BFP740F NPN Silicon Germanium RF Transistor • High gain ultra low noise RF transistor 3 • Provides outstanding performance for 2 4 1 a wide range of wireless applications up to 10 GHz and more • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.5 dB at 1.8 GHz Outstanding noise figure F = 0.75 dB at 6 GHz Top View 4 • High maximum stable gain 3 XYs Gms = 27.5 dB at 1.8 GHz 1 • Gold metallization for extra high reliability 2 Direction of Unreeling • 150 GHz fT-Silicon Germanium technology ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP740F Marking R7s 1=B Pin Configuration 2=E 3=C 4=E - Package - TSFP-4 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA > 0°C 4 TA ≤ 0°C 3.5 Collector-emitter voltage VCES 13 Collector-base voltage VCBO 13 Emitter-base voltage VEBO 1.2 Collector current IC 30 Base current IB 3 Total power dissipation1) Ptot 160 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 mA TS ≤ 90°C 1T is measured on the collector lead at the soldering point to the pcb S 2005-11-08 1 BFP740F Thermal Resistance Parameter Symbol Value Unit Junction - soldering point1) RthJS ≤ 370 K/W Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. V(BR)CEO 4 4.7 - V ICES - - 30 µA ICBO - - 100 nA IEBO - - 3 µA hFE 160 250 400 DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain - IC = 25 mA, VCE = 3 V, pulse measured 1For calculation of R thJA please refer to Application Note Thermal Resistance 2005-11-08 2 BFP740F Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT - 42 - Ccb - 0.08 0.14 Cce - 0.2 - Ceb - 0.44 - GHz IC = 25 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance pF VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure dB F IC = 8 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt - 0.5 - IC = 8 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt - 0.75 - G ms - 27.5 - dB G ma - 19 - dB Power gain, maximum stable1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 25 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2 Transducer gain dB IC = 25 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz - 25 - f = 6 GHz - 15 - IP 3 - 25 - P-1dB - 11 - Third order intercept point at output2) dBm VCE = 3 V, I C = 25 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 25 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz 1G 1/2 ma = |S21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e| 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 2005-11-08 3 BFP740F SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transitor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = 384.4 400 1.586 1.28 1.5 1.69 220 2.1 290 550 13 180 910 aA V V - 1 - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = Ω fF ps mA mV ps m m k mA mA 1.1 512.1 62 5 3.23 90 590 3 100 152 79.7 -2.2 950 0 Ω mΩ mV mdeg m fF m NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM 1.018 4.296 1 3.85 10 6.88 70 1.32 99.5 10 570 1.11 298 fA fA A Ω m V fF m mV eV K - All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST) Package Equivalent Circuit: CBS RBS CBCC LCC C BFP740F_Chip S B B LBB LBC RCS CCS CBEC E LCB RES CES LEC REC CBEI CCEI LEB CBEO CCEO E For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com C LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CCEO = CBEO = CCEI = CBEI = REC = RBS = RCS = RES = 0.1 0.2 20 0.411 0.696 21 0.1 1 0.34 39 75 0.177 92 0.217 52 2 3.5 1.65 90 nH nH pH nH nH pH pF fF pF fF fF pF fF pF fF Ω mΩ mΩ Ω Valid up to 6GHz 2005-11-08 4 BFP740F Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 3 180 mW K/W RthJS Ptot 140 120 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0 10 2 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 s TS 10 0 tp Permissible Pulse Load Collector-base capacitance Ccb = ƒ (V CB) Ptotmax/P totDC = ƒ(tp) f = 1 MHz 10 2 0.18 - 0.16 0.14 10 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 0.12 Ccb [pF] Ptotmax /PtotDC 0.2 0.1 0.08 0.06 0.04 0.02 10 0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 tp 0 2 4 6 8 10 12 VCB [V] 2005-11-08 5 BFP740F Third order Intercept Point IP3 = ƒ (IC) Transition frequency fT = ƒ(IC) (Output, ZS = ZL = 50 Ω ) VCE = parameter in V, f = 2 GHz VCE = parameter, f = 900 MHz 30 50 27 4.00V 3.00V 45 24 2.00V 40 2V to 4V 1.00V 21 35 30 1.00V fT [GHz] IP3 [dBm] 18 15 25 0.75V 12 20 9 15 6 10 3 5 0.50V 0 0 5 10 15 20 25 30 0 35 0 5 10 15 I [mA] 20 25 30 35 I [mA] C C Power gain Gma, Gms = ƒ (f) Power gain Gma, Gms = ƒ (IC) VCE = 3 V, I C = 25 mA VCE = 3 V f = parameter in GHz 55 34 32 50 0.90GHz 30 45 28 1.80GHz 40 2.40GHz 26 3.00GHz 24 G [dB] G [dB] 35 30 G 4.00GHz 22 5.00GHz ms 20 25 6.00GHz Gma 18 20 |S |2 16 21 15 14 10 5 12 0 1 2 3 4 5 10 6 0 5 10 15 20 25 30 35 IC [mA] f [GHz] [GHz] 2005-11-08 6 BFP740F Power gain Gma, Gms = ƒ (VCE) Noise figure F = ƒ(I C) IC = 25 mA VCE = 3 V, f = parameter in GHz f = parameter in GHz ZS = ZSopt 2 36 1.8 32 0.90GHz 1.6 28 1.80GHz 2.40GHz 3.00GHz 24 f = 6GHz f = 5GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz 1.4 4.00GHz 1.2 5.00GHz 20 F [dB] G [dB] 6.00GHz 1 16 0.8 12 0.6 8 0.4 4 0 0.2 0 0.5 1 1.5 2 2.5 V CE 3 3.5 4 4.5 0 5 0 5 10 15 [V] 20 25 30 I [mA] c Noise figure F = ƒ(IC ) VCE = 3 V, f = 1.8 GHz Noise figure F = ƒ(f) VCE = 3 V, ZS = ZSopt 2 1.4 1.8 1.2 1.6 1 1.4 0.8 ZS = 50Ω 1 F [dB] F [dB] 1.2 Z =Z S Sopt 0.6 0.8 0.6 0.4 IC = 25mA 0.4 IC = 8mA 0.2 0.2 0 0 5 10 15 20 25 0 30 I [mA] 0 1 2 3 4 5 6 7 f [GHz] c 2005-11-08 7 BFP740F Source impedance for min. noise figure vs. frequency VCE = 3 V, I C = 8 mA / 25 mA 1 1.5 2 0.5 0.4 3 0.3 4 Ic = 8mA 0.2 5 4GHz 5GHz 0.1 0.2 0 6GHz 0.4 1 3GHz 10 2.4GHz 1.8GHz 2 4 0.9GHz −0.1 −10 −0.2 −5 −4 Ic = 25mA −0.3 −3 −0.4 −0.5 −2 −1 −1.5 2005-11-08 8 Package TSFP-4 BFP740F Package Outline 0.55 ±0.04 0.2 ±0.05 3 1 1.2 ±0.05 0.2 ±0.05 4 2 0.2 ±0.05 10˚ MAX. 0.8 ±0.05 1.4 ±0.05 0.15 ±0.05 0.5 ±0.05 0.5 ±0.05 Foot Print 0.9 0.45 0.35 0.5 0.5 Marking Layout Manufacturer Pin 1 Type code BFP420F Example Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2 1.4 8 4 Pin 1 0.7 1.55 2005-11-08 9 BFP740F Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 2005-11-08 10