protection
Operating voltage
Vbb(AZ)
Vbb(on)
43
5.0 ... 34
V
V
both
channels:
each parallel
200
100 mΩ
2.3
4.4
A
4
4
A
On-state resistance RON
Load current (ISO) IL(ISO)
Current limitation
IL(SCr)
TO-220AB/7
7
1
Application
Standard
• µC compatible power switch with diagnostic
feedback for 12 V and 24 V DC grounded loads
• All types of resistive, inductive and capacitve loads
• Replaces electromechanical relays, fuses and discrete circuits
7
7
1
1
Straight leads
SMD
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic

feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions.
Voltage
source
V
3
IN1
6
IN2
5
ST
ESD
Overvoltage
protection
Current
limit 1
4
Logic
Voltage
Level shifter
sensor
Rectifier 1
Logic
Limit for
unclamped
ind. loads 1
Charge
pump 2

PROFET
1
Temperature
sensor 1
Gate 2
protection
Current
limit 2
Limit for
unclamped
ind. loads 2
OUT2
Temperature
sensor 2
7
Load
Open load
Short to Vbb
detection 2
GND
2
OUT1
Open load
Short to Vbb
detection 1
Charge
pump 1
Level shifter
Rectifier 2
1)
+ V bb
Gate 1
protection
Signal GND
Load GND
With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistor in series with ST
connection, reverse load current limited by connected load.
Semiconductor Group
1 of 15
2003-Oct-01
BTS612N1
Pin
Symbol
Function
1
OUT1 (Load, L)
Output 1, protected high-side power output of channel 1
2
GND
Logic ground
3
IN1
Input 1, activates channel 1 in case of logical high signal
4
Vbb
5
ST
Positive power supply voltage,
the tab is shorted to this pin
Diagnostic feedback: open drain, low on failure
6
IN2
Input 2, activates channel 2 in case of logical high signal
7
OUT2 (Load, L)
Output 2, protected high-side power output of channel 2
Maximum Ratings at Tj = 25 °C unless otherwise specified
Parameter
Supply voltage (overvoltage protection see page 4)
Supply voltage for full short circuit protection
Tj Start=-40 ...+150°C
Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V
RI3)= 2 Ω, RL= 5.3 Ω, td= 200 ms, IN= low or high
Load current (Short circuit current, see page 5)
Operating temperature range
Storage temperature range
Power dissipation (DC), TC ≤ 25 °C
Inductive load switch-off energy dissipation, single pulse
Vbb = 12V, Tj,start = 150°C, TC = 150°C const.
one channel, IL = 2.3 A, ZL = 89 mH, 0 Ω:
both channels parallel, IL = 4.4 A, ZL = 47 mH, 0 Ω:
Symbol
Vbb
Vbb
Values
43
34
Unit
V
V
60
V
IL
Tj
Tstg
Ptot
self-limited
-40 ...+150
-55 ...+150
36
A
°C
EAS
290
580
mJ
1.0
2.0
kV
-10 ... +16
±2.0
±5.0
V
mA
VLoad dump4)
W
see diagrams on page 9
Electrostatic discharge capability (ESD)
(Human Body Model)
IN: VESD
all other pins:
acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993
Input voltage (DC)
Current through input pin (DC)
Current through status pin (DC)
VIN
IIN
IST
see internal circuit diagrams page 7
2)
3)
4)
Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a
150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the
protection of the input is integrated.
RI = internal resistance of the load dump test pulse generator
VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
Semiconductor Group
2
2003-Oct-01
BTS612N1
Thermal Characteristics
Parameter and Conditions
Thermal resistance
Symbol
chip - case, both channels: RthJC
each channel:
junction - ambient (free air): RthJA
SMD version, device on PCB5):
min
----
Values
typ
max
-3.5
-7.0
-75
37
Unit
K/W
Electrical Characteristics
Parameter and Conditions, each channel
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Values
min
typ
max
Unit
Load Switching Capabilities and Characteristics
On-state resistance (pin 4 to 1 or 7)
IL = 1.8 A
Tj=25 °C: RON
--
160
200
400
1.8
3.5
320
2.3
4.4
--
--
--10
ton
toff
80
80
200
200
400
400
µs
dV /dton
0.1
--
1
V/µs
-dV/dtoff
0.1
--
1
V/µs
each channel
Tj=150 °C:
Nominal load current, ISO Norm (pin 4 to 1 or 7)
VON = 0.5 V, TC = 85 °C
each channel: IL(ISO)
both channels parallel:
Output current (pin 1 or 7) while GND disconnected
or GND pulled up, Vbb=30 V, VIN= 0, see diagram
page 8
Turn-on time
IN
to 90% VOUT:
Turn-off time
IN
to 10% VOUT:
RL = 12 Ω, Tj =-40...+150°C
Slew rate on
10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C
Slew rate off
70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C
5)
IL(GNDhigh)
mΩ
A
mA
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb
connection. PCB is vertical without blown air.
Semiconductor Group
3
2003-Oct-01
BTS612N1
Parameter and Conditions, each channel
Symbol
Values
min
typ
max
Vbb(on)
Vbb(under)
Vbb(u rst)
5.0
3.5
--
----
Vbb(ucp)
--
∆Vbb(under)
Vbb(over)
Vbb(o rst)
∆Vbb(over)
Vbb(AZ)
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Operating Parameters
Operating voltage6)
Undervoltage shutdown
Undervoltage restart
Tj =-40...+150°C:
Tj =-40...+150°C:
Tj =-40...+25°C:
Tj =+150°C:
Undervoltage restart of charge pump
see diagram page 12
Undervoltage hysteresis
∆Vbb(under) = Vbb(u rst) - Vbb(under)
Overvoltage shutdown
Tj =-40...+150°C:
Overvoltage restart
Tj =-40...+150°C:
Overvoltage hysteresis
Tj =-40...+150°C:
Overvoltage protection7)
Tj =-40...+150°C:
Ibb=40 mA
Standby current (pin 4),
VIN=0
Tj=-40...+150°C:
8)
Operating current (Pin 2) , VIN=5 V
both channels on, Tj =-40...+150°C,
Operating current (Pin 2)8)
one channel on, Tj =-40...+150°C:,
6)
7)
8)
Unit
V
V
V
5.6
34
5.0
5.0
7.0
7.0
--
0.2
--
V
34
33
-42
--0.5
47
43
----
V
V
V
V
V
µA
Ibb(off)
IGND
---
90
0.6
150
1.2
mA
IGND
--
0.4
0.7
mA
At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V
See also VON(CL) in table of protection functions and circuit diagram page 8.
Add IST, if IST > 0, add IIN, if VIN>5.5 V
Semiconductor Group
4
2003-Oct-01
BTS612N1
Parameter and Conditions, each channel
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Protection Functions9)
Initial peak short circuit current limit (pin 4 to 1
or 7)
Tj =-40°C:
Tj =25°C:
Tj =+150°C:
Repetitive short circuit shutdown current limit
Tj = Tjt (see timing diagrams, page 11)
Output clamp (inductive load switch off)
IL= 40 mA:
at VOUT = Vbb - VON(CL)
Thermal overload trip temperature
Thermal hysteresis
Reverse battery (pin 4 to 2) 10)
Reverse battery voltage drop (Vout > Vbb)
IL = -1.9 A, each channel
Tj=150 °C:
Diagnostic Characteristics
Open load detection current
(included in standby current Ibb(off))
Open load detection voltage
Values
min
typ
max
Unit
IL(SCp)
5.5
4.5
2.5
9.5
7.5
4.5
13
11
7
A
--
4
--
A
41
150
---
47
-10
--
53
--32
V
°C
K
V
-VON(rev)
--
610
--
mV
IL(off)
--
30
--
µA
2
3
4
V
IL(SCr)
VON(CL)
Tjt
∆Tjt
-Vbb
Tj=-40..150°C: VOUT(OL)
9)
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not
designed for continuous repetitive operation.
10) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source
diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal
operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature
protection is not active during reverse current operation! Input and Status currents have to be limited (see
max. ratings page 2 and circuit page 8).
Semiconductor Group
5
2003-Oct-01
BTS612N1
Parameter and Conditions, each channel
Symbol
at Tj = 25 °C, Vbb = 12 V unless otherwise specified
Input and Status Feedback11)
Input resistance
RI
Tj=-40..150°C, see circuit page 7
Input turn-on threshold voltage
Tj =-40..+150 VIN(T+)
Input turn-off threshold voltage
Tj =-40..+150° VIN(T-)
Input threshold hysteresis
∆ VIN(T)
Off state input current (pin 3 or 6), VIN = 0.4 V,
IIN(off)
Tj =-40..+150°C
Values
min
typ
max
Unit
2.5
3.5
6
kΩ
1.7
1.5
-1
--0.5
--
3.5
--50
V
V
V
µA
20
50
90
µA
On state input current (pin 3 or 6), VIN = 3.5 V,
Tj =-40..+150°C
IIN(on)
Delay time for status with open load
td(ST OL3)
--
220
--
µs
Status output (open drain)
Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: VST(high)
ST low voltage
Tj =-40...+25°C, IST = +1.6 mA: VST(low)
Tj = +150°C, IST = +1.6 mA:
5.4
---
6.1
---
-0.4
0.6
V
after Input neg. slope (see diagram page 12)
11)
If a ground resistor RGND is used, add the voltage drop across this resistor.
Semiconductor Group
6
2003-Oct-01
BTS612N1
Truth Table
Normal operation
Open load
Channel 1
Channel 2
Short circuit to Vbb
Channel 1
Channel 2
Overtemperature
both channel
Channel 1
Channel 2
Undervoltage/ Overvoltage
L = "Low" Level
H = "High" Level
IN1
IN2
OUT1
OUT2
ST
BTS611L1
ST
BTS612N1
L
L
H
H
L
L
H
L
H
L
H
L
H
X
L
L
H
H
Z
Z
H
L
H
L
H
L
H
X
H
H
H
H
H
H
H
H
L
H
H
L
H
X
L
L
H
L
L
H
L
H
X
L
H
X
H
H
H
Z
Z
H
L
H
X
L
H
X
L
X
H
L
H
X
X
X
L
L
H
L
H
X
X
X
L
H
X
L
H
X
L
L
L
L
L
X
X
L
H
H
H
L
L
L
X
X
L
L
L
I IN1
4
3
I ST
V
Ibb
V
ON2
Vbb
IN1
OUT1
I IN2
IN1
L13)
H
H(L14))
L13)
H
H(L14))
H
L
L
H
L
H
L
H
L
H
H
H
L
L
H
L
H
L
H
Input circuit (ESD protection)
bb
V
L
H
H
L
H
H
X = don't care
Z = high impedance, potential depends on external circuit
Status signal after the time delay shown in the diagrams (see fig 5. page 12)
Terms
V
H(L12))
H
L
H(L12))
H
L
6
IN2 V
5
ST
IN2
PROFET
OUT2
ST
GND
GND
IN
I
GND
I
I L1
ESD-ZD I
I L2
7
I
I
GND
V
OUT1
2
R
1
R
VON1
V OUT2
ESD zener diodes are not to be used as voltage clamp
at DC conditions. Operation in this mode may result in
a drift of the zener voltage (increase of up to 1 V).
12)
With additional external pull up resistor
An external short of output to Vbb, in the off state, causes an internal current from output to ground. If RGND
is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious.
14) Low resistance to V may be detected in the ON-state by the no-load-detection
bb
13)
Semiconductor Group
7
2003-Oct-01
BTS612N1
Status output
Open-load detection
+5V
R ST(ON)
OFF-state diagnostic condition: VOUT > 3 V typ.; IN low
ST
ESDZD
GND
OFF
I
ESD-Zener diode: 6.1 V typ., max 5 mA;
RST(ON) < 380 Ω at 1.6 mA, ESD zener diodes are not
to be used as voltage clamp at DC conditions.
Operation in this mode may result in a drift of the zener
voltage (increase of up to 1 V).
L(OL)
Open load
detection
Logic
unit
V
OUT
Signal GND
Inductive and overvoltage output clamp
GND disconnect
+ V bb
V
Z
V
bb
4
3
VON
Vbb
OUT1
6
OUT
GND
IN1
Ibb
PROFET
5
IN2
PROFET
ST
GND
OUT2
1
7
2
V V
V
IN1 IN2 ST
V
GND
VON clamped to 47 V typ.
Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) .
Due to VGND >0, no VST = low signal available.
Overvolt. and reverse batt. protection
GND disconnect with GND pull up
+ V bb
IN1
V
RI
4
Z2
3
IN2
ST
6
V
IN2
V
Z1
5
IN2
PROFET
ST
GND
OUT2
1
7
2
GND
R GND
V
bb
Signal GND
VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI= 3.5 kΩ typ,
RGND= 150 Ω
Semiconductor Group
Vbb
OUT1
V
IN1
Logic
R ST
IN1
V
ST
V
GND
Any kind of load. If VGND > VIN - VIN(T+) device stays off
Due to VGND >0, no VST = low signal available.
8
2003-Oct-01
BTS612N1
with an approximate solution for RL > 0 Ω:
Vbb disconnect with energized inductive
load
EAS=
Maximum allowable load inductance for
a single switch off (both channels parallel)
4
3
Vbb
IN1
OUT1
high
6
5
L = f (IL ); Tj,start = 150°C,TC = 150°C const.,
Vbb = 12 V, RL = 0 Ω
1
PROFET
IN2
OUT2
ST
IL· L
IL·RL
·(V + |VOUT(CL)|)· ln (1+
)
|VOUT(CL)|
2·RL bb
GND
L [mH]
1000
7
2
V
bb
Normal load current can be handled by the PROFET
itself.
100
Vbb disconnect with charged external
inductive load
4
3
IN1
Vbb
OUT1
high
6
5
10
1
PROFET
IN2
OUT2
ST
GND
D
7
2
1
V
bb
2
3
4
5
6
7
8
IL [A]
If other external inductive loads L are connected to the PROFET,
additional elements like D are necessary.
Inductive Load switch-off energy
dissipation
E bb
E AS
IN
PROFET
=
ELoad
Vbb
OUT
ST
GND
ZL
{
L
RL
EL
ER
Energy stored in load inductance:
2
EL = 1/2·L·I L
While demagnetizing load inductance, the energy
dissipated in PROFET is
EAS= Ebb + EL - ER= VON(CL)·iL(t) dt,
Semiconductor Group
9
2003-Oct-01
BTS612N1
Typ. transient thermal impedance chip case
ZthJC = f(tp), one Channel active
ZthJC [K/W]
10
1
D=
0.5
0.2
0.1
0.05
0.02
0.01
0
0.1
0.01
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
tp [s]
Transient thermal impedance chip case
ZthJC = f(tp), both Channel active
ZthJC [K/W]
10
1
D=
0.5
0.2
0.1
0.05
0.02
0.01
0
0.1
0.01
1E-5
1E-4
1E-3
1E-2
1E-1
1E0
1E1
tp [s]
Semiconductor Group
10
2003-Oct-01
BTS612N1
Timing diagrams
Both channels are symmetric and consequently the diagrams
are valid for each channel as well as for permuted channels
Figure 1a: Vbb turn on:
Figure 2b: Switching an inductive load
IN1
IN2
IN
V bb
ST
V
OUT1
V
V
OUT
OUT2
I
L
ST open drain
t
t
Figure 2a: Switching a lamp:
Figure 3a: Short circuit
shut down by overtempertature, reset by cooling
IN
IN
other channel: normal operation
ST
IL
V
OUT
I L(SCp)
I
I L(SCr)
L
t
ST
t
Semiconductor Group
11
2003-Oct-01
BTS612N1
td(ST,OL3) depends on external circuitry because of high
impedance
*) IL = 30 µA typ
Heating up may require several milliseconds, depending on
external conditions
Figure 4a: Overtemperature:
Reset if Tj <Tjt
Figure 6a: Undervoltage:
IN
IN
V bb
ST
Vbb(u cp)
V
V
bb(under)
bb(u rst)
V
OUT
V OUT
T
J
ST open drain
t
t
Figure 6b: Undervoltage restart of charge pump
Figure 5a: Open load: detection in OFF-state, turn
on/off to open load
VON(CL)
V on
IN1
on-state
VOUT1
V
bb(u rst)
IL1
V
channel 1: open load
V
t
d(ST OL3)
V
bb(over)
bb(o rst)
bb(u cp)
bb(under)
V bb
t d(ST OL3)
ST
charge pump starts at Vbb(ucp) =5.6 V typ.
t
Semiconductor Group
V
off-state
channel 2: normal operation
off-state
IN2
12
2003-Oct-01
BTS612N1
Figure 7a: Overvoltage:
IN
Vbb
V ON(CL)
Vbb(over)
V bb(o rst)
V
OUT
ST
t
Semiconductor Group
13
2003-Oct-01
BTS612N1
SMD TO 220AB/7, Opt. E3128 Ordering code
Package and Ordering Code
BTS612N1 E3128A T&R:
All dimensions in mm
Standard TO-220AB/7
BTS612N1
TO 220AB/7, Opt. E3230
BTS612N1 E3230
Semiconductor Group
Q67060-S6303-A4
Ordering code
Q67060-S6303-A2
Changed since 04.96
Date Change
Dec
td(ST OL4) max reduced from 1500
1996 to 800µs, typical from 400 to
320µs, min limit unchanged
EAS maximum rating and diagram
and ZthJC diagram added
ESD capability increased
Typ. reverse battery voltage drop VON(rev) added
Ordering code
Q67060-S6303-A3
14
2003-Oct-01
BTS612N1
Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81669 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain
components and shall not be considered as a guarantee of
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not
limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and
conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon
Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain
dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies
Office.
Infineon Technologies Components may only be used in lifesupport devices or systems with the express written
approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the
failure of that life-support device or system, or to affect the
safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the
human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to
assume that the health of the user or other persons may be
endangered.
Semiconductor Group
15
2003-Oct-01