PD - 96189 IRFB4310ZGPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free VDSS RDS(on) typ. max. ID (Silicon Limited) 100V 4.8m: 6.0m: 127A ID (Package Limited) 120A c D G D S TO-220AB IRFB4310ZGPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS Parameter Max. 127 90 120 560 250 1.7 ± 20 18 -55 to + 175 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dv/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c e g Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V(Wire Bond Limited) A W W/°C V V/ns °C 300 x x 10lb in (1.1N m) 130 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient jk Typ. Max. Units ––– 0.50 ––– 0.6 ––– 62 °C/W 1 10/15/08 IRFB4310ZGPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS Parameter Min. Typ. Max. Units ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– 0.11 ––– V/°C Reference to 25°C, ID = 5mA ––– 4.8 6.0 mΩ VGS = 10V, ID = 75A VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 150µA IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 100V, VGS = 0V ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.7 ––– RG V Conditions 100 IGSS Drain-to-Source Breakdown Voltage VGS = 0V, ID = 250µA g d VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Qg Forward Transconductance 150 ––– ––– S VDS = 50V, ID = 75A Total Gate Charge ––– 120 170 nC ID = 75A Qgs Gate-to-Source Charge ––– 29 ––– Qgd Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) ––– 35 Qsync ––– 85 VDS =50V VGS = 10V ––– g ID = 75A, VDS =0V, VGS = 10V td(on) Turn-On Delay Time ––– 20 ––– tr Rise Time ––– 60 ––– td(off) Turn-Off Delay Time ––– 55 ––– RG = 2.7Ω tf Fall Time ––– 57 ––– VGS = 10V Ciss Input Capacitance ––– 6860 ––– Coss Output Capacitance ––– 490 ––– VDS = 50V Reverse Transfer Capacitance ––– Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 220 ––– ƒ = 1.0MHz, See Fig. 5 570 ––– VGS = 0V, VDS = 0V to 80V 920 ––– VGS = 0V, VDS Crss h ns VDD = 65V ID = 75A pF VGS = 0V g i, See Fig. 11 = 0V to 80V h Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD (Body Diode) Diode Forward Voltage ––– ––– trr Reverse Recovery Time ––– 40 ––– 49 ––– 58 ––– 89 ––– 2.5 Qrr ––– ––– d Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time ––– c 560 1.3 A MOSFET symbol A showing the integral reverse V ns G p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V VR = 85V, TJ = 25°C TJ = 125°C nC D TJ = 25°C S g IF = 75A di/dt = 100A/µs g TJ = 125°C ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.047mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above the Eas value and test conditions. ISD ≤ 75A, di/dt ≤ 600A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 ––– 127 Conditions Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com IRFB4310ZGPbF 1000 1000 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 4.5V BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 175°C ≤ 60µs PULSE WIDTH Tj = 25°C 1 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 100 Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current(Α) 10 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 50V ≤ 60µs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 7.0 ID = 75A VGS = 10V 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) 12000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 8000 Ciss 6000 4000 Coss 2000 Crss 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 75A VDS = 80V VDS= 50V VDS= 20V 16 12 8 4 0 0 1 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) 1 0 40 80 120 160 200 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB4310ZGPbF 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 1msec 100 10msec 10 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.1 2.0 LIMITED BY PACKAGE ID, Drain Current (A) 120 100 80 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage 140 50 10 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS, Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 130 ID = 5mA 120 110 100 90 -60 -40 -20 TC, Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ) 3.0 2.5 2.0 Energy (µJ) DC 0.1 0.1 1.5 1.0 0.5 0.0 600 I D 11A 19A BOTTOM 75A TOP 500 400 300 200 100 0 0 20 40 60 80 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100µsec 100 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFB4310ZGPbF 1 Thermal Response ( ZthJC ) D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 R4 R4 τC τ τ2 τ3 τ4 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ4 Ri (°C/W) 0.018756 0.159425 0.320725 0.101282 τι (sec) 0.000373 0.000734 0.005665 0.115865 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 140 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB4310ZGPbF 24 ID = 1.0A ID = 1.0mA ID = 250µA ID = 150µA 4.0 3.5 20 16 IRRM - (A) VGS(th) Gate threshold Voltage (V) 4.5 3.0 2.5 12 8 2.0 1.5 4 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 IF = 30A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 24 600 20 500 16 400 QRR - (nC) IRRM - (A) TJ , Temperature ( °C ) 12 8 4 0 300 200 IF = 45A VR = 85V IF = 30A VR = 85V 100 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 600 500 QRR - (nC) 400 300 200 100 0 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB4310ZGPbF Driver Gate Drive D.U.T + - - * RG • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD ** P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit RD V DS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + -VDD 10% VGS 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit td(off) tr tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 20K 1K VCC S Vgs(th) Qgodr Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgs2 Qgs1 Fig 24b. Gate Charge Waveform 7 IRFB4310ZGPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5)%*3%) 1RWH*VXIIL[LQSDUWQXPEHU LQGLFDWHV+DORJHQ)UHH 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( < /$67',*,72) &$/(1'$5<($5 :: :25.:((. ; )$&725<&2'( TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008 8 www.irf.com