PROFET® BTS 611 L1 Smart Two Channel Highside Power Switch Features Product Summary Overvoltage protection Operating voltage • Overload protection • Current limitation • Short circuit protection • Thermal shutdown • Overvoltage protection (including load dump) • Fast demagnetization of inductive loads • Reverse battery protection1) • Undervoltage and overvoltage shutdown with auto-restart and hysteresis • Open drain diagnostic output • Open load detection in ON-state • CMOS compatible input • Loss of ground and loss of Vbb protection • Electrostatic discharge (ESD) protection Vbb(AZ) Vbb(on) 43 5.0 ... 34 V V both channels: each parallel 200 100 mΩ 2.3 4.4 A 4 4 A On-state resistance RON Load current (ISO) IL(ISO) Current limitation IL(SCr) TO-220AB/7 7 Application 1 • µC compatible power switch with diagnostic Standard feedback for 12 V and 24 V DC grounded loads • All types of resistive, inductive and capacitve loads • Replaces electromechanical relays, fuses and discrete circuits 7 7 1 Straight leads 1 SMD General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Fully protected by embedded protection functions. Voltage source V 3 IN1 6 IN2 Level shifter sensor Rectifier 1 Logic 4 PROFET Current limit 2 GND 2 OUT1 1 Temperature sensor 1 Open load Short to Vbb detection 1 Level shifter Rectifier 2 1) + V bb Gate 1 protection Limit for unclamped ind. loads 1 Charge pump 1 Charge pump 2 ST Current limit 1 Logic Voltage ESD 5 Overvoltage protection Gate 2 protection Limit for unclamped ind. loads 2 Open load Short to Vbb detection 2 Signal GND OUT2 7 Temperature sensor 2 R R O1 Load O2 GND Load GND With external current limit (e.g. resistor RGND=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load. Semiconductor Group 1 12.96 BTS 611 L1 Pin Symbol Function 1 OUT1 (Load, L) Output 1, protected high-side power output of channel 1 2 GND Logic ground 3 IN1 Input 1, activates channel 1 in case of logical high signal 4 Vbb 5 ST Positive power supply voltage, the tab is shorted to this pin Diagnostic feedback: open drain, low on failure 6 IN2 Input 2, activates channel 2 in case of logical high signal 7 OUT2 (Load, L) Output 2, protected high-side power output of channel 2 Maximum Ratings at Tj = 25 °C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj Start=-40 ...+150°C Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3)= 2 Ω, RL= 5.3 Ω, td= 200 ms, IN= low or high Load current (Short circuit current, see page 5) Operating temperature range Storage temperature range Power dissipation (DC), TC ≤ 25 °C Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150°C, TC = 150°C const. one channel, IL = 2.3 A, ZL = 89 mH, 0 Ω: both channels parallel, IL = 4.4 A, ZL = 47 mH, 0 Ω: Symbol Vbb Vbb 43 34 Unit V V 60 V IL Tj Tstg Ptot self-limited -40 ...+150 -55 ...+150 36 A °C EAS 290 580 mJ 1.0 2.0 kV -10 ... +16 ±2.0 ±5.0 V mA VLoad dump4) Values W see diagrams on page 9 Electrostatic discharge capability (ESD) (Human Body Model) IN: VESD all other pins: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 VIN IIN IST Input voltage (DC) Current through input pin (DC) Current through status pin (DC) see internal circuit diagrams page 7 2) 3) 4) Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 kΩ resistor in series with the status pin. A resistor for the protection of the input is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Semiconductor Group 2 BTS 611 L1 Thermal Characteristics Parameter and Conditions Thermal resistance Symbol chip - case, both channels: RthJC each channel: junction - ambient (free air): RthJA SMD version, device on PCB5): Values typ max -3.5 -7.0 -75 37 Unit Values min typ max Unit min ---- K/W Electrical Characteristics Parameter and Conditions, each channel Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Load Switching Capabilities and Characteristics On-state resistance (pin 4 to 1 or 7) IL = 1.8 A Tj=25 °C: RON Tj=150 °C: each channel Nominal load current, ISO Norm (pin 4 to 1 or 7) VON = 0.5 V, TC = 85 °C each channel: IL(ISO) both channels parallel: Output current (pin 1 or 7) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 8 Turn-on time IN to 90% VOUT: Turn-off time IN to 10% VOUT: RL = 12 Ω, Tj =-40...+150°C Slew rate on 10 to 30% VOUT, RL = 12 Ω, Tj =-40...+150°C Slew rate off 70 to 40% VOUT, RL = 12 Ω, Tj =-40...+150°C 5) -- 160 200 400 1.8 3.5 320 2.3 4.4 -- -- --10 ton toff 80 80 200 200 400 400 µs dV /dton 0.1 -- 1 V/µs -dV/dtoff 0.1 -- 1 V/µs IL(GNDhigh) mΩ A mA Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µm thick) copper area for Vbb connection. PCB is vertical without blown air. Semiconductor Group 3 BTS 611 L1 Parameter and Conditions, each channel Symbol Values min typ max Vbb(on) Vbb(under) Vbb(u rst) 5.0 3.5 -- ---- Vbb(ucp) -- ∆Vbb(under) Vbb(over) Vbb(o rst) ∆Vbb(over) Vbb(AZ) at Tj = 25 °C, Vbb = 12 V unless otherwise specified Operating Parameters Operating voltage6) Undervoltage shutdown Undervoltage restart Tj =-40...+150°C: Tj =-40...+150°C: Tj =-40...+25°C: Tj =+150°C: Undervoltage restart of charge pump see diagram page 13 Undervoltage hysteresis ∆Vbb(under) = Vbb(u rst) - Vbb(under) Overvoltage shutdown Tj =-40...+150°C: Overvoltage restart Tj =-40...+150°C: Overvoltage hysteresis Tj =-40...+150°C: Overvoltage protection7) Tj =-40...+150°C: Ibb=40 mA Standby current (pin 4) VIN=0 Tj=-40...+25°C: Tj= 150°C: Leakage output current (included in Ibb(off)) VIN=0 Operating current (Pin 2)8), VIN=5 V both channels on, Tj =-40...+150°C Operating current (Pin 2)8) one channel on, Tj =-40...+150°C: 6) 7) 8) V V V 5.6 34 5.0 5.0 7.0 7.0 -- 0.2 -- V 34 33 -42 --0.5 47 43 ---- V V V V 14 17 -- 30 35 12 µA IL(off) ---- IGND -- 4 6 mA IGND -- 2 3 mA Ibb(off) At supply voltage increase up to Vbb= 5.6 V typ without charge pump, VOUT ≈Vbb - 2 V See also VON(CL) in table of protection functions and circuit diagram page 8. Add IST, if IST > 0, add IIN, if VIN>5.5 V Semiconductor Group 4 Unit V µA BTS 611 L1 Parameter and Conditions, each channel Symbol at Tj = 25 °C, Vbb = 12 V unless otherwise specified Protection Functions Initial peak short circuit current limit (pin 4 to 1 or 7) Tj =-40°C: Tj =25°C: Tj =+150°C: Repetitive short circuit shutdown current limit Tj = Tjt (see timing diagrams, page 11) Output clamp (inductive load switch off) at VOUT = Vbb - VON(CL) IL= 40 mA: Thermal overload trip temperature Thermal hysteresis Reverse battery (pin 4 to 2) 9) Reverse battery voltage drop (Vout > Vbb) IL = -1.8 A, each channel Tj=150 °C: Diagnostic Characteristics Open load detection current (on-condition) Unit IL(SCp) 5.5 4.5 2.5 9.5 7.5 4.5 13 11 7 A -- 4 -- A 41 150 --- 47 -10 -- 53 --32 V °C K V -- 610 -- mV 10 10 --- 200 150 mA 2 3 4 V 4 10 30 kΩ IL(SCr) VON(CL) Tjt ∆Tjt -Vbb -VON(rev) Tj=-40 °C: IL (OL) Tj=25 ..150°C: Open load detection voltage10) (off-condition) VOUT(OL) Tj=-40..150°C: Internal output pull down (pin 1 or 7 to 2), VOUT=5 V, Tj=-40..150°C RO 9) Values min typ max Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 8). 10) External pull up resistor required for open load detection in off state. Semiconductor Group 5 BTS 611 L1 Parameter and Conditions, each channel Symbol Values min typ max RI 2.5 3.5 6 kΩ VIN(T+) VIN(T-) ∆ VIN(T) IIN(off) 1.7 1.5 -1 --0.5 -- 3.5 --50 V V V µA On state input current (pin 3 or 6), VIN = 3.5 V, Tj =-40..+150°C IIN(on) 20 50 90 µA Delay time for status with open load after switch off (other channel in off state) (see timing diagrams, page 12), Tj =-40..+150°C Delay time for status with open load after switch off (other channel in on state) (see timing diagrams, page 12), Tj =-40..+150°C Status invalid after positive input slope Tj=-40 ... +150°C: (open load) Status output (open drain) Zener limit voltage Tj =-40...+150°C, IST = +1.6 mA: Tj =-40...+25°C, IST = +1.6 mA: ST low voltage Tj = +150°C, IST = +1.6 mA: td(ST OL4) 100 320 800 µs td(ST OL5) -- 5 20 µs td(ST) -- 200 600 µs 5.4 --- 6.1 --- -0.4 0.6 V at Tj = 25 °C, Vbb = 12 V unless otherwise specified Input and Status Feedback11) Input resistance Tj=-40..150°C, see circuit page 7 Input turn-on threshold voltage Tj =-40..+150°C: Tj =-40..+150°C: Input turn-off threshold voltage Input threshold hysteresis Off state input current (pin 3 or 6), VIN = 0.4 V, Tj =-40..+150°C 11) VST(high) VST(low) If a ground resistor RGND is used, add the voltage drop across this resistor. Semiconductor Group 6 Unit BTS 611 L1 Truth Table Normal operation Channel 1 Open load Channel 2 Channel 1 Short circuit to Vbb Channel 2 both channel Overtemperature Channel 1 Channel 2 Undervoltage/ Overvoltage L = "Low" Level H = "High" Level IN1 IN2 OUT1 OUT2 L L H H L L H L H X L L H L H X L X H L H X X X L H L H L H X L L H L H X L L H L H X X X L H X L L H H Z Z H L H X H H H L H X L L L L L X X L L H L H L H X Z Z H L H X H H H L L L X X L L L bb ST BTS612N1 H H H H L H H L H H L H H L H H H L L H L H L H X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 12...13) Terms V ST BTS611L1 H H H H H(L12)) H L H(L12)) H L L13) H H(L14)) L13) H H(L14)) H L L H L H L H Input circuit (ESD protection) 4 I IN1 3 Ibb Vbb IN1 OUT1 I IN2 6 IN2 I ST ST V V IN1 IN2 V 5 ST 1 PROFET OUT2 GND GND IN I L1 I ESD-ZD I I L2 I I GND 7 V OUT1 2 R R V ON1 V ON2 I GND ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). VOUT2 12) With additional external pull up resistor An external short of output to Vbb, in the off state, causes an internal current from output to ground. If R GND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 14) Low resistance to V may be detected in the ON-state by the no-load-detection bb 13) Semiconductor Group 7 BTS 611 L1 Status output Open-load detection +5V ON-state diagnostic condition: VON < RON * IL(OL); IN high R ST(ON) ST + V bb ESDZD GND VON ON ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V). OUT Open load detection Logic unit Inductive and overvoltage output clamp + V bb V OFF-state diagnostic condition: VOUT > 3 V typ.; IN low Z VON R OFF OUT GND EXT PROFET V Open load detection Logic unit VON clamped to 47 V typ. Overvolt. and reverse batt. protection R OUT O Signal GND + V bb IN1 V RI GND disconnect Z2 IN2 Logic R ST V 4 bb ST 3 V IN1 Ibb Vbb OUT1 Z1 6 GND IN2 PROFET ST GND OUT2 R GND 5 1 7 2 Signal GND V VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI= 3.5 kΩ typ, RGND= 150 Ω V V IN1 IN2 ST V GND Any kind of load. In case of Input=high is VOUT ≈ VIN - VIN(T+) . Due to VGND >0, no VST = low signal available. Semiconductor Group 8 BTS 611 L1 GND disconnect with GND pull up Inductive Load switch-off energy dissipation E bb 4 3 V Vbb IN1 OUT1 IN1 6 V IN2 5 E AS 1 PROFET IN2 OUT2 ST IN 7 GND V bb = V ST OUT PROFET 2 V ELoad V bb ST EL GND GND ZL { L RL ER Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND >0, no VST = low signal available. Vbb disconnect with energized inductive load Energy stored in load inductance: 2 EL = 1/2·L·I L While demagnetizing load inductance, the energy dissipated in PROFET is 4 3 Vbb IN1 OUT1 high 6 EAS= Ebb + EL - ER= ∫ VON(CL)·iL(t) dt, PROFET IN2 OUT2 5 1 ST with an approximate solution for RL > 0 Ω: 7 GND EAS= 2 V IL· L IL·RL ·(V + |VOUT(CL)|)· ln (1+ ) |VOUT(CL)| 2·RL bb Maximum allowable load inductance for a single switch off (both channels parallel) bb L = f (IL ); Tj,start = 150°C,TC = 150°C const., Vbb = 12 V, RL = 0 Ω Normal load current can be handled by the PROFET itself. L [mH] 1000 Vbb disconnect with charged external inductive load 4 3 IN1 Vbb OUT1 high 6 IN2 PROFET ST GND OUT2 5 1 100 D 7 2 V 10 bb If other external inductive loads L are connected to the PROFET, additional elements like D are necessary. 1 2 3 4 5 6 7 8 IL [A] Semiconductor Group 9 BTS 611 L1 Typ. transient thermal impedance chip case ZthJC = f(tp), one Channel active ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Typ. transient thermal impedance chip case ZthJC = f(tp), both Channel active ZthJC [K/W] 10 1 D= 0.5 0.2 0.1 0.05 0.02 0.01 0 0.1 0.01 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E1 tp [s] Semiconductor Group 10 BTS 611 L1 Timing diagrams Both channels are symmetric and consequently the diagrams are valid for each channel as well as for permuted channels Figure 1a: Vbb turn on: Figure 2b: Switching an inductive load IN1 IN IN2 V bb t ST d(ST) *) V OUT1 V OUT V OUT2 IL ST open drain I L(OL) t t *) if the time constant of load is too large, open-load-status may occur Figure 2a: Switching a lamp: Figure 3a: Short circuit shut down by overtempertature, reset by cooling IN IN other channel: normal operation ST V OUT IL I L(SCp) I IL(SCr) L t ST t Heating up may require several milliseconds, depending on external conditions Semiconductor Group 11 BTS 611 L1 Figure 5b: Open load: detection in ON-state, turn on/off to open load Figure 4a: Overtemperature: Reset if Tj <Tjt IN1 IN2 IN channel 2: normal operation V ST OUT1 V I OUT L1 channel 1: open load t d(ST) t d(ST OL4) t t d(ST) d(ST OL5) T J ST t t Figure 5c: Open load: detection in ON- and OFF-state (with REXT), turn on/off to open load Figure 5a: Open load: detection in ON-state, open load occurs in on-state IN1 IN1 IN2 IN2 channel 2: normal operation channel 2: normal operation V OUT1 VOUT1 I L1 channel 1: open load IL1 open load normal load t d(ST OL1) t d(ST OL2) channel 1: open load ST t d(ST OL1) t d(ST) t d(ST) t d(ST OL5) t d(ST OL2) t ST t td(ST OL5) depends on external circuitry because of high impedance td(ST OL1) = 30 µs typ., td(ST OL2) = 20 µs typ Semiconductor Group 12 BTS 611 L1 Figure 6a: Undervoltage: Figure 7a: Overvoltage: IN IN V Vbb bb V ON(CL) Vbb(over) V bb(o rst) Vbb(u cp) Vbb(u rst) V bb(under) V OUT V OUT ST ST open drain t t Figure 6b: Undervoltage restart of charge pump on-state off-state V V V bb(u rst) V bb(over) off-state VON(CL) V on bb(o rst) bb(u cp) V bb(under) V bb charge pump starts at Vbb(ucp) =5.6 V typ. Semiconductor Group 13 BTS 611 L1 SMD TO 220AB/7, Opt. E3128 Ordering code Package and Ordering Code BTS611L1 E3128A T&R: All dimensions in mm Standard TO-220AB/7 BTS611L1 TO 220AB/7, Opt. E3230 BTS611L1 E3230 Q67060-S6302-A4 Ordering code Q67060-S6302-A2 Changed since 04.96 Date Change td(ST OL4) max reduced from 1500 Dec 1996 to 800µs, typical from 400 to 320µs, min limit unchanged EAS maximum rating and diagram and ZthJC diagram added ESD capability increased Typ. reverse battery voltage drop VON(rev) added Ordering code Q67060-S6302-A3 Components used in life-support devices or systems must be expressly authorised for such purpose! Critical components15) of the Semiconductor Group of Siemens AG, may only be used in life supporting devices or systems16) with the express written approval of the Semiconductor Group of Siemens AG. 15) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 16) Life support devices or systems are intended (a) to be implanted in the human body or (b) support and/or maintain and sustain and/or protect human life. If they fail, it is reasonably to assume that the health of the user or other persons may be endangered. Semiconductor Group 14