Triple Voltage Regulator TLE 4471 Features • • • • • • • • • • • • • • Triple Voltage Regulator Output Voltage 5 V with 450 mA Current Capability Two tracked Outputs for 50 mA and 100 mA Enable Function for main and tracked Output(s) Reset with adjustable Threshold Undervoltage- and Power On-Reset Watchdog Independent Watchdog- and Reset delay Wide Temperature Range Overtemperature Protection Overvoltage Protection Reverse Polarity Proof Green Product (RoHS compliant) AEC Qualified Functional Description The TLE 4471 is a monolithic integrated very low-drop triple voltage regulator. The main output supplies loads up to 450 mA and the additional tracked outputs can provide up to 50 mA and 100 mA. In addition the device includes a watchdog for microcontrollersupervision, an undervoltage reset, a power on reset and extended enabling features. The watchdog and reset timing can be chosen independently of each other. The TLE 4471 is available in a Power PG-DSO-20 package. It is designed to supply microprocessor systems under the severe condition of automotive applications and therefore it is equipped with additional protection against overload, short circuit and overtemperature. Of course the TLE 4471 can be used in other applications as well. The TLE 4471 operates in the temperature range of Tj = -40 to 150 °C. Type Package TLE 4471 G Power PG-DSO-20 Data Sheet 1 Rev. 1.6, 2009-02-03 TLE 4471 Self Protection - Over Temperature - Short Circuit - Reverse Polarity Proof ESD Protection I E1 E2 E3 ≥1 Main Regulator Tracker 1 Tracker 2 EN 5 V ±2%, 450 mA Q1 100 mA, ±0.5% Tracking Q2 Reference Voltage REF2 50 mA, ±0.5% Tracking Reference Voltage Q3 REF3 Reset Generator Reset Delay DR R Reset Level Adjust RADJ W Watchdog DW TLE 4471 AES02864 Figure 1 Data Sheet Block Diagram 2 Rev. 1.6, 2009-02-03 TLE 4471 GND E1 I Q2 REF2 R DR E2 Q1 GND 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 GND DW W Q3 E3 REF3 EN N.C. RADJ GND AEP02865 Figure 2 Pin Configuration (top view) Table 1 Pin Definitions and Functions Pin No. Symbol Function 1, 10, 11, GND 20 GROUND; all four pins connected to the heat sink 2 E1 Enable 1; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. 3 I Input; block to ground directly at the IC for line compensation. 4 Q2 Tracking Output Q2; block to GND with min. 10 µF with ESR < 3 Ω. 5 REF2 Reference Output; Reference Voltage related to Q2. 6 R Reset Output; the open collector Output is connected to Q1 via an integrated resistor. 7 DR Reset Delay; connect a capacitor to GND for reset delay time adjustment. 8 E2 Enable 2; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. 9 Q1 Main Output Q1; block to GND with min. 22 µF, ESR < 3 Ω. 12 RADJ Reset Switching Threshold Adjust; The reset threshold can be set individually with an external voltage divider at the pin. If it is connected straight to GND the reset threshold remains at 4.65 V. 13 NC Not Connected Data Sheet 3 Rev. 1.6, 2009-02-03 TLE 4471 Table 1 Pin Definitions and Functions (cont’d) Pin No. Symbol Function 14 EN Enable Input; enables Q3 15 REF3 Reference Output; Reference Voltage related to Q3. 16 E3 Enable 3; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. 17 Q3 Tracker Output Q3; block to GND with min. 10 µF with ESR < 3 Ω. 18 W Watchdog Trigger Input; positive edge triggered input for monitoring a microcontroller. 19 DW Watchdog Delay; connect a capacitor to GND for watchdog trigger time adjustment. Data Sheet 4 Rev. 1.6, 2009-02-03 TLE 4471 Table 2 Absolute Maximum Ratings Tj = -40 to 150 °C Parameter Symbol Limit Values Unit Notes – Min. Max. -45 – 42 60 V V t < 400 ms VQ1 IQ1 -0.3 7 V – – – mA internally limited VQ2 IQ2 -2 27 V – – – mA internally limited VQ3 IQ3 -2 27 V – -5 – mA internally limited VE1 IE1 -0.3 16 V – -20 20 mA – VE2 IE2 -0.3 6.5 V – – – mA internally limited VE3 IE3 -0.3 16 V – -20 20 mA – VEN IEN -0.3 7 V – – – mA internally limited VREF2 IREF2 -0.3 4.5 V – – – mA – Input I Input voltage VI Main Output Q1 Output voltage Output current Tracking Output Q2 Output voltage Output current Tracking Output Q3 Output voltage Output current Enable Input E1 Input voltage Input current Enable Input E2 Input voltage Input current Enable Input E3 Input voltage Input current Enable Input EN Input voltage Input current Reference Output REF2 Output voltage Output current Data Sheet 5 Rev. 1.6, 2009-02-03 TLE 4471 Table 2 Absolute Maximum Ratings (cont’d) Tj = -40 to 150 °C Parameter Symbol Limit Values Unit Notes Min. Max. VREF3 IREF3 -0.3 4.5 V – – – mA – VRADJ IRADJ -0.3 7 V – – – mA internally limited VDR -0.3 7 V – VR -0.3 7 V – VDW -0.3 7 V – VW IW -0.3 7 V – – – mA – Tj TStg -50 150 °C – -65 150 °C – Rthja Rthjp – – K/W – – 4 K/W – – -2 2 kV – Reference Output REF3 Output voltage Output current Reset Adjust Input RADJ Input Voltage Input Current Reset Delay DR Voltage Reset Output R Voltage Watchdog Delay DW Voltage Watchdog Input W Input voltage Input current Temperature Junction temperature Storage temperature Thermal Data Junction-ambient ESD Human Body Model Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data Sheet 6 Rev. 1.6, 2009-02-03 TLE 4471 Table 3 Operating Range Parameter Input voltage Junction temperature Shutdown voltage threshold Symbol VI Tj Vshut Limit Values Unit Notes Min. Max. 5.5 40 V – -40 150 °C – – 44 V – Note: In the operating range, the functions given in the circuit description are fulfilled. Data Sheet 7 Rev. 1.6, 2009-02-03 TLE 4471 Table 4 Characteristics VI = 13.5 V; Tj = -40 °C < Tj < 125 °C Parameter Symbol Limit Values Min. Typ. Max. Unit Measuring Condition Main Output Q1 Output voltage VQ1 4.9 5.0 5.1 V 10 mA < IQ1 < 450 mA; 5.5 V < VI < 19 V Output voltage VQ1 4.8 5.0 5.2 V 10 mA < IQ1 < 300 mA; 5.5 V < VI < 28 V Output voltage VQ1 4.8 5.0 5.2 V 10 mA < IQ1 < 200 mA; 5.5 V < VI < 40 V Output current limit 550 – 1500 mA – 0.25 0.55 V Line regulation IQ1 VDR ∆VQ1 -25 – 25 mV Load regulation ∆VQ1 -25 – 25 mV Power Supply Ripple Rejection PSRR – 30 – dB Output capacitor CQ1 ESR 22 – – µF 2) – – 3 Ω at 10 kHz2) Output voltage tracking accuracy ∆VQ2 = VQ2 - VQ1 -25 – 25 mV 5.7 V < VI < 19 V; 1 mA < IQ2 < 100 mA Output voltage tracking accuracy ∆VQ2 = VQ2 - VQ1 -25 – 25 mV 5.7 V < VI < 28 V; 1 mA < IQ2 < 80 mA Output voltage tracking accuracy ∆VQ2 = VQ2 - VQ1 -25 – 25 mV 5.7 V < VI < 40 V; 1 mA < IQ2 < 50 mA Output current limit IQ2 VDR2 PSRR 110 – – mA – – 0.6 V – 30 – dB VQ2 = 0.1 V IQ2 = 100 mA 20 Hz < fr < 20 kHz; VPP = 0.5 V; CQ2 = 10 µF2) Output voltage drop ESR of output capacitor VQ1 = 0.1 V IQ1 = 450 mA1) 8 V ≤ VI ≤ 16 V; IQ1 = 10 mA 10 mA < IQ1 < 450 mA; VI = 7 V CQ1 = 22 µF; 20 Hz < fr < 20 kHz; VPP = 0.5 V2) Tracked Output Q2 Output voltage drop Power Supply Ripple Rejection Data Sheet 8 Rev. 1.6, 2009-02-03 TLE 4471 Table 4 Characteristics (cont’d) VI = 13.5 V; Tj = -40 °C < Tj < 125 °C Parameter Symbol Limit Values Unit Measuring Condition Min. Typ. Max. CQ2 ESR 10 – – µF 2) – – 3 Ω at 10 kHz2) Output voltage tracking accuracy ∆VQ3 = VQ3 - VQ1 -25 – 25 mV 5.7 V < VI < 19 V; 1 mA < IQ3 < 50 mA Output voltage tracking accuracy ∆VQ3 = VQ3 - VQ1 -25 – 25 mV 5.7 V < VI < 28 V; 1 mA < IQ3 < 40 mA Output voltage tracking accuracy ∆VQ3 = VQ3 - VQ1 -25 – 25 mV 5.7 V < VI < 40 V; 1 mA < IQ3 < 25 mA Output current limit IQ3 VDR3 PSRR 55 – 150 mA – – 0.6 V – 30 – dB VQ3 = 0.1 V 1 mA ≤ IQ3 ≤ 50 mA 20 Hz < fr < 20 kHz; VPP = 0.5 V; CQ3 = 10 µF2) CQ3 ESR 10 – – µF 2) – – 3 Ω at 10 kHz2) -25 – 25 mV – Iq – – 20 µA Q1 OFF, Q2 OFF; Q3 OFF Current consumption; Iq Iq = II - IQ – 1100 – µA Q3 OFF, IQ1 < 1 mA; IQ2 < 1 mA Current consumption; Iq Iq = II - IQ – 1800 – µA IQ1 < 10 mA; IQ2 < 1 mA; IQ3 < 1 mA Output capacitor ESR of output capacitor Tracked Output Q3 Output voltage drop Power Supply Ripple Rejection Output capacitor ESR of output capacitor Matching error ∆VQ2,3 = between VQ2 and VQ3 VQ3 - VQ2 Current Consumption Quiescent current (standby) Data Sheet 9 Rev. 1.6, 2009-02-03 TLE 4471 Table 4 Characteristics (cont’d) VI = 13.5 V; Tj = -40 °C < Tj < 125 °C Parameter Symbol Limit Values Unit Measuring Condition Min. Typ. Max. 3.5 4.1 4.5 V VQ1 > 4.8 V; VQ2 > 4.8 V 1.5 – 2.5 V – – 50 – µA -1 – 5 µA 1.3 1.7 2.0 V VE1 = 16 V VE1 = 0 V VQ1 > 4.8 V; VQ2 > 4.8 V 0.8 1.2 1.7 V – 5 15 40 kΩ – 3.5 – 4.5 V VQ1 > 4.8 V; VQ2 > 4.8 V 1.5 – 2.5 V – – 50 – µA -1 – 5 µA 1.0 1.7 2.3 V 0.8 1.2 1.7 V VE3 = 16 V VE3 = 0 V VQ3 > 4.8 V; Q1 ON VQ3 < 0.1 V 5 15 40 kΩ – Enable Function E1, E2, E3, EN VE1, on VE1, off E1 Off threshold E1 High input current IE1, on E1 Low input current IE1, off VE2, on E2 On threshold E2 Off threshold VE2, off E2 resistance to GND RE2 VE3, on E3 On threshold E3 Off threshold VE3, off E3 High input current IE3, on E3 Low input current IE3, off EN On threshold VEN, on EN Off threshold VEN, off Enable resistance to REN E1 On threshold GND Reset Generator Switching threshold VQ, rth 4.5 4.65 4.8 V RADJ connected to GND Reset headroom Vhead RR VR, low 250 350 500 mV 10 mA < IQ1 < 450 mA 2.4 – 6 kΩ – – – 0.4 V 1 V < VQ1 < VQ, rth Reset output Low voltage VR, low – – 0.4 V VQ1 = 1 V, IR = 50 µA Reset output High voltage VR, high 4.5 – – V – Reset adjust threshold VRADJ 1.25 1.35 1.45 V VQ1 > 3.5 V Reset pull-up Reset output low voltage Data Sheet 10 Rev. 1.6, 2009-02-03 TLE 4471 Table 4 Characteristics (cont’d) VI = 13.5 V; Tj = -40 °C < Tj < 125 °C Parameter Symbol Limit Values Min. Typ. Max. Unit Measuring Condition Reset delay charging current IDR, ch 2 4 6 µA VDR = 1 V Reset delay discharge current IDR, dis 60 120 160 mA VDR = 1 V Upper reset timing threshold VDR, dt 0.9 1.8 2.7 V – Lower timing threshold VDR, st 0.25 0.4 0.65 V – Reset delay time tdr trr 35 50 70 ms 0.5 – 3 µs CR = 100 nF CR = 100 nF Watchdog input pull-down resistor RW 5 15 40 kΩ – Watchdog delay charging current IDW, ch 2 4 6 µA VDW = 1 V; VDR = 2.7 V Watchdog upper timing threshold VDW, dt 1.5 1.9 2.5 V – Watchdog lower timing threshold VDW, st 0 30 200 mV – Watchdog trigger pulse interval twp 35 50 70 ms CDW = 100 nF 49.5 50 50.5 % of – Reset reaction time Watchdog Reference Output REF2 Voltage divider ratio VREF2 VQ2 Output impedance RREF2 Output clamp voltage – Data Sheet 10 – 20 kΩ – – – 4.5 V – 11 Rev. 1.6, 2009-02-03 TLE 4471 Table 4 Characteristics (cont’d) VI = 13.5 V; Tj = -40 °C < Tj < 125 °C Parameter Symbol Limit Values Min. Typ. Max. 49.5 50 Unit Measuring Condition Reference Output REF3 Voltage divider ratio VREF3 50.5 % of – VQ3 Output impedance RREF3 Output clamp voltage – 10 – 20 kΩ – – – 4.5 V – 1) Measured when the output voltage VQ dropped 100 mV from the nominal value. 2) Not subject to production test, specified by design. Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and the given supply voltage. Data Sheet 12 Rev. 1.6, 2009-02-03 TLE 4471 II IQ1 VI I VQ1 Q1 22 µF IE1 VE1 E1 IQ2 IE2 VQ2 Q2 VE2 E2 IE3 10 µF IREF2 TLE 4471 VE3 E3 VEN VREF2 REF2 IEN EN IQ3 IDR, dis IRADJ CDR 100 nF 10 µF IDR, ch VRADJ VQ3 Q3 DR IREF3 RADJ VREF3 REF3 IW VW W IR CDW 100 nF DW IDW, ch GND R VR IGND AES02866 Figure 3 Data Sheet Measurement Circuit 13 Rev. 1.6, 2009-02-03 TLE 4471 Application Information Q2 VBAT KL. 30 I Tracking Output 2 Sensor / Peripheral REF2 optional Main Q1 RADJ DR Watchdog / Reset DW Ignition KL. 15 Enable-Signal AD E1 Enable Logic E3 R W Controller E2 EN AD REF3 Tracking Output 3 Q3 Sensor / Peripheral AES02867 Figure 4 Application Diagram Input With an input voltage between 5.5 V < VI < 40 V the regulator works in its normal operating range. If the input voltage exceeds the 40 V up to 60 V for less than 400 ms, e.g. caused by a load dump, the active components are switched off. For compensating line influences and to avoid steep input edges above 1 V/µs an input capacitor is needed. Using a resistor of approx. 1 Ω in series to the input capacitor, the oscillating circuit consisting of input inductance and input capacitor is damped. Data Sheet 14 Rev. 1.6, 2009-02-03 TLE 4471 Output Voltage To obtain an output voltage of VQ1 = 5 V with an accuracy of 2% at the main output Q1 an input voltage in the range of 5.5 V < VI < 40 V is needed. The main output Q1 supplies 5 V with 450 mA current capability. For stability it requires an output capacitor of at least 22 µF and a maximum ESR of 3 Ω. The two outputs Q2 and Q3 are tracked to Q1 and can supply currents of 100 mA and 50 mA. So any undervoltage condition or shutdown of Q1 will cause the same effect to Q2 and Q3. For Stability both outputs require an output capacitor of at least 10 µF with ESR < 3 Ω each. Q2 is switched on and off simultaneously with Q1, while the tracked output Q3 can be enabled or disabled individually. Two reference outputs REF2, REF3 with voltages of VREF2 = VQ2/2 and VREF3 = VQ3/2 are also available. In case of an overvoltage at the tracker outputs, the voltage references are limited internally to 4.5 V. Output Current The output current is a function of the input voltage. For high input voltages above 22 V, the output current is reduced linear. This is designed into the regulator for protection. Above 42 V the regulator is switched off. The thermal shutdown switches the regulator off, if it exceeds the thermal threshold of 160 °C typical. It is switched on again, as soon as the regulator is cooled down by typical 10 K (thermal hysteresis). Please note the device should not be operated above a junction temperature of 150 °C for long term reliability. Enable Function The TLE 4471 includes the possibility of enabling the main and tracked outputs. Three ORed enable inputs E1, E2, E3 are used to control the main output Q1 and the tracked output Q2. E1 and E3 can be supplied from the battery line or ignition key with input voltages up to 16 V. The enable inputs should be protected by a series resistor and a capacitor, e.g. RE1 = RE3 = 22 kΩ, CE1 = CE3 = 2.2 nF. E2 is intended for connection to the microcontroller. A logic HIGH at any enable input will switch on the related regulator and/or tracker. A separate enabling pin EN is available to switch on and off the second tracked output Q3 separately by the microcontroller. Reset The power on reset feature is necessary for a defined start of the microprocessor during power up. When the output voltage of the main regulator has reached the reset threshold voltage the reset delay capacitor CDR is charged. After a certain time, the reset delay time tdr, the voltage at the capacitor equals the upper reset timing threshold and the reset output goes HIGH. Data Sheet 15 Rev. 1.6, 2009-02-03 TLE 4471 The reset delay time tdr is defined by the reset delay capacitor CDR at pin DR and can be calculated as follows: VDR ,dt t rd = C DR × -------------I DR ,ch (1) Definitions: CDR = reset delay capacitor tdr = reset delay time required by the application VDR, dt = typical 1.8 V for power up reset IDR, ch = charge current typical 4 µA For a delay capacitor CDR = 100 nF the typical power up reset delay time is 45 ms. The undervoltage reset circuitry supervises the output voltage. In case VQ1 falls below the reset threshold the reset output is set LOW after the reset reaction time trr (discharge of the reset delay capacitor). The reset LOW signal is held down to an output voltage VQ1 • • • • of 1 V. Both, the reset reaction time and the reset delay time are defined by the capacitor value. The reset reaction time trr is the time it takes the voltage regulator to set its reset output LOW after the output voltage has dropped below the reset threshold. The reset reaction time can be calculated using the following equation: V DR ,dt – V DR ,st t rr = C DR × ----------------------------------I DR ,dis Data Sheet (2) 16 Rev. 1.6, 2009-02-03 TLE 4471 VΙ t < t rr VQ V Q, rth t VD VDR, dt VDR, st V RO t dr t rr t t Power-on-Reset Figure 5 Thermal Shutdown Voltage Dip at Input Undervoltage Secondary Spike Overload at Output AED03045 Reset Timing The reset output is an open collector output with a pull-up-resistor of typical 4 kΩ to Q1. An external pull-up can be added with a resistor value of at least 20 kΩ. In addition the reset switching threshold can be adjusted by an external voltage divider. The feature is useful with microprocessors which guarantee safe operation down to voltages below the internally set reset threshold of 4.65 typical. Data Sheet 17 Rev. 1.6, 2009-02-03 TLE 4471 TLE 4471 I Q Bandgap Reference RRTH1 1.36 V R Vrth,ref 1 RADJ RRTH2 AES02877 Figure 6 Adjusting the Reset Threshold For using the preadjusted reset threshold voltage of typical VQ, rth = 4.65 V, the pin RADJ has to be connected to GND. If a lower reset threshold is required by the system, a voltage divider defines the reset threshold VQ, rthext between 3.5 V and 4.65 V: RRTH1 V Q, rthext = V rth ,ref × 1 + -------------RRTH2 (3) Vrth,ref is typical 1.35 V. Data Sheet 18 Rev. 1.6, 2009-02-03 TLE 4471 Watchdog The reset and watchdog timing can be defined independently of each other by two delay capacitors CDR and CDW at pins DR and DW. The watchdog function supervises the microcontroller including time base failures. If there is no positive edge within a certain pulse repetition time twp or the trigger pulse is too short a reset is generated. Programming of the max. repetition time is done by a delay capacitor CDW at pin DW. The frequency of the watchdog pulses generated by the microcontroller has to be higher than the minimum pulse sequence twp set by the external reset delay capacitor CDW. The pulse repetition time can be calculated as follows: V DW ,dt – V DW ,st t wp = C DW × ------------------------------------I DW ,ch (4) VI t VQ1 t t > 10 µs t > 25 µs VW t tWP VDW VDW,dt t VDR tdr trr t VDW,st VDR,dt VDR,st VR Missing edge at Watchdog Watchdog pulses too short t AET03000 Figure 7 Watchdog Timing If the watchdog is not used in an application the pin WD has to be connected to GND. Data Sheet 19 Rev. 1.6, 2009-02-03 TLE 4471 Power Supply Ripple Rejection PSRR of Main Output Q1 versus Frequency f Power Supply Ripple Rejection PSRR of Output Q2 versus Frequency f AED02995 80 dB CQ1 = 22 µF PSRR AED02996 80 dB CQ2 = 10 µF PSRR I Q1 = 10 mA 70 70 I Q1 = 450 mA IQ2 = 1 mA 60 60 50 50 IQ2 = 100 mA 40 40 30 0 10 10 1 10 2 10 3 4 10 Hz 10 f 30 0 10 5 101 102 103 Hz 105 f Power Supply Ripple Rejection PSRR of Output Q3 versus Frequency f AED02997 80 dB CQ3 = 10 µF PSRR 70 IQ3 = 1 mA 60 50 40 IQ3 = 50 mA 30 0 10 Data Sheet 101 102 103 Hz 105 f 20 Rev. 1.6, 2009-02-03 TLE 4471 Enable Currents IE1, IE3 and Output Voltage VQ1 versus Enable Voltages VE1, VE3 IE1, IE3 AED02998 5 µA 7.5 V Enable Currents IE2, IEN and Output Voltage VQ3 versus Enable Voltages VE2, VEN AED02999 250 µA VQ1 IE2, IEN 7.5 V 4 6 200 6 3 4.5 150 4.5 2 3 100 3 1 1.5 0 0 1 2 3 4 V 0 0 VE1, VE3 Data Sheet 1.5 50 0 5 21 VQ3 0.5 1 1.5 0 2 V 2.5 VE2, VEN Rev. 1.6, 2009-02-03 TLE 4471 Package Outlines +0.07 -0.02 3.5 MAX. 6.3 0.1 5˚ ±3˚ 0.25 1.3 15.74 ±0.1 (Heatslug) B 2.8 Heatslug (Mold) 0.95 ±0.15 0.25 M A 20x 20 11 1 10 14.2 ±0.3 Bottom View 11 0.25 B 20 5.9 ±0.1 (Metal) 0.4 +0.13 3.2 ±0.1 (Metal) 1.27 3.25 ±0.1 0 +0.1 1.1 ±0.1 11 ±0.15 1) Index Marking 1 x 45˚ 15.9 ±0.15 1) (Mold) 1) 10 A 13.7 -0.2 (Metal) 1 Heatslug Does not include plastic or metal protrusion of 0.15 max. per side GPS05791 Figure 8 Power PG-DSO-20 (Plastic Dual Small Outline) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Find all of our packages, sorts of packing and others in our Infineon Internet Page “Packages”: http://www.infineon.com/packages. Dimensions in mm SMD = Surface Mounted Device Data Sheet 22 Rev. 1.6, 2009-02-03 TLE 4471 Revision History Version Date Rev. 1.6 2009-02-03 Package bond wire modification according to PCN No. 2007-090. Change of package name in datasheet to “Power PG-DSO-20”. No change of package outline. Rev. 1.5 2007-03-20 Initial version of RoHS-compliant derivate of TLE 4471 Page 1: AEC certified statement added Page 1 and Page 22: RoHS compliance statement and Green product feature added Page 1 and Page 22: Package changed to RoHS compliant version Legal Disclaimer updated Rev. 1.4 2005-01-28 Parameter “Output Clamp Voltage” REF2 and REF3: Max. value changed from 4V to 4.5V in order to align with the Maximum Ratings Data Sheet Changes 23 Rev. 1.6, 2009-02-03 Edition 2009-02-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.