PROFET® BTS612N1 Smart Two Channel Highside Power Switch Features • Overload protection • Current limitation • Short circuit protection • Thermal shutdown • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection1) • Undervoltage and overvoltage shutdown with auto-restart and hysteresis • Open drain diagnostic output • Open load detection in OFF-state • CMOS compatible input • Loss of ground and loss of Vbb protection • Electrostatic discharge (ESD) protection Product Summary Overvoltage protection Operating voltage Vbb(AZ) Vbb(on) 43 5.0 ... 34 V V both channels: each parallel 200 100 mΩ 2.3 4.4 A 4 4 A On-state resistance RON Load current (ISO) IL(ISO) Current limitation IL(SCr) TO-220AB/7 7 1 Application Standard • µC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads • Replaces electromechanical relays, fuses and discrete circuits 7 7 1 1 Straight leads SMD General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Voltage source V 3 IN1 6 IN2 5 ST ESD Overvoltage protection Current limit 1 4 Logic Voltage Level shifter sensor Rectifier 1 Logic Limit for unclamped ind. loads 1 Charge pump 2 PROFET 1 Temperature sensor 1 Gate 2 protection Current limit 2 Limit for unclamped ind. loads 2 OUT2 Temperature sensor 2 7 Load Open load Short to Vbb detection 2 GND 2 OUT1 Open load Short to Vbb detection 1 Charge pump 1 Level shifter Rectifier 2 1) + V bb Gate 1 protection Signal GND Load GND With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load. Semiconductor Group 1 of 15 2003-Oct-01 BTS612N1 Pin Symbol Function 1 OUT1 (Load, L) Output 1, protected high-side power output of channel 1 2 GND Logic ground 3 IN1 Input 1, activates channel 1 in case of logical high signal 4 Vbb 5 ST Positive power supply voltage, the tab is shorted to this pin Diagnostic feedback: open drain, low on failure 6 IN2 Input 2, activates channel 2 in case of logical high signal 7 OUT2 (Load, L) Output 2, protected high-side power output of channel 2 Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj Start=-40 ...+150°C Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 Ω, RL= 5.3 Ω, td= 200 ms, IN= low or high Load current (Short circuit current, see page 5) Operating temperature range Storage temperature range Power dissipation (DC), TC ≤ 25 °C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150°C, TC = 150°C const. one channel, IL = 2.3 A, ZL = 89 mH, 0 Ω: both channels parallel, IL = 4.4 A, ZL = 47 mH, 0 Ω: Symbol Vbb Vbb Values 43 34 Unit V V 60 V IL Tj Tstg Ptot self-limited -40 ...+150 -55 ...+150 36 A °C EAS 290 580 mJ 1.0 2.0 kV -10 ... +16 ±2.0 ±5.0 V mA VLoad dump4) W see diagrams on page 9 Electrostatic discharge capability (ESD) (Human Body Model) IN: VESD all other pins: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 Input voltage (DC) Current through input pin (DC) Current through status pin (DC) VIN IIN IST see internal circuit diagrams page 7 2) 3) 4) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Semiconductor Group 2 2003-Oct-01 BTS612N1 Thermal Characteristics Parameter and Conditions Thermal resistance Symbol chip - case, both channels: RthJC each channel: junction - ambient (free air): RthJA SMD version, device on PCB5): min ---- Values typ max -3.5 -7.0 -75 37 Unit K/W Electrical Characteristics Parameter and Conditions, each channel Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Values min typ max Unit Load Switching Capabilities and Characteristics On-state resistance (pin 4 to 1 or 7) IL = 1.8 A Tj=25 °C: RON -- 160 200 400 1.8 3.5 320 2.3 4.4 -- -- --10 ton toff 80 80 200 200 400 400 µs dV /dton 0.1 -- 1 V/µs -dV/dtoff 0.1 -- 1 V/µs each channel Tj=150 °C: Nominal load current, ISO Norm (pin 4 to 1 or 7) VON = 0.5 V, TC = 85 °C each channel: IL(ISO) both channels parallel: Output current (pin 1 or 7) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 8 Turn-on time IN to 90% VOUT: Turn-off time IN to 10% VOUT: RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C 5) IL(GNDhigh) mΩ A mA Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group 3 2003-Oct-01 BTS612N1 Parameter and Conditions, each channel Symbol Values min typ max Vbb(on) Vbb(under) Vbb(u rst) 5.0 3.5 -- ---- Vbb(ucp) -- ∆Vbb(under) Vbb(over) Vbb(o rst) ∆Vbb(over) Vbb(AZ) at Tj = 25 °C, Vbb = 12 V unless otherwise specified Operating Parameters Operating voltage6) Undervoltage shutdown Undervoltage restart Tj =-40...+150°C: Tj =-40...+150°C: Tj =-40...+25°C: Tj =+150°C: Undervoltage restart of charge pump see diagram page 12 Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) Overvoltage shutdown Tj =-40...+150°C: Overvoltage restart Tj =-40...+150°C: Overvoltage hysteresis Tj =-40...+150°C: Overvoltage protection7) Tj =-40...+150°C: Ibb=40 mA Standby current (pin 4), VIN=0 Tj=-40...+150°C: 8) Operating current (Pin 2) , VIN=5 V both channels on, Tj =-40...+150°C, Operating current (Pin 2)8) one channel on, Tj =-40...+150°C:, 6) 7) 8) Unit V V V 5.6 34 5.0 5.0 7.0 7.0 -- 0.2 -- V 34 33 -42 --0.5 47 43 ---- V V V V V µA Ibb(off) IGND --- 90 0.6 150 1.2 mA IGND -- 0.4 0.7 mA At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V See also VON(CL) in table of protection functions and circuit diagram page 8. Add IST, if IST > 0, add IIN, if VIN>5.5 V Semiconductor Group 4 2003-Oct-01 BTS612N1 Parameter and Conditions, each channel Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Protection Functions9) Initial peak short circuit current limit (pin 4 to 1 or 7) Tj =-40°C: Tj =25°C: Tj =+150°C: Repetitive short circuit shutdown current limit Tj = Tjt (see timing diagrams, page 11) Output clamp (inductive load switch off) IL= 40 mA: at VOUT = Vbb - VON(CL) Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 4 to 2) 10) Reverse battery voltage drop (Vout > Vbb) IL = -1.9 A, each channel Tj=150 °C: Diagnostic Characteristics Open load detection current (included in standby current Ibb(off)) Open load detection voltage Values min typ max Unit IL(SCp) 5.5 4.5 2.5 9.5 7.5 4.5 13 11 7 A -- 4 -- A 41 150 --- 47 -10 -- 53 --32 V °C K V -VON(rev) -- 610 -- mV IL(off) -- 30 -- µA 2 3 4 V IL(SCr) VON(CL) Tjt ∆Tjt -Vbb Tj=-40..150°C: VOUT(OL) 9) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 10) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 8). Semiconductor Group 5 2003-Oct-01 BTS612N1 Parameter and Conditions, each channel Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Input and Status Feedback11) Input resistance RI Tj=-40..150°C, see circuit page 7 Input turn-on threshold voltage Tj =-40..+150 VIN(T+) Input turn-off threshold voltage Tj =-40..+150° VIN(T-) Input threshold hysteresis ∆ VIN(T) Off state input current (pin 3 or 6), VIN = 0.4 V, IIN(off) Tj =-40..+150°C Values min typ max Unit 2.5 3.5 6 kΩ 1.7 1.5 -1 --0.5 -- 3.5 --50 V V V µA 20 50 90 µA On state input current (pin 3 or 6), VIN = 3.5 V, Tj =-40..+150°C IIN(on) Delay time for status with open load td(ST OL3) -- 220 -- µs Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: VST(high) ST low voltage Tj =-40...+25°C, IST = +1.6 mA: VST(low) Tj = +150°C, IST = +1.6 mA: 5.4 --- 6.1 --- -0.4 0.6 V after Input neg. slope (see diagram page 12) 11) If a ground resistor RGND is used, add the voltage drop across this resistor. Semiconductor Group 6 2003-Oct-01 BTS612N1 Truth Table Normal operation Open load Channel 1 Channel 2 Short circuit to Vbb Channel 1 Channel 2 Overtemperature both channel Channel 1 Channel 2 Undervoltage/ Overvoltage L = "Low" Level H = "High" Level IN1 IN2 OUT1 OUT2 ST BTS611L1 ST BTS612N1 L L H H L L H L H L H L H X L L H H Z Z H L H L H L H X H H H H H H H H L H H L H X L L H L L H L H X L H X H H H Z Z H L H X L H X L X H L H X X X L L H L H X X X L H X L H X L L L L L X X L H H H L L L X X L L L I IN1 4 3 I ST V Ibb V ON2 Vbb IN1 OUT1 I IN2 IN1 L13) H H(L14)) L13) H H(L14)) H L L H L H L H L H H H L L H L H L H Input circuit (ESD protection) bb V L H H L H H X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 12) Terms V H(L12)) H L H(L12)) H L 6 IN2 V 5 ST IN2 PROFET OUT2 ST GND GND IN I GND I I L1 ESD-ZD I I L2 7 I I GND V OUT1 2 R 1 R VON1 V OUT2 ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). 12) With additional external pull up resistor An external short of output to Vbb, in the off state, causes an internal current from output to ground. If RGND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 14) Low resistance to V may be detected in the ON-state by the no-load-detection bb 13) Semiconductor Group 7 2003-Oct-01 BTS612N1 Status output Open-load detection +5V R ST(ON) OFF-state diagnostic condition: VOUT > 3 V typ.; IN low ST ESDZD GND OFF I ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). L(OL) Open load detection Logic unit V OUT Signal GND Inductive and overvoltage output clamp GND disconnect + V bb V Z V bb 4 3 VON Vbb OUT1 6 OUT GND IN1 Ibb PROFET 5 IN2 PROFET ST GND OUT2 1 7 2 V V V IN1 IN2 ST V GND VON clamped to 47 V typ. Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Overvolt. and reverse batt. protection GND disconnect with GND pull up + V bb IN1 V RI 4 Z2 3 IN2 ST 6 V IN2 V Z1 5 IN2 PROFET ST GND OUT2 1 7 2 GND R GND V bb Signal GND VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI= 3.5 kΩ typ, RGND= 150 Ω Semiconductor Group Vbb OUT1 V IN1 Logic R ST IN1 V ST V GND Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. 8 2003-Oct-01 BTS612N1 with an approximate solution for RL > 0 Ω: Vbb disconnect with energized inductive load EAS= Maximum allowable load inductance for a single switch off (both channels parallel) 4 3 Vbb IN1 OUT1 high 6 5 L = f (IL ); Tj,start = 150°C,TC = 150°C const., Vbb = 12 V, RL = 0 Ω 1 PROFET IN2 OUT2 ST IL· L IL·RL ·(V + |VOUT(CL)|)· ln (1+ ) |VOUT(CL)| 2·RL bb GND L [mH] 1000 7 2 V bb Normal load current can be handled by the PROFET itself. 100 Vbb disconnect with charged external inductive load 4 3 IN1 Vbb OUT1 high 6 5 10 1 PROFET IN2 OUT2 ST GND D 7 2 1 V bb 2 3 4 5 6 7 8 IL [A] If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. Inductive Load switch-off energy dissipation E bb E AS IN PROFET = ELoad Vbb OUT ST GND ZL { L RL EL ER Energy stored in load inductance: 2 EL = 1/2·L·I L While demagnetizing load inductance, the energy dissipated in PROFET is EAS= Ebb + EL - ER= VON(CL)·iL(t) dt, Semiconductor Group 9 2003-Oct-01 BTS612N1 Typ. transient thermal impedance chip case ZthJC = f(tp), one Channel active ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Transient thermal impedance chip case ZthJC = f(tp), both Channel active ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Semiconductor Group 10 2003-Oct-01 BTS612N1 Timing diagrams Both channels are symmetric and consequently the diagrams are valid for each channel as well as for permuted channels Figure 1a: Vbb turn on: Figure 2b: Switching an inductive load IN1 IN2 IN V bb ST V OUT1 V V OUT OUT2 I L ST open drain t t Figure 2a: Switching a lamp: Figure 3a: Short circuit shut down by overtempertature, reset by cooling IN IN other channel: normal operation ST IL V OUT I L(SCp) I I L(SCr) L t ST t Semiconductor Group 11 2003-Oct-01 BTS612N1 td(ST,OL3) depends on external circuitry because of high impedance *) IL = 30 µA typ Heating up may require several milliseconds, depending on external conditions Figure 4a: Overtemperature: Reset if Tj <Tjt Figure 6a: Undervoltage: IN IN V bb ST Vbb(u cp) V V bb(under) bb(u rst) V OUT V OUT T J ST open drain t t Figure 6b: Undervoltage restart of charge pump Figure 5a: Open load: detection in OFF-state, turn on/off to open load VON(CL) V on IN1 on-state VOUT1 V bb(u rst) IL1 V channel 1: open load V t d(ST OL3) V bb(over) bb(o rst) bb(u cp) bb(under) V bb t d(ST OL3) ST charge pump starts at Vbb(ucp) =5.6 V typ. t Semiconductor Group V off-state channel 2: normal operation off-state IN2 12 2003-Oct-01 BTS612N1 Figure 7a: Overvoltage: IN Vbb V ON(CL) Vbb(over) V bb(o rst) V OUT ST t Semiconductor Group 13 2003-Oct-01 BTS612N1 SMD TO 220AB/7, Opt. E3128 Ordering code Package and Ordering Code BTS612N1 E3128A T&R: All dimensions in mm Standard TO-220AB/7 BTS612N1 TO 220AB/7, Opt. E3230 BTS612N1 E3230 Semiconductor Group Q67060-S6303-A4 Ordering code Q67060-S6303-A2 Changed since 04.96 Date Change Dec td(ST OL4) max reduced from 1500 1996 to 800µs, typical from 400 to 320µs, min limit unchanged EAS maximum rating and diagram and ZthJC diagram added ESD capability increased Typ. reverse battery voltage drop VON(rev) added Ordering code Q67060-S6303-A3 14 2003-Oct-01 BTS612N1 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Semiconductor Group 15 2003-Oct-01