PD - 94053 IRFIZ34V HEXFET® Power MOSFET Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description l D VDSS = 60V RDS(on) = 28mΩ G ID = 20A S Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 Fullpak eliminates the need for additional insulating hardware in commercial-industrial applications. The moulding compound used provides a high isolation capability and a low thermal resistance between the tab and external heatsink. This isolation is equivalent to using a 100 micron mica barrier with standard TO-220 product. The Fullpak is mounted to a heatsink using a single clip or by a single screw fixing. TO-220 Full-Pak Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew Max. Units 20 14 120 30 0.20 ± 20 81 30 3.0 4.5 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA www.irf.com Junction-to-Case Junction-to-Ambient Typ. Max. Units ––– ––– 5.0 65 °C/W 1 12/12/00 IRFIZ34V Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 60 ––– ––– 2.0 15 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.062 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 10 65 31 40 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 1120 250 59 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 28 mΩ VGS = 10V, ID = 18A 4.0 V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 18A 25 VDS = 60V, VGS = 0V µA 250 VDS = 48V, VGS = 0V, TJ = 150°C 100 VGS = 20V nA -100 VGS = -20V 49 ID = 30A 12 nC VDS = 48V 18 VGS = 10V, See Fig. 6 and 13 ––– VDD = 30V ––– ID = 30A ns ––– RG = 12Ω ––– VGS = 10V, See Fig. 10 Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 D S Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 20 ––– ––– showing the A G integral reverse ––– ––– 120 S p-n junction diode. ––– ––– 1.6 V TJ = 25°C, IS = 30A, VGS = 0V ––– 70 110 ns TJ = 25°C, IF = 30A ––– 99 150 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 180µH RG = 25Ω, I AS = 30A. (See Figure 12) 2 ISD ≤ 30A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C Pulse width ≤ 400µs; duty cycle ≤ 2%. Uses IRFZ34V data and test conditions www.irf.com IRFIZ34V 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 100 100 10 4.5V 20µs PULSE WIDTH TJ = 25 °C 1 0.1 1 10 4.5V 10 100 Fig 1. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 3.5 TJ = 25 ° C 100 TJ = 175 ° C 10 V DS = 50V 20µs PULSE WIDTH 5 6 7 8 9 10 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 1000 4 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 1 20µs PULSE WIDTH TJ = 175 °C 1 0.1 11 ID = 30A 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFIZ34V VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 1600 Ciss 1200 800 Coss 400 20 VGS , Gate-to-Source Voltage (V) 2000 ID = 30A VDS = 48V VDS = 30V VDS = 12V 16 12 8 4 Crss 0 1 10 FOR TEST CIRCUIT SEE FIGURE 13 0 100 0 VDS , Drain-to-Source Voltage (V) 10 20 30 40 50 Q G , Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 1000 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) I D , Drain Current (A) 100 TJ = 175 ° C 10 TJ = 25 ° C 100us 1ms 10 1 0.1 0.0 V GS = 0 V 0.4 0.8 1.2 1.6 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10us 100 2.0 10ms TC = 25 ° C TJ = 175 ° C Single Pulse 1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFIZ34V 20 RD VDS I D , Drain Current (A) VGS 15 D.U.T. RG + -VDD 10V 10 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit 5 VDS 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 0.20 1 0.10 0.05 0.02 0.01 0.1 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 0.01 0.00001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFIZ34V L VDS D R IV E R D .U .T RG + - VD D IA S 20V 0.0 1 Ω tp Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp A EAS , Single Pulse Avalanche Energy (mJ) 160 15 V TOP BOTTOM ID 12A 21A 30A 120 80 40 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .2µF .3µF 10 V QGS D.U.T. QGD + V - DS VGS VG 3mA IG Charge Fig 13a. Basic Gate Charge Waveform 6 ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFIZ34V Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. D= Period P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET® power MOSFETs www.irf.com 7 IRFIZ34V Package Outline TO-220 Full-pak Dimensions are shown in millimeters (inches) 10.6 0 (.4 17) 10.4 0 (.4 09) ø 3.4 0 (.13 3) 3.1 0 (.12 3) 4.8 0 (.1 89) 4.6 0 (.1 81) -A3 .70 (.145 ) 3 .20 (.126 ) 1 6.00 (.63 0) 1 5.80 (.62 2) 2.80 ( .110) 2.60 ( .102) L E A D A S S IG N M E N TS 1 - GATE 2 - D R A IN 3 - SOU RCE 7 .10 (.280 ) 6 .70 (.263 ) 1.1 5 (.045) M IN . NOTES: 1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 14.5M , 19 82 1 2 3 2 C O N T R O LL IN G D IM E N S IO N : IN C H . 3.30 (.130) 3.10 (.122) -B - 1 3.70 (.54 0) 1 3.50 (.53 0) C A 1.40 (.05 5) 3X 1.05 (.04 2) 3X 0.9 0 (.0 35) 0.7 0 (.0 28) 0.25 (.01 0) 3X M A M B 2.54 (.1 00) 2X 0.48 (.0 19) 0.44 (.0 17) 2.85 (.112) 2.65 (.104) D B M IN IM U M C RE E P A G E D IS T A N C E B E TW E E N A -B -C -D = 4.80 (.1 89 ) Part Marking Information TO-220 Full-pak E X A M P LE : TH IS IS A N IR F I8 4 0 G W IT H A S S E M B LY LO T COD E E401 A IN T E R N A T IO N A L R E C T IF IE R LOGO P AR T N UM B E R IR F I8 4 0 G E401 9245 A SS E M B LY LOT COD E DATE CODE (YY W W ) YY = YE A R W W = W EEK Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/00 8 www.irf.com