IRF IRFIZ34V

PD - 94053
IRFIZ34V
HEXFET® Power MOSFET
Advanced Process Technology
l Ultra Low On-Resistance
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l Fully Avalanche Rated
l Optimized for SMPS Applications
Description
l
D
VDSS = 60V
RDS(on) = 28mΩ
G
ID = 20A
S
Advanced HEXFET® Power MOSFETs from International
Rectifier utilize advanced processing techniques to achieve
extremely low on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET power MOSFETs are well
known for, provides the designer with an extremely efficient
and reliable device for use in a wide variety of applications.
The TO-220 Fullpak eliminates the need for additional
insulating hardware in commercial-industrial applications.
The moulding compound used provides a high isolation
capability and a low thermal resistance between the tab
and external heatsink. This isolation is equivalent to
using a 100 micron mica barrier with standard TO-220
product. The Fullpak is mounted to a heatsink using a
single clip or by a single screw fixing.
TO-220 Full-Pak
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚…
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ…
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
Units
20
14
120
30
0.20
± 20
81
30
3.0
4.5
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
www.irf.com
Junction-to-Case
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
5.0
65
°C/W
1
12/12/00
IRFIZ34V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
60
–––
–––
2.0
15
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.062
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
10
65
31
40
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
1120
250
59
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA…
28
mΩ VGS = 10V, ID = 18A „
4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 18A„…
25
VDS = 60V, VGS = 0V
µA
250
VDS = 48V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
49
ID = 30A
12
nC
VDS = 48V
18
VGS = 10V, See Fig. 6 and 13…
–––
VDD = 30V
–––
ID = 30A
ns
–––
RG = 12Ω
–––
VGS = 10V, See Fig. 10 „…
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5…
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
20
––– –––
showing the
A
G
integral reverse
––– ––– 120
S
p-n junction diode.
––– ––– 1.6
V
TJ = 25°C, IS = 30A, VGS = 0V „
––– 70 110
ns
TJ = 25°C, IF = 30A
––– 99 150
nC di/dt = 100A/µs „…
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 180µH
RG = 25Ω, I AS = 30A. (See Figure 12)
2
ƒ ISD ≤ 30A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Uses IRFZ34V data and test conditions
www.irf.com
IRFIZ34V
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
100
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
4.5V
10
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.5
TJ = 25 ° C
100
TJ = 175 ° C
10
V DS = 50V
20µs PULSE WIDTH
5
6
7
8
9
10
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
1000
4
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
20µs PULSE WIDTH
TJ = 175 °C
1
0.1
11
ID = 30A
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFIZ34V
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
C, Capacitance (pF)
1600
Ciss
1200
800
Coss
400
20
VGS , Gate-to-Source Voltage (V)
2000
ID = 30A
VDS = 48V
VDS = 30V
VDS = 12V
16
12
8
4
Crss
0
1
10
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
VDS , Drain-to-Source Voltage (V)
10
20
30
40
50
Q G , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
I D , Drain Current (A)
100
TJ = 175 ° C
10
TJ = 25 ° C
100us
1ms
10
1
0.1
0.0
V GS = 0 V
0.4
0.8
1.2
1.6
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10us
100
2.0
10ms
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFIZ34V
20
RD
VDS
I D , Drain Current (A)
VGS
15
D.U.T.
RG
+
-VDD
10V
10
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
5
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
0.20
1
0.10
0.05
0.02
0.01
0.1
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.01
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFIZ34V
L
VDS
D R IV E R
D .U .T
RG
+
- VD D
IA S
20V
0.0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
160
15 V
TOP
BOTTOM
ID
12A
21A
30A
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS
D.U.T.
QGD
+
V
- DS
VGS
VG
3mA
IG
Charge
Fig 13a. Basic Gate Charge Waveform
6
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFIZ34V
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
ƒ
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
‚
-
-
„
+

• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
D=
Period
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 14. For N-channel HEXFET® power MOSFETs
www.irf.com
7
IRFIZ34V
Package Outline
TO-220 Full-pak
Dimensions are shown in millimeters (inches)
10.6 0 (.4 17)
10.4 0 (.4 09)
ø
3.4 0 (.13 3)
3.1 0 (.12 3)
4.8 0 (.1 89)
4.6 0 (.1 81)
-A3 .70 (.145 )
3 .20 (.126 )
1 6.00 (.63 0)
1 5.80 (.62 2)
2.80 ( .110)
2.60 ( .102)
L E A D A S S IG N M E N TS
1 - GATE
2 - D R A IN
3 - SOU RCE
7 .10 (.280 )
6 .70 (.263 )
1.1 5 (.045)
M IN .
NOTES:
1 D IM E N S IO N IN G & TO L E R A N C IN G
P E R A N S I Y 14.5M , 19 82
1
2
3
2 C O N T R O LL IN G D IM E N S IO N : IN C H .
3.30 (.130)
3.10 (.122)
-B -
1 3.70 (.54 0)
1 3.50 (.53 0)
C
A
1.40 (.05 5)
3X
1.05 (.04 2)
3X
0.9 0 (.0 35)
0.7 0 (.0 28)
0.25 (.01 0)
3X
M
A M
B
2.54 (.1 00)
2X
0.48 (.0 19)
0.44 (.0 17)
2.85 (.112)
2.65 (.104)
D
B
M IN IM U M C RE E P A G E
D IS T A N C E B E TW E E N
A -B -C -D = 4.80 (.1 89 )
Part Marking Information
TO-220 Full-pak
E X A M P LE : TH IS IS A N IR F I8 4 0 G
W IT H A S S E M B LY
LO T COD E E401
A
IN T E R N A T IO N A L
R E C T IF IE R
LOGO
P AR T N UM B E R
IR F I8 4 0 G
E401 9245
A SS E M B LY
LOT COD E
DATE CODE
(YY W W )
YY = YE A R
W W = W EEK
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/00
8
www.irf.com