19-3692; Rev 0; 6/05 超低电压电平转换器 ____________________________________特性 MAX13000E–MAX13005E是6通道电平转换器,能够为多 电压系统的数据传输提供电平转换功能。外接电源电压 VCC 和VL 分别设置器件两侧的逻辑电平。器件VL 侧的逻 辑信号在器件的VCC 侧转换为高压逻辑信号,反之亦然。 ♦ 保证数据速率: 230kbps (MAX13000E/MAX13001E/MAX13002E) 20Mbps (MAX13003E/MAX13004E/MAX13005E) MAX13000E–MAX13005E具有小于4µA的VCC 和VL 静态电 源电流。MAX13000E–MAX13005E还为VCC 侧的I/O提供 ±15kV ESD 保护,在连接外部信号时,可提供更强的保 护。ESD 保护符合人体模型标准 (HBM)。MAX13000E/ MAX13001E/MAX13002E保证工作于230kbps的数据速率。 MAX13003E/MAX13004E/MAX13005E则可在VCC > +1.65V 的情况下,保证工作于20Mbps的数据速率。 MAX13000E/MAX13003E是双向电平转换器,允许在任意 一条数据线上进行双向 (V L ↔ V CC ) 电平转换,而无需 DIRECTION 输入来控制方向。MAX13001E/MAX13002E/ MAX13004E/MAX13005E为单向电平转换器,可在数据线 的一个方向上进行数据电平的转换 (VL → VCC 或VCC → VL)。MAX13001E/MAX13002E/MAX13004E/MAX13005E单 向转换器的输入可与CMOS和开漏极 (OD) 输出连接。若 想了解更多信息,请参见 定购信息、选型指南 和 输入驱 动要求 部分。 MAX13000E–MAX13005E的VL 电压范围为+0.9V至+3.6V, VCC 电压范围为+1.5V至+3.6V。MAX13000E–MAX13005E 采用 16 焊球 UCSP TM 和 16 引脚 TSSOP 封装,可在-40°C 至 +85°C扩展工业级温度范围保证性能指标。 ____________________________________应用 ♦ 双向电平转换,无需DIRECTION输入控制 ♦ VL 电压可低至+0.9V,VCC 电压可低至+1.5V ♦ VCC 侧I/O线具有±15kV ESD保护 (人体模型) ♦ 低静态电流:< 4µA ♦ 使能/关断控制 ♦ 2mm x 2mm、16焊球UCSP封装和带引脚封装 ♦ 可与CMOS或开漏极输出连接 UCSP是Maxim Integrated Products, Inc.的商标。 SPI是Motorola, Inc.的商标。 MICROWIRE是National Semiconductor Corp.的商标。 ________________________________定购信息 PART MAX13000EEUE -40°C to +85°C 16 TSSOP ________________________________引脚配置 BOTTOM VIEW MAX13000E/MAX13003E 漏极开路I/O转换 I/OVCC3 VCC GND I/OVCC4 I/OVCC1 I/OVCC2 I/OVCC5 I/OVCC6 I/OVL1 I/OVL2 I/OVL5 I/OVL6 I/OVL3 VL EN I/OVL4 1 2 3 4 D 低压ASIC电平转换 蜂窝电话 PINPACKAGE 定购信息后续于本数据资料末尾。 CMOS逻辑电平转换器 OD至CMOS信号变换 TEMP RANGE C SPI TM 和MICROWIRE TM 电平转换 智能读卡器 B 便携式POS系统 便携式通信设备 低成本串行接口 A 电信设备 4 X 4 UCSP 引脚配置后续于本数据资料末尾。 典型工作电路和选型指南见本数据资料末尾。 ________________________________________________________________ Maxim Integrated Products 1 本文是Maxim正式英文资料的译文,Maxim不对翻译中存在的差异或由此产生的错误负责。请注意译文中可能存在文字组织或 翻译错误,如需确认任何词语的准确性,请参考 Maxim提供的英文版资料。 索取免费样品和最新版的数据资料,请访问Maxim的主页:www.maxim-ic.com.cn。 MAX13000E– MAX13005E ____________________________________概述 MAX13000E– MAX13005E 超低电压电平转换器 ABSOLUTE MAXIMUM RATINGS Voltages referenced to GND. VCC ...........................................................................-0.3V to +4V VL ..............................................................................-0.3V to +4V I/OVCC_ .......................................................-0.3V to (VCC + 0.3V) I/OVL_ ............................................................-0.3V to (VL + 0.3V) EN .................................................................-0.3V to (VL + 0.3V) Short-Circuit Duration I/OVL_, I/OVCC_ to GND ..........Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin TSSOP (derate 9.4mW/°C at +70°C) ................755mW 16-Bump UCSP (derate 8.2mW/°C at +70°C) .............659mW Operating Temperature Range ..........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER VL Supply Range VCC Supply Range Supply Current from VCC (Note 3) SYMBOL VL VCC IQVCC CONDITIONS UNITS 0.9 VCC V 1.5 3.6 V TA = +25°C 4 TA = +85°C 40 IQVL ISHDN-VCC MAX (Note 2) TA = +85°C VCC Shutdown Supply Current (Note 3) TYP VL ≤ VCC (Note 2) TA = +25°C Supply Current from VL (Note 3) MIN (Note 3) 1 VL < VCC - 0.2V (Note 3) 5 2 4 VL < VCC - 0.2V 40 2 EN = GND, TA = +85°C 20 VL < VCC - 0.2V, EN = GND EN = GND VL Shutdown Supply Current (Note 3) TA = +85°C 1 4 VL < VCC - 0.2V, EN = GND 20 EN = GND 40 I/O VL_, I/O VCC_, EN = GND TA = +25°C 0.35 TA = +85°C 1 I/O Tri-Stated Output Leakage Current VL < VCC - 0.2V, I/O VL_, I/O VCC_, EN = GND TA = +25°C 0.2 TA = +85°C 0.5 2 µA 2 I/O Tri-State Output Leakage Current EN Input Leakage Current µA 20 EN = GND, TA = +25°C TA = +25°C µA µA µA µA TA = +25°C 0.35 TA = +85°C 1 _______________________________________________________________________________________ µA 超低电压电平转换器 (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2/3 × VL V LOGIC-LEVEL THRESHOLDS I/OVL_ Input-Voltage-High Threshold VIHL I/OVL_ Input-Voltage-Low Threshold VILL I/OVCC_ Input-Voltage-High Threshold VIHC I/OVCC_ Input-Voltage-Low Threshold VILC EN Input-Voltage-High Threshold VIHEN EN Input-Voltage-Low Threshold VILEN I/OVL_ Output-Voltage High VOHL I/OVL_ Output-Voltage Low I/OVCC_ Output-Voltage High I/OVCC_ Output-Voltage Low VOLL VOHC VOLC 1/3 × VL V 2/3 × VCC 1/3 × VCC V 2/3 × VL I/OVL_ source current = 20µA V 1/3 × VL V VL 0.25 V MAX13002E/MAX13005E, OVL_ sink current = 1µA 0.3 MAX13000E/MAX13001E/MAX13003E/ MAX13004E, I/OVL_ sink current = 20µA 0.25 I/OVCC_ source current = 20µA V V VCC 0.25 V MAX13001E/MAX13004E, OVCC_ sink current = 1µA 0.3 MAX13000E/MAX13002E/MAX13003E/ MAX13005E, I/OVCC_ sink current = 20µA 0.25 V OUTPUT CURRENTS Output Sink Current During Transient (VCC Side) Output Sink Current During Transient (VL Side) VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 25 mA VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 VL = +1.2V, VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 30 VL = +1.2V, VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 mA _______________________________________________________________________________________ 3 MAX13000E– MAX13005E ELECTRICAL CHARACTERISTICS (continued) MAX13000E– MAX13005E 超低电压电平转换器 ELECTRICAL CHARACTERISTICS (continued) (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL Output Source Current During Transient (VCC Side) CONDITIONS MIN TYP VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 22 VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 VL = +1.2V, VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 25 VL = +1.2V, VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 MAX UNITS mA Output Source Current During Transient (VL Side) mA ESD PROTECTION I/OVCC_ Human Body Model ±15 Air-Gap Discharge (IEC61000-4-2) ±10 Contact Discharge (IEC61000-4-2) ±8 kV TIMING CHARACTERISTICS (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER I/OVCC_ Rise Time SYMBOL tRVCC CONDITIONS tFVCC MAX 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 1a, 1b 15 400 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 1a, 1b 15 400 _______________________________________________________________________________________ UNITS ns 1400 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 1a, 1b CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b 4 TYP CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 1a, 1b CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b I/OVCC_ Fall Time MIN 1400 ns 超低电压电平转换器 (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER I/OVL_ Rise Time SYMBOL tRVL CONDITIONS tFVL MAX 15 CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 2a, 2b 15 300 15 CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 2a, 2b 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, Figures 1a, 1b 300 I/OVCC-VL Propagation Delay from I/OVL to I/OVCC_ after EN (Note 5) ns ns 1200 20 ns I/OVL-VCC Propagation Delay (Driving I/OVCC_) UNITS 1200 CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 2a, 2b CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b Propagation Delay (Driving I/OVL_) TYP CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 2a, 2b CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b I/OVL_ Fall Time MIN CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b 1000 VCC > +1.65V, CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, Figures 2a, 2b 20 VCC = 1.5V, CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, Figures 2a, 2b 20 CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b 1000 CI/OVCC = 50pF, CMOS output, Figure 3 2 CI/OVCC = 50pF, OD output, Figure 3 6 ns µs tEN-VCC _______________________________________________________________________________________ 5 MAX13000E– MAX13005E TIMING CHARACTERISTICS (continued) TIMING CHARACTERISTICS (continued) (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL Propagation Delay from I/OVCC to I/OVL after EN (Note 5) CONDITIONS MIN TYP MAX CI/OVL = 50pF, CMOS output, Figure 4 2 CI/OVL = 50pF, OD output, Figure 4 6 Channel-to-Channel Skew tSKEW Part-to-Part Skew (Note 6) UNITS µs tEN-VL Each translator equally loaded, MAX13003E/MAX13004E/MAX13005E ±5 ns tPPSKEW Maximum Data Rate Each translator equally loaded, MAX13000E/MAX13001E/MAX13002E ±250 CI/OVL = 15pF, CI/OVCC = 15pF, VL = +1.8V, VCC = +2V, ΔT = +5°C, MAX13003E/MAX13004E/MAX13005E 10 ns MAX13003E/MAX13004E/MAX13005E VCC > +1.65V, CI/OVL = 50pF, CI/OVCC = 50pF 20 Mbps MAX13000E/MAX13001E/MAX13002E CI/OVL = 50pF, CI/OVCC = 50pF 230 kbps Note 1: All devices are 100% production tested at TA = +25°C. Limits are guaranteed by design over the entire temperature range. Note 2: VL must be less than or equal to VCC during normal operation. However, VL can be greater than VCC during startup and shutdown conditions. Note 3: This consumption is referred to as no signal transmission. Note 4: Guaranteed by design with an input signal full swing, rise/fall time ≤ 3ns, source resistance is 50Ω. Note 5: Enable input signal full swing and rise/fall time ≤ 50ns. Note 6: Guaranteed by design, not production tested. _______________________________________________________________________典型工作特性 (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) 10 DATA RATE = 230kbps 1 0.1 0.1 0.01 DATA RATE = 230kbps 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) 3.3 3.6 DATA RATE = 20Mbps 1 0.1 DATA RATE = 230kbps 0.01 0.001 1.5 6 DATA RATE = 20Mbps 10 VCC SUPPLY CURRENT (mA) 100 MAX13000Etoc02 DATA RATE = 20Mbps 1 VL SUPPLY CURRENT (mA) MAX13000Etoc01 1000 VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VL, VL = 0.9V) VL SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VCC, VL = 0.9V) MAX13000Etoc03 VL SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VL, VL = 0.9V) VL SUPPLY CURRENT (μA) MAX13000E– MAX13005E 超低电压电平转换器 1.5 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) 3.3 3.6 1.5 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) _______________________________________________________________________________________ 3.3 3.6 超低电压电平转换器 VL SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) 0.1 DATA RATE = 230kbps 0.01 MAX13000E toc05 310 DATA RATE = 20Mbps 1.8 2.1 2.4 2.7 3.0 3.3 DATA RATE = 20Mbps 4.00 3.95 3.85 -40 3.6 4.05 3.90 290 1.5 -15 10 35 60 85 -40 -15 10 35 85 60 TEMPERATURE (°C) TEMPERATURE (°C) VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) VCC SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) 60 40 20 DATA RATE = 230kbps 6 5 4 3 8 7 DATA RATE = 230kbps 30 40 50 60 70 80 20 30 40 50 60 70 80 RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VL (DRIVING I/OVCC, = 3.3V, VL = +0.9V) PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC, = 3.3V, VL = +0.9V) tF 5 4 3 tR 2 9.0 8.5 PROPAGATION DELAY (ns) MAX31000Etoc10 6 8.0 7.5 7.0 6.5 6.0 1 5.5 0 5.0 10 20 30 40 50 60 70 CAPACITIVE LOAD (pF) 80 90 100 10 20 30 40 50 60 70 80 90 100 CAPACITIVE LOAD (pF) CAPACITIVE LOAD (pF) 7 tF 3 90 100 CAPACITIVE LOAD (pF) 8 4 0 10 90 100 PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VL (DRIVING I/OVCC, VCC = 3.3V, VL = +0.9V) 6.5 6.0 PROPAGATION DELAY (ns) 20 5 1 0 10 tR 6 2 2 1 0 MAX31000Etoc09 MAX31000Etoc08 DATA RATE = 20Mbps 7 MAX13000Etoc12 80 8 9 RISE/FALL TIME (ns) DATA RATE = 20Mbps 100 9 VCC SUPPLY CURRENT (mA) 120 MAX31000Etoc07 SUPPLY VOLTAGE (V) 140 VL SUPPLY CURRENT (μA) 320 300 0.001 RISE/FALL TIME (ns) 330 4.10 MAX13000E toc06 1.0 340 MAX31000Etoc11 VCC SUPPLY CURRENT (mA) DATA RATE = 20Mbps VCC SUPPLY CURRENT (μA) MAX13000Etoc04 10 VCC SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) VCC SUPPLY CURRENT (mA) VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/OVCC, VL = +0.9V) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 10 20 30 40 50 60 70 CAPACITIVE LOAD (pF) 80 90 100 10 20 30 40 50 60 70 80 90 100 CAPACITIVE LOAD (pF) _______________________________________________________________________________________ 7 MAX13000E–]MAX13005E _____________________________________________________________________典型工作特性 (续) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) _____________________________________________________________________典型工作特性 (续) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) OD RAIL-TO-RAIL DRIVING (MAX13002E) (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 56pF, DATA RATE = 230kbps, RPULLUP = 15kΩ) I/OVL_ 500mV/div GND RAIL-TO-RAIL DRIVING (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 230kbps) MAX31000Etoc15 MAX31000Etoc14 I/OVL_ 500mV/div GND I/OVCC 2V/div GND I/OVCC 2V/div GND I/OVCC 2V/div GND 1μs/div 2μs/div 200ns/div RAIL-TO-RAIL DRIVING (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 20Mbps) I/OVL_ 500mV/div GND I/OVCC 2V/div GND VCC + VL SUPPLY CURRENT vs. FREQUENCY (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V) I/OVL_ 500mV/div GND I/OVCC 2V/div GND 40ns/div VCC + VL SUPPLY CURRENT (mA) MAX31000Etoc17 MAX31000Etoc16 RAIL-TO-RAIL DRIVING (DRIVING I/OVL VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 4Mbps) 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I/OVL IS DRIVEN WITH A 0.9V SQUARE WAVE VCC + VL VCC VL 100 10ns/div 4250 8400 12,550 16,700 20,850 25,000 FREQUENCY (kHz) VOHL vs. IOHL FOR VL SIDE (VCC = 3.3V) VL = +2.5V 2.5 0.25 0.20 VL = +2.5V VOHL (V) VCC VL VL = +1.8V 1.5 8400 12,550 16,700 20,850 25,000 FREQUENCY (kHz) VL = +1.8V 0.15 VL = +0.9V 0.10 1.0 VL = +0.9V 0.05 0.5 0 4250 VOLL (V) VCC + VL 2.0 MAX13000Etoc21 I/OVCC IS DRIVEN WITH A 3.3V SQUARE WAVE 100 8 3.0 MAX31000Etoc19 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VOLL vs. IOLL FOR VL SIDE (VCC = 3.3V) MAX13000Etoc20 VCC + VL SUPPLY CURRENT vs. FREQUENCY (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) 0 0 5 10 15 20 25 30 35 40 45 50 IOHL (μA) I/OVL_ 500mV/div GND MAX31000Etoc18 MAX31000Etoc13 OD RAIL-TO-RAIL DRIVING (MAX13005E) (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 56pF, DATA RATE = 230Mbps, RPULLUP = 1kΩ) VCC + VL SUPPLY CURRENT (mA) MAX13000E– MAX13005E 超低电压电平转换器 0 5 10 15 20 25 30 35 40 45 50 IOLL (μA) _______________________________________________________________________________________ 超低电压电平转换器 VOLC (V) 0.20 VCC = +3.3V VCC = +1.8V 0.10 VCC = +3.3V 3.0 VOHC (V) VCC = +2.5V 0.15 3.5 MAX13000Etoc22 0.25 MAX13000Etoc23 VOHC vs. IOHC FOR VCC SIDE VOLC vs. IOLC FOR VCC SIDE VCC = +2.5V 2.5 2.0 VCC = +1.8V 1.5 0.05 1.0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 IOHC (μA) IOLC (μA) _____________________________________________________________________________引脚说明 MAX13000E/MAX13003E 引脚 名称 功能 TSSOP 1 UCSP B1 I/OVL1 CMOS输入/输出1,以VL 为参考。 2 B2 I/OVL2 CMOS输入/输出2,以VL 为参考。 3 A1 I/OVL3 CMOS输入/输出3,以VL 为参考。 4 A2 VL 逻辑输入电压,+0.9V ≤ VL ≤ VCC。在VL 和GND之间接0.1µF旁路电容。 5 A3 EN 使能输入。若EN置低,则I/O VCC1至I/O VCC6和I/O VL1至I/O VL6均为三态。 EN置高 (VL) 时正常工作。 6 A4 I/OVL4 CMOS输入/输出4,以VL 为参考。 7 B3 I/OVL5 CMOS输入/输出5,以VL 为参考。 8 B4 I/OVL6 CMOS输入/输出6,以VL 为参考。 9 C4 I/OVCC6 CMOS输入/输出6,以VCC 为参考。 10 C3 I/OVCC5 CMOS输入/输出5,以VCC 为参考。 11 D4 I/OVCC4 CMOS输入/输出4,以VCC 为参考。 12 D3 GND 地 13 D2 VCC VCC 输入电压,+1.5V ≤ VCC ≤ 3.6V。在VCC 和GND之间接0.1µF旁路电容。 要实现完全的ESD保护,须在VCC 端接1µF旁路电容。 14 D1 I/OVCC3 CMOS输入/输出3,以VCC 为参考。 15 C2 I/OVCC2 CMOS输入/输出2,以VCC 为参考。 16 C1 I/OVCC1 CMOS输入/输出1,以VCC 为参考。 _______________________________________________________________________________________ 9 MAX13000E– MAX13005E _____________________________________________________________________典型工作特性 (续) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) MAX13000E– MAX13005E 超低电压电平转换器 _______________________________________________________________________引脚说明 (续) MAX13001E/MAX13004E 引脚 10 名称 功能 TSSOP 1 UCSP B1 OVL1 CMOS输出1,以VL 为参考。 2 B2 OVL2 CMOS输出2,以VL 为参考。 3 A1 OVL3 CMOS输出3,以VL 为参考。 4 A2 VL 逻辑输入电压,+0.9V ≤ VL ≤ VCC。在VL 和GND之间接0.1µF旁路电容。 5 A3 EN 使能输入。若EN置低,则OVCC1至OVCC6和IVL1至IVL6均为三态。EN置高 (VL) 时正常工作。 6 A4 OVL4 CMOS输出4,以VL 为参考。 7 B3 OVL5 CMOS输出5,以VL 为参考。 8 B4 OVL6 CMOS输出6,以VL 为参考。 开漏极兼容的输入6,以VCC 为参考。 9 C4 IVCC6 10 C3 IVCC5 开漏极兼容的输入5,以VCC 为参考。 11 D4 IVCC4 开漏极兼容的输入4,以VCC 为参考。 12 D3 GND 地 13 D2 VCC VCC 输入电压,+1.5V ≤ VCC ≤ 3.6V。在VCC 和GND之间接0.1µF旁路电容。要实 现完全的ESD保护,须在VCC 端接1µF旁路电容。 14 D1 IVCC3 15 C2 IVCC2 开漏极兼容的输入3,以VCC 为参考。 开漏极兼容的输入2,以VCC 为参考。 16 C1 IVCC1 开漏极兼容的输入1,以VCC 为参考。 ______________________________________________________________________________________ 超低电压电平转换器 MAX13002E/MAX13005E 引脚 名称 功能 TSSOP 1 UCSP B1 IVL1 开漏极兼容的输入1,以VL 为参考。 2 B2 IVL2 开漏极兼容的输入2,以VL 为参考。 3 A1 IVL3 开漏极兼容的输入3,以VL 为参考。 4 A2 VL 逻辑输入电压,+0.9V ≤ VL ≤ VCC。在VL 和GND之间接0.1µF旁路电容。 5 A3 EN 使能输入。若EN置低,则OVCC1至OVCC6和IVL1至IVL6均为三态。EN置高 (VL) 时正常工作。 6 A4 IVL4 开漏极兼容的输入4,以VL 为参考。 7 B3 IVL5 开漏极兼容的输入6,以VL 为参考。 开漏极兼容的输入5,以VL 为参考。 8 B4 IVL6 9 C4 OVCC6 CMOS输出6,以VCC 为参考。 10 C3 OVCC5 CMOS输出5,以VCC 为参考。 11 D4 OVCC4 CMOS输出4,以VCC 为参考。 12 D3 GND 地 13 D2 VCC VCC 输入电压,+1.5V ≤ VCC ≤ 3.6V。在VCC 和GND之间接0.1µF旁路电容。要实 现完全的ESD保护,须在VCC 端接1µF旁路电容。 14 D1 OVCC3 CMOS输出2,以VCC 为参考。 15 C2 OVCC2 CMOS输出3,以VCC 为参考。 16 C1 OVCC1 CMOS输出1,以VCC 为参考。 ______________________________________________________________________________________ 11 MAX13000E– MAX13005E _______________________________________________________________________引脚说明 (续) MAX13000E– MAX13005E 超低电压电平转换器 ______________________________________________________________________测试电路/时序图 I/OVL_ 90% VL VCC 50% MAX13000E 10% EN tRISE/FALL I/OVL-VCC I/OVCC I/OVL_ SOURCE I/OVCC_ 90% RS CI/OVCC 50% 10% tFVCC tRVCC I/OVL-VCC UNUSED I/Os ARE GROUNDED. tRISE/FALL < 3ns (MAX13003E/MAX13004E/MAX13005E) tRISE/FALL < 80ns (MAX13000E/MAX13001E/MAX13002E) 图1b. 驱动I/OVL 时序图 图1a. 驱动I/OVL tRISE/FALL VL VCC I/OVCC_ MAX13000E 90% 50% EN 10% I/OVCC-VL I/OVL_ I/OVCC I/OVL_ I/OVCC-VL 90% 50% CI/OVL RS SOURCE 10% tFVL tRVL tRISE/FALL < 3ns (MAX13003E/MAX13004E/MAX13005E) UNUSED I/Os ARE GROUNDED. 图2a. 驱动I/OVCC 12 tRISE/FALL < 80ns (MAX13000E/MAX13001E/MAX13002E) 图2b. 驱动I/OVCC 时序图 ______________________________________________________________________________________ 超低电压电平转换器 VL EN EN SOURCE MAX13000E t'EN-VCC 0 VL I/OVCC I/OVL_ I/OVL_ 0 CI/OVCC VL VCC VCC / 2 I/OVCC_ 0 VL t"EN-VCC EN SOURCE MAX13000E 0 EN I/OVL_ VL I/OVCC_ 0 VCC I/OVCC I/OVL_ CI/OVCC VCC / 2 0 tEN-VCC IS WHICH EVER IS LARGER BETWEEN t'EN-VCC AND t"EN-VCC. 图3. EN使能后,I/OVL 到I/OVCC 的传输延迟 VL EN VL EN SOURCE MAX13000E t'EN-VL VCC I/OVCC_ I/OVCC I/OVL_ 0 0 VL CI/OVL VCC I/OVL_ VL / 2 0 VL EN VL EN SOURCE t"EN-VL MAX13000E VCC I/OVCC_ I/OVL_ CI/OVL 0 0 VL I/OVCC I/OVL_ VL / 2 0 tEN-VL IS WHICH EVER IS LARGER BETWEEN t'EN-VL AND t"EN-VL. 图4. EN使能后,I/OVCC 到I/OVL 的传输延迟 ______________________________________________________________________________________ 13 MAX13000E– MAX13005E __________________________________________________________________测试电路/时序图 (续) MAX13000E– MAX13005E 超低电压电平转换器 ________________________________详细说明 MAX13000E–MAX13005E逻辑电平转换器为多电压系统的 数据传输提供电平转换功能。外接电源电压 (V CC 和 V L ) 设置器件两侧的逻辑电平。器件VL 侧的逻辑信号在器件 的VCC 侧转换为高压逻辑信号,反之亦然。 MAX13000E/MAX13003E 是双向电平转换器,允许在任 意一条数据线上双向 (V L ↔ V CC ) 转换数据电平,而 无需 DIRECTION 输入控制。MAX13001E/MAX13002E/ MAX13004E/MAX13005E为单向电平转换器,可在数据线 的一个方向 (VL → VCC 或VCC → VL) 进行数据电平的转 换。MAX13001E/MAX13002E/MAX13004E/MAX13005E单 向转换器的输入可与CMOS和开漏极 (OD) 输出连接。若 想了解更多信息,请参见定购信息 和输入驱动要求 部分。 MAX13000E–MAX13005E的VL 可接受+0.9V至+3.6V的电 压,所有器件的VCC 可接受+1.5V至+3.6V的电压,非常适 合低压ASIC/PLD与高压系统之间的数据传输。 MAX13000E–MAX13005E具有小于4µA的VCC 静态电源电 流,关断时 V L 静态电源电流低于 2µA。MAX13000E– MAX13005E 还为VCC 侧的I/O提供±15kV ESD保护,当连 接外部信号时,可提供更强的保护。ESD保护符合人体模 型标准 (HBM)。MAX13000E/MAX13001E/MAX13002E保 证工作于230kbps的数据速率。MAX13003E/MAX13004E/ MAX13005E 则可在VCC > +1.65V的情况下,保证工作于 20Mbps的数据速率。 电平转换 为 使 芯 片 正 常 工 作 , 需 确 保 +1.5V ≤ V CC ≤ +3.6V 和 +0.9V ≤ V L ≤ V CC。上电过程中,只要保证 V L 在极限参 数之内 (参见 Absolute Maximum Ratings ),即使出现 VL ≥ VCC 也不会损坏器件。上电过程中,如果VCC 端浮空而VL 端上电,允许VL 侧向每路负载源出1mA电流而不会使芯 片锁定。 MAX13000E–MAX13005E 设计用于工作在VCC ≥ VL 条件 下,不过,即使关断VCC,芯片也不会被损坏和锁定。为 了防止在I/O端口和电源线上有过大的漏电流,VL 侧的I/O 端口必须停留在高电平。 14 MAX13000E–MAX13005E最大的数据速率很大程度上取决 于负载电容 (详见 典型工作特性 )、驱动器输出阻抗和工 作电压范围 (详见 Timing Characteristics 表)。 开漏极工作 MAX13001E/MAX13002E/MAX13004E/MAX13005E的输入 级专为适应外部开漏驱动器而设计。当使用开漏极驱动 器时,MAX13001E/MAX13002E/MAX13004E/MAX13005E 工作在单向模式,从开漏极 (OD) 侧向CMOS侧转换信号。 为改善性能,在CMOS侧和OD侧都具有上升时间和下降 时间加速电路。参见 输入驱动器要求 部分。为保证正常 工作,上拉电阻阻值不要大于15kΩ,而且工作速度越高, 要求上拉电阻越小。 输入驱动器要求 MAX13000E–MAX13005E有4种不同的内部结构,分别提 供不同的工作速度,以及 CMOS 至 CMOS 或 OD 至 CMOS 转换。 20Mbps CMOS 至CMOS双向转换器 (MAX13003E) MAX13003E采用一种单稳态触发加速器输出结构 (图5)。 稳态下加速器输出级始终处于三态,当任何一个转换器 的输入端 (I/OVL 或I/OVCC) 发生跳变时,单稳态触发输出 级,产生一个短脉冲,对I/O口上的电容进行充/放电。由 于其双向工作特性,当I/O口发生由低到高或者由高到低 的跳变时,I/OVCC 和I/OVL 端口上的加速器输出级均会被 触发。这会导致一部分电流被馈入正在驱动转换器的外 部信号源。不过,这有利于加速驱动侧信号电平的跳变。 通常,驱动MAX13003E输入级的器件都会有一个规定的 输出驱动电流容量 (IOUT)。在驱动MAX13003E的输入时, 可达到的最大速率受限于这个驱动电流。为了保证最 大可能的 20Mbps 数据速率,外部驱动器必须满足以下 条件: IOUT ≥ 1.67 × 108 × V × (CIN + CP) ______________________________________________________________________________________ 超低电压电平转换器 MAX13000E– MAX13005E VL VCC P ONE-SHOT 5kΩ I/OVL I/OVCC INVERTER 2 INVERTER 1 N ONE-SHOT P ONE-SHOT 5kΩ INVERTER 4 INVERTER 3 N ONE-SHOT 图5. 20Mbps CMOS 至CMOS双向转换器结构 其中,CP 是连线的寄生电容,V是驱动端的电源电压 (VL 或 V CC ),C IN 是驱动端的输入电容 (V L 侧 C IN = 10pF, VCC 侧CIN = 20pF)。 20Mbps OD 至CMOS单向转换器 (MAX13004E/MAX13005E) MAX13004E/MAX13005E 的结构与双向CMOS 至CMOS转 换器基本一样,唯一的区别在于驱动侧的输出反相器 (inverter 4),该反相器能够适应开漏极输出的驱动能力 (见图6)。 为保证正常工作,开漏极输出与驱动侧电源之间需连接 一个上拉电阻。上拉电阻的阻值不能大于15kΩ。 230kbps CMOS至CMOS双向转换器 (MAX13000E) MAX13000E 的结构中省掉了单稳态触发加速器输出级, 因为该器件只需要处理230kbps以内的数据速率 (见图7)。 为保证正常工作,驱动器必须满足以下条件:最大输出阻 抗1kΩ,最小输出电流1mA。 230kbps OD 至CMOS单向转换器 (MAX13001E/MAX13002E) MAX13001E/MAX13002E 的结构与230kbps CMOS 至CMOS 双向转换器相似,区别仅在于它能够适应驱动侧开漏 极输出器件的驱动能力,并有一个单稳态触发输出级 (见 图8)。 为了正常工作,开漏极输出与驱动侧电源之间需连接一 个上拉电阻。上拉电阻的阻值不能大于15kΩ。 图9给出了上述各种结构的典型输入电流随输入电压变化 的曲线。 输出使能模式 (EN) MAX13000E– MAX13005E 具有使能输入 (EN)。驱动EN为 低可设置 MAX13000E – MAX13005E的I/O端口为三态。正 常工作应驱动EN为高 (VL)。 ±15kV ESD保护 和 Maxim 其他器件一样,该系列器件的所有引脚均带有 ESD保护结构,以免在装配和操作过程中的静电放电损坏 器件。I/OVCC 线上还具有更高的静电放电保护。Maxim工 程师开发的先进的ESD保护结构可提供高达±15kV的ESD 保护。这种ESD保护结构可在任何状态下承受高ESD冲击: ______________________________________________________________________________________ 15 MAX13000E– MAX13005E 超低电压电平转换器 20Mbps OPEN-DRAIN-TO-CMOS UNIDIRECTIONAL LEVEL TRANSLATOR VCC/VL VL/VCC P ONE-SHOT 5kΩ IVCC/IVL OVL/OVCC INVERTER 2 OPEN-DRAIN COMPATIBLE INPUT INVERTER 1 CMOSCOMPATIBLE INPUT N ONE-SHOT P ONE-SHOT INVERTER 3 5kΩ 75kΩ INVERTER 4 N ONE-SHOT 图6. 20Mbps OD至CMOS单向转换器结构 230kbps Bidirectional CMOS-TO-CMOS Level Translator VL VCC 5kΩ I/OVL I/OVCC INVERTER 1 INVERTER 2 5kΩ INVERTER 4 INVERTER 3 图7. 230kbps CMOS至CMOS双向转换器结构 16 ______________________________________________________________________________________ 超低电压电平转换器 MAX13000E– MAX13005E 230kbps OPEN-DRAIN-TO-CMOS UNIDIRECTIONAL LEVEL TRANSLATOR VCC/VL VL/VCC 5kΩ IVCC/IVL OVL/OVCC INVERTER 1 OPEN-DRAIN COMPATIBLE INPUT INVERTER 2 CMOSCOMPATIBLE INPUT INVERTER 3 5kΩ 75kΩ INVERTER 4 5kΩ N ONE-SHOT 图8. 230kbps OD至CMOS单向转换器结构 正常工作、三态输出模式以及断电。ESD 冲击过后, Maxim器件保持正常工作而不会锁定,而竞争者的产品则 需要断电,以解除锁定状态。 IIN ESD 保护具有多种不同测试方法。MAX13000E–MAX13005E 的I/OVCC 线采用±15kV的人体模型进行测试。 VTH_IN / RIN1 ESD测试条件 0 VTH_IN VIN VS WHERE, VS = VCC OR VL (VS - VTH_IN) / RIN2 RIN1 = RIN2 = 5kΩ FOR CMOS-TO-CMOS TRANSLATORS RIN1 = 75kΩ FOR OD-TO-CMOS TRANSLATORS ESD性能依赖于诸多因素。如需可靠性报告,请与Maxim 公司联系,该报告详细说明了测试装置、测试方法和测 试结果。 人体模型 图 10 表示人体模型,图 11 给出了当它通过低阻放电时产 生的电流波形。该模型包括一个100pF的电容,被充电至 ESD目标电压,然后,经过一个1.5kΩ电阻,通过待测器 件对其放电。 图9. 典型IIN 随VIN 的变化 ______________________________________________________________________________________ 17 MAX13000E– MAX13005E 超低电压电平转换器 RC 1MΩ CHARGE-CURRENTLIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 100pF RC 50Ω TO 100Ω RD 1500Ω DISCHARGE RESISTANCE CHARGE-CURRENTLIMIT RESISTOR DEVICE UNDER TEST STORAGE CAPACITOR HIGHVOLTAGE DC SOURCE Cs 150pF RD 330Ω DISCHARGE RESISTANCE STORAGE CAPACITOR DEVICE UNDER TEST 图10. 人体ESD测试模型 图12. IEC 61000-4-2接触放电测试模型 IP 100% 90% Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) 关于UCSP封装的考虑 AMPERES 关于 UCSP 封装的一般性信息及其印制板布局方面的考 虑,可参考 Maxim应用笔记:晶片级封装。 36.8% 10% 0 0 tRL TIME UCSP可靠性 tDL CURRENT WAVEFORM 图11. 人体模型电流波形 IEC 61000-4-2标准ESD保护 IEC 61000-4-2 标准规定了电子系统的 ESD 耐受力。IEC 61000-4-2模型规定,采用150pF电容通过330Ω电阻对测试 器件放电。 MAX13000E–MAX13005E的VCC 侧I/O端口满 足 IEC 61000-4-2标准(8kV接触放电,±10kV气隙放电) 。 IEC 61000-4-2模型具有比HBM更高的放电峰值电流和更 高的能量,因为采用较低的串联电阻和较大的电容。 ________________________________应用信息 晶片级封装 (UCSP) 是一种特殊的封装形式,或许不能象 其他封装产品那样通过传统的机械可靠性测试。UCSP的 可靠性与用户的组装工艺、电路板材料以及使用环境密 切相关。用户考虑使用UCSP封装时,请仔细审视这几个 方面。工作寿命测试期间的性能和抗潮湿能力与传统封 装相比没有差异,因为这主要取决于晶片生产工艺。 机械应力性能是 UCSP 封装需要重点考虑的一个问题。 UCSP芯片通过焊接直接附着在用户的印制板上,不再具 有传统封装产品所固有的、由引线架所提供的应力缓解 机制。焊接点的完整性也要考虑。有关Maxim的质量认证 计划、测试数据和建议,请参考 UCSP 应用笔记 (可在 Maxim网站:www.maxim-ic.com.cn上找到)。 电源退耦 为降低纹波和数据出错的概率,使用0.1µF的陶瓷电容将 V L 和 V CC 旁路至地。为了确保完全的 ±15kV ESD 保护, 需采用1µF电容旁路VCC 到地。所有电容应尽可能靠近电 源引脚放置。 18 ______________________________________________________________________________________ 超低电压电平转换器 VL VCC EN MAX13000E–MAX13005E I/OVL1 I/OVCC1 I/OVL2 I/OVCC2 I/OVL3 I/OVCC3 I/OVL4 I/OVCC4 I/OVL5 I/OVCC5 I/OVL6 I/OVCC6 GND ______________________________________________________________________________________ 19 MAX13000E– MAX13005E ___________________________________________________________________________功能框图 MAX13000E– MAX13005E 超低电压电平转换器 _______________________________________________________________________典型工作电路 +0.9V +2.8V 0.1μF 1μF VCC VL +0.9V SYSTEM CONTROLLER +2.8V SYSTEM MAX13001E DATA1 DATA2 EN MAX13004E OVL_1 IVCC_1 OVL_2 IVCC_2 DATA3 OVL_3 IVCC_3 DATA3 DATA4 OVL_4 IVCC_4 DATA4 DATA5 OVL_5 IVCC_5 DATA5 DATA6 OVL_6 IVCC_6 DATA6 DATA1 DATA2 GND +0.9V +2.8V 0.1μF 1μF VCC VL +0.9V SYSTEM CONTROLLER +2.8V SYSTEM MAX13002E DATA1 DATA2 EN MAX13005E IVL_1 OVCC_1 IVL_2 OVCC_2 DATA3 IVL_3 OVCC_3 DATA3 DATA4 IVL_4 OVCC_4 DATA4 DATA5 IVL_5 OVCC_5 DATA5 DATA6 IVL_6 OVCC_6 DATA6 DATA1 DATA2 GND 20 ______________________________________________________________________________________ 超低电压电平转换器 +0.9V +2.8V 0.1μF 1μF VCC VL +0.9V SYSTEM CONTROLLER +2.8V SYSTEM MAX13000E DATA1 DATA2 EN MAX13003E I/OVL_1 I/OVCC_1 I/OVL_2 I/OVCC_2 DATA3 I/OVL_3 I/OVCC_3 DATA3 DATA4 I/OVL_4 I/OVCC_4 DATA4 DATA5 I/OVL_5 I/OVCC_5 DATA5 DATA6 I/OVL_6 I/OVCC_6 DATA6 DATA1 DATA2 GND ____________________________________________________________________________选型指南 DATA RATE (bps) NUMBER OF BIDIRECTIONAL TRANSLATORS NUMBER OF VL → VCC TRANSLATORS NUMBER OF VCC → VL TRANSLATORS MAX13000E 230k 6 — — CMOS-to-CMOS MAX13001E 230k — — 6 OD-to-CMOS MAX13002E 230k — 6 — OD-to-CMOS MAX13003E 20M 6 — — CMOS-to-CMOS MAX13004E 20M — — 6 OD-to-CMOS MAX13005E 20M — 6 — OD-to-CMOS PART TRANSLATOR CONFIGURATION ______________________________________________________________________________________ 21 MAX13000E– MAX13005E ___________________________________________________________________典型工作电路 (续) MAX13000E– MAX13005E 超低电压电平转换器 _______________________________________________________________________引脚配置 (续) BOTTOM VIEW MAX13001E/MAX13004E IVCC3 VCC GND MAX13002E/MAX13005E IVCC4 D OVCC3 VCC GND OVCC4 OVCC1 OVCC2 OVCC5 OVCC6 IVL1 IVL2 IVL5 IVL6 IVL3 VL EN IVL4 2 3 4 D IVCC1 IVCC2 IVCC5 IVCC6 C C OVL1 OVL2 OVL5 OVL6 B B OVL3 VL EN OVL4 A A 2 1 3 4 1 4 X 4 UCSP 4 X 4 UCSP TOP VIEW I/OVL1 1 16 I/OVCC1 OVL1 1 16 IVCC1 IVL1 1 16 OVCC1 I/OVL2 2 15 I/OVCC2 OVL2 2 15 IVCC2 IVL2 2 15 OVCC2 I/OVL3 3 14 I/OVCC3 OVL3 3 14 IVCC3 IVL3 3 14 OVCC3 VL 4 EN 5 13 VCC MAX13000E MAX13003E EN 5 13 VCC MAX13001E MAX13004E VL 4 12 GND EN 5 13 VCC MAX13002E MAX13005E 12 GND I/OVL4 6 11 I/OVCC4 OVL4 6 11 IVCC4 IVL4 6 11 OVCC4 I/OVL5 7 10 I/OVCC5 OVL5 7 10 IVCC5 IVL5 7 10 OVCC5 I/OVL6 8 9 OVL6 8 9 IVL6 8 9 TSSOP 22 12 GND VL 4 I/OVCC6 TSSOP IVCC6 TSSOP ______________________________________________________________________________________ OVCC6 超低电压电平转换器 PART TEMP RANGE PINPACKAGE MAX13000EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) MAX13001EEUE -40°C to +85°C 16 TSSOP MAX13001EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) MAX13002EEUE -40°C to +85°C 16 TSSOP MAX13002EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) MAX13003EEUE -40°C to +85°C 16 TSSOP MAX13003EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) MAX13004EEUE -40°C to +85°C 16 TSSOP MAX13004EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) MAX13005EEUE -40°C to +85°C 16 TSSOP MAX13005EEBE-T* -40°C to +85°C 16 UCSP-16 (4mm × 4mm) ________________________________芯片信息 PROCESS: BiCMOS * 未来产品 —— 供货状况请联络厂方。 ______________________________________________________________________________________ 23 MAX13000E– MAX13005E ____________________________定购信息 (续) ____________________________________________________________________________封装信息 (本数据资料提供的封装图可能不是最近的规格,如需最近的封装外型信息,请查询 www.maxim-ic.com.cn/packages。) TSSOP4.40mm.EPS MAX13000E– MAX13005E 超低电压电平转换器 PACKAGE OUTLINE, TSSOP 4.40mm BODY 21-0066 24 ______________________________________________________________________________________ G 1 1 超低电压电平转换器 16L,UCSP.EPS PACKAGE OUTLINE, 4x4 UCSP 21-0101 H 1 1 MAXIM 北京办事处 北京 8328信箱 邮政编码 100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25 © 2005 Maxim Integrated Products Printed USA 是 Maxim Integrated Products, Inc. 的注册商标。 MAX13000E– MAX13005E __________________________________________________________________________封装信息 (续 ) (本数据资料提供的封装图可能不是最近的规格,如需最近的封装外型信息,请查询 www.maxim-ic.com.cn/packages。) MAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器 - 概述 Login Register 产品 方案 设计 销售联络 技术支持 公司简介 简体中文 (cn) 简体中文 (cn) 我的Maxim Maxim > 产品 > 接口、互联、信号完整 > MAX13000E, MAX13001E, ... MAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器 6通道、超低电压、双向电平转换器 概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况 状况:生产中。 概述 数据资料 MAX13000E–MAX13005E是6通道电平转换器,能够为多电压系统的数据传输提供电平转换功能。外 接电源电压VCC和VL 分别设置器件两侧的逻辑电平。器件VL 一侧的逻辑信号在器件的VCC一侧转换为高 压逻辑信号,反之亦然。 完整的数据资料 提供更新的英文版数据资料 英文 MAX13000E–MAX13005E具有小于4µA的VCC和VL 静态电源电流。MAX13000E–MAX13005E还 为VCC侧的I/O提供±15kV ESD保护,可在具有外部信号走线的应用中提供更强大的保护。ESD保护采 用人体模型(HBM)。MAX13000E/MAX13001E/MAX13002E能够确保实现230kbps的数据速 率。MAX13003E/MAX13004E/MAX13005E则可在VCC > +1.65V的情况下,确保实现20Mbps的数据 速率。 下载 中文 Rev. 1 (PDF, 292kB) E-Mail 下载 Rev. 0 (PDF, 948kB) E-Mail MAX13000E/MAX13003E是双向电平转换器,允许在任意单根数据线上进行双向(VL <—> VCC)电平转 换,而无需DIRECTION输入控制。MAX13001E/MAX13002E/MAX13004E/ MAX13005E为单向电平转 换器,可在任意单根数据线上进行单向电平转换(VL —> VCC或VCC —> VL )。MAX13001E/MAX13002E/MAX13004E/MAX13005E单向转换器的输入可与CMOS和开漏 极(OD)输出连接。若想了解更多信息,请参见完整数据资料中的定购信息、选型指南和输入驱动器要 求部分。 MAX13000E–MAX13005E的VL 电压范围为+0.9V至+3.6V,VCC电压范围 为+1.5V至+3.6V。MAX13000E–MAX13005E采用16焊球UCSP™和16引脚TSSOP封装,可工作在40°C至+85°C扩展级温度范围。 关键特性 应用/使用 可保证的数据速率选项 230kbps (MAX13000E/MAX13001E/MAX13002E) 20Mbps (MAX13003E/MAX13004E/MAX13005E) 双向电平转换,无DIRECTION输入控制 VL 电压可低至+0.9V,VCC电压可低至+1.5V VCC侧I/O线具有±15kV ESD保护(HBM) 低静态电流:<4µA 使能/关断控制 2mm x 2mm、16焊球UCSP封装以及引脚封装 可连接CMOS或开漏极输出 蜂窝电话 CMOS逻辑电平转换 低成本串行接口 低电压ASIC电平转换 OD至CMOS信号变换 漏极开路I/O转换 便携式通信设备 便携式POS系统 智能读卡器 SPI™和MICROWIRE™电平转换 电信设备 Key Specifications: Logic Level Translators Part Number Level Transl. VL (V) V CC (V) Data Rate (Mbps) Features max I/O V CC State I/O V L State Shutdn. Shutdn. I CC IL I CC V L Budgetary (Shutdn.) (Shutdn.) Price (µA) (µA) (µA) (µA) max max max max See Notes MAX13000E 0.23 Bidirectional CMOS/ Push-Pull Drive MAX13001E 0.23 CMOS/ Push-Pull Drive Open Drain Drive - MAX13002E 0.23 CMOS/ Push-Pull Drive Open Drain Drive - 0.9 to 1.5 to http://china.maxim-ic.com/datasheet/index.mvp/id/4759[2011-05-19 10:30:02] High High - MAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器 - 概述 6 40 40 2 1 20 Bidirectional CMOS/ Push-Pull Drive Open Drain Drive MAX13004E 20 CMOS/ Push-Pull Drive Open Drain Drive - MAX13005E 20 CMOS/ Push-Pull Drive Open Drain Drive - MAX13003E 3.6 3.6 Impedance Impedance 查看所有Logic Level Translators (55) Pricing Notes: This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor. 图表 典型工作电路 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 http://china.maxim-ic.com/datasheet/index.mvp/id/4759[2011-05-19 10:30:02] $1.89 @1k MAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器 - 概述 参数搜索 应用帮助 概述 技术文档 定购信息 相关产品 概述 关键特性 应用/ 使用 关键指标 图表 注释、注解 数据资料 应用笔记 评估板 设计指南 可靠性报告 软件/ 模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19- 3692 Rev. 1; 2011- 05- 16 本页最后一次更新: 2011- 05- 16 联络我们:信息反馈、提出问题 | 对该网页的评价 | 发送本网页 | 隐私权政策 | 法律声明 © 2011 Maxim Integrated Products版权所有 http://china.maxim-ic.com/datasheet/index.mvp/id/4759[2011-05-19 10:30:02] 19-3692; Rev 1; 5/11 Ultra-Low-Voltage Level Translators The MAX13000E–MAX13005E 6-channel level translators provide the level shifting necessary to allow data transfer in multivoltage systems. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the VL side of the device appear as higher voltage logic signals on the VCC side of the device, and vice-versa. The MAX13000E–MAX13005E feature a low VCC and VL quiescent supply current less than 4µA. The MAX13000E–MAX13005E also have ±15kV ESD protection on the I/O VCC side for greater protection in applications that route signals externally. The ESD protection is specified using the Human Body Model (HBM). The MAX13000E/MAX13001E/MAX13002E operate at a guaranteed 230kbps data rate. The MAX13003E/ MAX13004E/MAX13005E operate at a guaranteed 20Mbps data rate when VCC > +1.65V. The MAX13000E/MAX13003E are bidirectional level translators, allowing data translation in either direction (VL ↔ VCC) on any single data line without a DIRECTION input. The MAX13001E/MAX13002E/MAX13004E/ MAX13005E unidirectional level translators level shift data in one direction (VL → VCC or VCC → VL) on any single data line. The MAX13001E/MAX13002E/ MAX13004E/MAX13005E unidirectional translators’ inputs have the capability to interface with both CMOS and open-drain (OD) outputs. For more information see the Ordering Information, Selector Guide, and the InputDriver Requirements sections. The MAX13000E–MAX13005E operate with +0.9V to +3.6V VL voltages and +1.5V to +3.6V VCC voltages. The MAX13000E–MAX13005E are available in 16-bump UCSP™ and 16-pin TSSOP packages, and are specified over the extended -40°C to +85°C operating temperature range. Features ♦ Guaranteed Data-Rate Options 230kbps (MAX13000E/MAX13001E/MAX13002E) 20Mbps (MAX13003E/MAX13004E/MAX13005E) ♦ Bidirectional Level Translation Without a DIRECTION Input ♦ ♦ ♦ ♦ Operational Down to +0.9V on VL and +1.5V on VCC ±15kV ESD Protection on I/O VCC Lines per HBM Low <4µA Quiescent Current Enable/Shutdown Control ♦ 2mm x 2mm, 16-Bump UCSP and Lead Packaging Options ♦ CMOS or Open-Drain Outputs Interface Capability UCSP is a trademark of Maxim Integrated Products, Inc. SPI is a trademark of Motorola, Inc. MICROWIRE is a registered trademark of National Semiconductor Corp. Ordering Information PART MAX13000EEUE+ SPI™ and MICROWIRE® Level Translation Smart-Card Readers Portable POS Systems Portable Communication Devices Low-Cost Serial Interfaces Telecommunications Equipment PINPACKAGE -40°C to +85°C 16 TSSOP +Denotes a lead(Pb)-free/RoHS-compliant package. Ordering Information continued at end of data sheet. Pin Configurations BOTTOM VIEW MAX13000E/MAX13003E I/OVCC3 VCC GND I/OVCC4 I/OVCC1 I/OVCC2 I/OVCC5 I/OVCC6 I/OVL1 I/OVL2 I/OVL5 I/OVL6 I/OVL3 VL EN I/OVL4 1 2 3 4 D Applications CMOS Logic-Level Translation Open-Drain I/O Translation OD-to-CMOS Signal Conversion Low-Voltage ASIC Level Translation Cell Phones TEMP RANGE C B A 4 X 4 UCSP Pin Configurations continued at end of data sheet. Typical Operating Circuits and Selector Guide appear at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX13000E–MAX13005E General Description MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators ABSOLUTE MAXIMUM RATINGS Voltages referenced to GND. VCC ...........................................................................-0.3V to +4V VL ..............................................................................-0.3V to +4V I/OVCC_ .......................................................-0.3V to (VCC + 0.3V) I/OVL_ ............................................................-0.3V to (VL + 0.3V) EN .................................................................-0.3V to (VL + 0.3V) Short-Circuit Duration I/OVL_, I/OVCC_ to GND ..........Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin TSSOP (derate 9.4mW/°C at +70°C) ................755mW 16-Bump UCSP (derate 8.2mW/°C at +70°C) .............659mW Operating Temperature Range ..........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER VL Supply Range VCC Supply Range Supply Current from VCC (Note 3) SYMBOL VL VCC IQVCC MAX UNITS VL ≤ VCC (Note 2) CONDITIONS 0.9 VCC V (Note 2) 1.5 3.6 V 4 TA = +85°C 40 IQVL TA = +85°C VCC Shutdown Supply Current (Note 3) ISHDN-VCC TYP TA = +25°C TA = +25°C Supply Current from VL (Note 3) MIN (Note 3) 1 VL < VCC - 0.2V (Note 3) 5 2 4 VL < VCC - 0.2V 40 2 EN = GND, TA = +85°C 20 VL < VCC - 0.2V, EN = GND EN = GND VL Shutdown Supply Current (Note 3) TA = +85°C 1 4 VL < VCC - 0.2V, EN = GND 20 EN = GND 40 I/O VL_, I/O VCC_, EN = GND TA = +25°C 0.35 TA = +85°C 1 I/O Tri-Stated Output Leakage Current VL < VCC - 0.2V, I/O VL_, I/O VCC_, EN = GND TA = +25°C 0.2 TA = +85°C 0.5 2 µA 2 I/O Tri-State Output Leakage Current EN Input Leakage Current µA 20 EN = GND, TA = +25°C TA = +25°C µA µA µA µA TA = +25°C 0.35 TA = +85°C 1 _______________________________________________________________________________________ µA Ultra-Low-Voltage Level Translators (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 2/3 × VL V LOGIC-LEVEL THRESHOLDS I/OVL_ Input-Voltage-High Threshold VIHL I/OVL_ Input-Voltage-Low Threshold VILL I/OVCC_ Input-Voltage-High Threshold VIHC I/OVCC_ Input-Voltage-Low Threshold VILC EN Input-Voltage-High Threshold VIHEN EN Input-Voltage-Low Threshold VILEN I/OVL_ Output-Voltage High VOHL I/OVL_ Output-Voltage Low I/OVCC_ Output-Voltage High I/OVCC_ Output-Voltage Low VOLL VOHC VOLC 1/3 × VL V 2/3 × VCC 1/3 × VCC V 2/3 × VL I/OVL_ source current = 20µA V 1/3 × VL V VL 0.25 V MAX13002E/MAX13005E, OVL_ sink current = 1µA 0.3 MAX13000E/MAX13001E/MAX13003E/ MAX13004E, I/OVL_ sink current = 20µA 0.25 I/OVCC_ source current = 20µA V V VCC 0.25 V MAX13001E/MAX13004E, OVCC_ sink current = 1µA 0.3 MAX13000E/MAX13002E/MAX13003E/ MAX13005E, I/OVCC_ sink current = 20µA 0.25 V OUTPUT CURRENTS Output Sink Current During Transient (VCC Side) Output Sink Current During Transient (VL Side) VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 25 mA VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 VL = +1.2V, VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 30 VL = +1.2V, VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 mA _______________________________________________________________________________________ 3 MAX13000E–MAX13005E ELECTRICAL CHARACTERISTICS (continued) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators ELECTRICAL CHARACTERISTICS (continued) (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL Output Source Current During Transient (VCC Side) CONDITIONS MIN TYP VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 22 VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 VL = +1.2V, VCC = +1.65V, MAX13003E/MAX13004E/MAX13005E 25 MAX UNITS mA Output Source Current During Transient (VL Side) mA VL = +1.2V, VCC = +1.65V, MAX13000E/MAX13001E/MAX13002E 1 ESD PROTECTION I/OVCC_ Human Body Model ±15 Air-Gap Discharge (IEC61000-4-2) ±10 Contact Discharge (IEC61000-4-2) ±8 kV TIMING CHARACTERISTICS (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER I/OVCC_ Rise Time SYMBOL tRVCC CONDITIONS tFVCC MAX 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 1a, 1b 15 400 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 1a, 1b 15 400 _______________________________________________________________________________________ UNITS ns 1400 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 1a, 1b CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b 4 TYP CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 1a, 1b CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b I/OVCC_ Fall Time MIN 1400 ns Ultra-Low-Voltage Level Translators (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER I/OVL_ Rise Time SYMBOL tRVL CONDITIONS tFVL MAX 15 CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 2a, 2b 15 300 15 CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.5V, Figures 2a, 2b 15 CI/OVCC = 50pF, MAX13003E/MAX13004E/MAX13005E, Figures 1a, 1b 300 I/OVCC-VL Propagation Delay from I/OVL to I/OVCC_ after EN (Note 5) ns ns 1200 20 ns I/OVL-VCC Propagation Delay (Driving I/OVCC_) UNITS 1200 CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 2a, 2b CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b Propagation Delay (Driving I/OVL_) TYP CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, VCC = +1.65V, Figures 2a, 2b CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b I/OVL_ Fall Time MIN CI/OVCC = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 1a, 1b 1000 VCC > +1.65V, CI/OVL = 50pF, MAX13003E/MAX13004E/MAX13005E, Figures 2a, 2b 20 VCC = 1.5V, CI/OVL = 15pF, MAX13003E/MAX13004E/MAX13005E, Figures 2a, 2b 20 CI/OVL = 50pF, MAX13000E/MAX13001E/MAX13002E, Figures 2a, 2b 1000 CI/OVCC = 50pF, CMOS output, Figure 3 2 CI/OVCC = 50pF, OD output, Figure 3 6 ns µs tEN-VCC _______________________________________________________________________________________ 5 MAX13000E–MAX13005E TIMING CHARACTERISTICS (continued) TIMING CHARACTERISTICS (continued) (VCC = +1.5V to +3.6V, VL = +0.9V to VCC, CI/OVL ≤ 15pF, CI/OVCC ≤ 50pF, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 1, 4) PARAMETER SYMBOL Propagation Delay from I/OVCC to I/OVL after EN (Note 5) CONDITIONS MIN TYP MAX CI/OVL = 50pF, CMOS output, Figure 4 2 CI/OVL = 50pF, OD output, Figure 4 6 tSKEW Part-to-Part Skew (Note 6) UNITS µs tEN-VL Channel-to-Channel Skew Each translator equally loaded, MAX13003E/MAX13004E/MAX13005E ±5 Each translator equally loaded, MAX13000E/MAX13001E/MAX13002E ±250 CI/OVL = 15pF, CI/OVCC = 15pF, VL = +1.8V, VCC = +2V, ΔT = +5°C, MAX13003E/MAX13004E/MAX13005E 10 ns tPPSKEW Maximum Data Rate ns MAX13003E/MAX13004E/MAX13005E VCC > +1.65V, CI/OVL = 50pF, CI/OVCC = 50pF 20 Mbps MAX13000E/MAX13001E/MAX13002E CI/OVL = 50pF, CI/OVCC = 50pF 230 kbps Note 1: All devices are 100% production tested at TA = +25°C. Limits are guaranteed by design over the entire temperature range. Note 2: VL must be less than or equal to VCC during normal operation. However, VL can be greater than VCC during startup and shutdown conditions. Note 3: This consumption is referred to as no signal transmission. Note 4: Guaranteed by design with an input signal full swing, rise/fall time ≤ 3ns, source resistance is 50Ω. Note 5: Enable input signal full swing and rise/fall time ≤ 50ns. Note 6: Guaranteed by design, not production tested. Typical Operating Characteristics (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) 10 DATA RATE = 230kbps 1 0.1 0.1 0.01 DATA RATE = 230kbps 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) 3.3 3.6 DATA RATE = 20Mbps 1 0.1 DATA RATE = 230kbps 0.01 0.001 1.5 6 DATA RATE = 20Mbps 10 VCC SUPPLY CURRENT (mA) 100 MAX13000Etoc02 DATA RATE = 20Mbps 1 VL SUPPLY CURRENT (mA) MAX13000Etoc01 1000 VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VL, VL = 0.9V) VL SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VCC, VL = 0.9V) MAX13000Etoc03 VL SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/O VL, VL = 0.9V) VL SUPPLY CURRENT (μA) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators 1.5 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) 3.3 3.6 1.5 1.8 2.1 2.4 2.7 3.0 SUPPLY VOLTAGE (V) _______________________________________________________________________________________ 3.3 3.6 Ultra-Low-Voltage Level Translators VL SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) 0.1 DATA RATE = 230kbps 0.01 MAX13000E toc05 310 DATA RATE = 20Mbps 1.8 2.1 2.4 2.7 3.0 3.3 DATA RATE = 20Mbps 4.00 3.95 3.85 -40 3.6 4.05 3.90 290 1.5 -15 10 35 60 85 -40 -15 10 35 85 60 TEMPERATURE (°C) TEMPERATURE (°C) VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) VCC SUPPLY CURRENT vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC = 3.3V, VL = +0.9V) 60 40 20 DATA RATE = 230kbps 7 6 5 4 3 8 7 DATA RATE = 230kbps 30 40 50 60 70 80 20 30 40 50 60 70 80 RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VL (DRIVING I/OVCC, = 3.3V, VL = +0.9V) PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/OVL, VCC, = 3.3V, VL = +0.9V) tF 5 4 3 tR 2 9.0 8.5 PROPAGATION DELAY (ns) MAX31000Etoc10 6 8.0 7.5 7.0 6.5 6.0 1 5.5 0 5.0 10 20 30 40 50 60 70 CAPACITIVE LOAD (pF) 80 90 100 10 20 30 40 50 60 70 80 90 100 CAPACITIVE LOAD (pF) CAPACITIVE LOAD (pF) 7 tF 3 90 100 CAPACITIVE LOAD (pF) 8 4 0 10 90 100 PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VL (DRIVING I/OVCC, VCC = 3.3V, VL = +0.9V) 6.5 6.0 PROPAGATION DELAY (ns) 20 5 1 0 10 tR 6 2 2 1 0 MAX31000Etoc09 9 MAX31000Etoc08 DATA RATE = 20Mbps MAX13000Etoc12 80 8 RISE/FALL TIME (ns) DATA RATE = 20Mbps 100 9 VCC SUPPLY CURRENT (mA) 120 MAX31000Etoc07 SUPPLY VOLTAGE (V) 140 VL SUPPLY CURRENT (μA) 320 300 0.001 RISE/FALL TIME (ns) 330 4.10 MAX13000E toc06 1.0 MAX31000Etoc11 VCC SUPPLY CURRENT (mA) DATA RATE = 20Mbps 340 VCC SUPPLY CURRENT (μA) MAX13000Etoc04 10 VCC SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) VCC SUPPLY CURRENT (mA) VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE (DRIVING I/OVCC, VL = +0.9V) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 10 20 30 40 50 60 70 CAPACITIVE LOAD (pF) 80 90 100 10 20 30 40 50 60 70 80 90 100 CAPACITIVE LOAD (pF) _______________________________________________________________________________________ 7 MAX13000E–MAX13005E Typical Operating Characteristics (continued) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) Typical Operating Characteristics (continued) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) OD RAIL-TO-RAIL DRIVING (MAX13002E) (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 56pF, DATA RATE = 230kbps, RPULLUP = 15kΩ) I/OVL_ 500mV/div GND RAIL-TO-RAIL DRIVING (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 230kbps) MAX31000Etoc15 MAX31000Etoc14 I/OVL_ 500mV/div GND I/OVCC 2V/div GND I/OVCC 2V/div GND I/OVCC 2V/div GND 1μs/div 2μs/div 200ns/div RAIL-TO-RAIL DRIVING (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 20Mbps) I/OVL_ 500mV/div GND I/OVCC 2V/div GND VCC + VL SUPPLY CURRENT vs. FREQUENCY (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V) I/OVL_ 500mV/div GND I/OVCC 2V/div GND 40ns/div VCC + VL SUPPLY CURRENT (mA) MAX31000Etoc17 MAX31000Etoc16 RAIL-TO-RAIL DRIVING (DRIVING I/OVL VCC = +3.3V, VL = +0.9V, CI/OVCC = 50pF, DATA RATE = 4Mbps) 13 12 11 10 9 8 7 6 5 4 3 2 1 0 I/OVL IS DRIVEN WITH A 0.9V SQUARE WAVE VCC + VL VCC VL 100 10ns/div 4250 8400 12,550 16,700 20,850 25,000 FREQUENCY (kHz) VOHL vs. IOHL FOR VL SIDE (VCC = 3.3V) VL = +2.5V 2.5 0.25 0.20 VL = +2.5V VOHL (V) VCC VL VL = +1.8V 1.5 8400 12,550 16,700 20,850 25,000 FREQUENCY (kHz) VL = +1.8V 0.15 VL = +0.9V 0.10 1.0 VL = +0.9V 0.05 0.5 0 4250 VOLL (V) VCC + VL 2.0 MAX13000Etoc21 I/OVCC IS DRIVEN WITH A 3.3V SQUARE WAVE 100 8 3.0 MAX31000Etoc19 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VOLL vs. IOLL FOR VL SIDE (VCC = 3.3V) MAX13000Etoc20 VCC + VL SUPPLY CURRENT vs. FREQUENCY (DRIVING I/OVCC, VCC = +3.3V, VL = +0.9V) 0 0 5 10 15 20 25 30 35 40 45 50 IOHL (μA) I/OVL_ 500mV/div GND MAX31000Etoc18 MAX31000Etoc13 OD RAIL-TO-RAIL DRIVING (MAX13005E) (DRIVING I/OVL, VCC = +3.3V, VL = +0.9V, CI/OVCC = 56pF, DATA RATE = 230Mbps, RPULLUP = 1kΩ) VCC + VL SUPPLY CURRENT (mA) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators 0 5 10 15 20 25 30 35 40 45 50 IOLL (μA) _______________________________________________________________________________________ Ultra-Low-Voltage Level Translators VOLC (V) 0.20 VCC = +3.3V VCC = +1.8V 0.10 VCC = +3.3V 3.0 VOHC (V) VCC = +2.5V 0.15 3.5 MAX13000Etoc22 0.25 MAX13000Etoc23 VOHC vs. IOHC FOR VCC SIDE VOLC vs. IOLC FOR VCC SIDE VCC = +2.5V 2.5 2.0 VCC = +1.8V 1.5 0.05 1.0 0 0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 IOHC (μA) IOLC (μA) Pin Descriptions MAX13000E/MAX13003E PIN NAME FUNCTION TSSOP 1 UCSP B1 I/OVL1 CMOS Input/Output 1, Referenced to VL 2 B2 I/OVL2 CMOS Input/Output 2, Referenced to VL 3 A1 I/OVL3 CMOS Input/Output 3, Referenced to VL 4 A2 VL Logic Input Voltage, +0.9V ≤ VL ≤ VCC. Bypass VL to GND with a 0.1µF capacitor. 5 A3 EN Enable Input. When EN is pulled low, I/O VCC1 to I/O VCC6 and I/O VL1 to I/O VL6 are tri-stated. Drive EN high (VL) for normal operation. 6 A4 I/OVL4 CMOS Input/Output 4, Referenced to VL 7 B3 I/OVL5 CMOS Input/Output 5, Referenced to VL 8 B4 I/OVL6 9 C4 I/OVCC6 CMOS Input/Output 6, Referenced to VCC 10 C3 I/OVCC5 CMOS Input/Output 5, Referenced to VCC 11 D4 I/OVCC4 CMOS Input/Output 4, Referenced to VCC 12 D3 GND Ground 13 D2 VCC VCC Input Voltage, +1.5V ≤ VCC ≤ 3.6V. Bypass VCC to GND with a 0.1µF capacitor. For full ESD protection, use a 1µF bypass capacitor on VCC. 14 D1 I/OVCC3 CMOS Input/Output 3, Referenced to VCC 15 C2 I/OVCC2 CMOS Input/Output 2, Referenced to VCC 16 C1 I/OVCC1 CMOS Input/Output 1, Referenced to VCC CMOS Input/Output 6, Referenced to VL _______________________________________________________________________________________ 9 MAX13000E–MAX13005E Typical Operating Characteristics (continued) (VCC = +3.3V, VL = +0.9V, TA = +25°C, MAX13003E.) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators Pin Descriptions (continued) MAX13001E/MAX13004E PIN 10 NAME FUNCTION TSSOP 1 UCSP B1 OVL1 CMOS Output 1, Referenced to VL 2 B2 OVL2 CMOS Output 2, Referenced to VL 3 A1 OVL3 CMOS Output 3, Referenced to VL 4 A2 VL Logic Input Voltage, +0.9V ≤ VL ≤ VCC. Bypass VL to GND with a 0.1µF capacitor. 5 A3 EN Enable Input. When EN is pulled low, OVCC1 to OVCC6 and IVL1 to IVL6 are tri-stated. Drive EN high (VL) for normal operation. 6 A4 OVL4 CMOS Output 4, Referenced to VL 7 B3 OVL5 CMOS Output 5, Referenced to VL 8 B4 OVL6 CMOS Output 6, Referenced to VL 9 C4 IVCC6 Open-Drain-Compatible Input 6, Reference to VCC 10 C3 IVCC5 Open-Drain-Compatible Input 5, Referenced to VCC 11 D4 IVCC4 Open-Drain-Compatible Input 4, Referenced to VCC 12 D3 GND Ground 13 D2 VCC VCC Input Voltage, +1.5V ≤ VCC ≤ 3.6V. Bypass VCC to GND with a 0.1µF capacitor. For full ESD protection, use a 1µF bypass capacitor on VCC. 14 D1 IVCC3 Open-Drain-Compatible Input 3, Referenced to VCC 15 C2 IVCC2 Open-Drain-Compatible Input 2, Referenced to VCC 16 C1 IVCC1 Open-Drain-Compatible Input 1, Referenced to VCC ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators MAX13002E/MAX13005E PIN NAME FUNCTION TSSOP 1 UCSP B1 IVL1 Open-Drain-Compatible Input 1, Referenced to VL 2 B2 IVL2 Open-Drain-Compatible Input 2, Referenced to VL 3 A1 IVL3 Open-Drain-Compatible Input 3, Referenced to VL 4 A2 VL Logic Input Voltage, +0.9V ≤ VL ≤ VCC. Bypass VL to GND with a 0.1µF capacitor. 5 A3 EN Enable Input. When EN is pulled low, OVCC1 to OVCC6 and IVL1 to IVL6 are tri-stated. Drive EN high (VL) for normal operation. 6 A4 IVL4 Open-Drain-Compatible Input 4, Referenced to VL 7 B3 IVL5 Open-Drain-Compatible Input 5, Referenced to VL 8 B4 IVL6 Open-Drain-Compatible Input 6, Referenced to VL 9 C4 OVCC6 CMOS Output 6, Referenced to VCC 10 C3 OVCC5 CMOS Output 5, Referenced to VCC 11 D4 OVCC4 CMOS Output 4, Referenced to VCC 12 D3 GND Ground 13 D2 VCC VCC Input Voltage, +1.5V ≤ VCC ≤ 3.6V. Bypass VCC to GND with a 0.1µF capacitor. For full ESD protection, use a 1µF bypass capacitor on VCC. 14 D1 OVCC3 CMOS Output 3, Referenced to VCC 15 C2 OVCC2 CMOS Output 2, Referenced to VCC 16 C1 OVCC1 CMOS Output 1, Referenced to VCC ______________________________________________________________________________________ 11 MAX13000E–MAX13005E Pin Descriptions (continued) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators Test Circuits/Timing Diagrams I/OVL_ 90% VL VCC 50% MAX13000E 10% EN tRISE/FALL I/OVL-VCC I/OVCC I/OVL_ SOURCE I/OVCC_ 90% RS CI/OVCC 50% 10% tFVCC tRVCC I/OVL-VCC UNUSED I/Os ARE GROUNDED. tRISE/FALL < 3ns (MAX13003E/MAX13004E/MAX13005E) tRISE/FALL < 80ns (MAX13000E/MAX13001E/MAX13002E) Figure 1b. Timing for Driving I/OVL Figure 1a. Driving I/OVL tRISE/FALL VL VCC I/OVCC_ MAX13000E 90% 50% EN 10% I/OVCC-VL I/OVL_ I/OVCC I/OVL_ I/OVCC-VL 90% 50% CI/OVL RS SOURCE 10% tFVL tRVL tRISE/FALL < 3ns (MAX13003E/MAX13004E/MAX13005E) UNUSED I/Os ARE GROUNDED. Figure 2a. Driving I/OVCC 12 tRISE/FALL < 80ns (MAX13000E/MAX13001E/MAX13002E) Figure 2b. Timing for Driving I/OVCC ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators VL EN EN SOURCE MAX13000E t'EN-VCC 0 VL I/OVCC I/OVL_ I/OVL_ 0 CI/OVCC VL VCC VCC / 2 I/OVCC_ 0 VL t"EN-VCC EN SOURCE MAX13000E 0 EN I/OVL_ VL I/OVCC_ 0 VCC I/OVCC I/OVL_ CI/OVCC VCC / 2 0 tEN-VCC IS WHICH EVER IS LARGER BETWEEN t'EN-VCC AND t"EN-VCC. Figure 3. Propagation Delay from I/OVL to I/OVCC After EN VL EN VL EN SOURCE MAX13000E t'EN-VL VCC I/OVCC_ I/OVCC I/OVL_ 0 0 VL CI/OVL VCC I/OVL_ VL / 2 0 VL EN VL EN SOURCE t"EN-VL MAX13000E VCC I/OVCC_ I/OVL_ 0 VL I/OVCC CI/OVL 0 I/OVL_ VL / 2 0 tEN-VL IS WHICH EVER IS LARGER BETWEEN t'EN-VL AND t"EN-VL. Figure 4. Propagation Delay from I/OVCC to I/OVL After EN ______________________________________________________________________________________ 13 MAX13000E–MAX13005E Test Circuits/Timing Diagrams (continued) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators Detailed Description The MAX13000E–MAX13005E logic-level translators provide the level shifting necessary to allow data transfer in multivoltage systems. Externally applied voltages, VCC and VL, set the logic levels on each side of the device. Logic signals present on the VL side of the device appear as higher voltage logic signals on the VCC side of the device, and vice-versa. The MAX13000E/MAX13003E are bidirectional level translators allowing data translation in either direction (VL ↔ VCC) on any single data line without the use of a DIRECTION input. The MAX13001E/MAX13002E/ MAX13004E/MAX13005E unidirectional level translators level shift data in one direction (VL → VCC or VCC → V L ) on any single data line. The MAX13001E/ MAX13002E/MAX13004E/MAX13005E unidirectional translators’ inputs have the capability to interface with both CMOS and open-drain (OD) outputs. For more information, see the Ordering Information section and the Input Driver Requirements section. The MAX13000E–MAX13005E accept VL from +0.9V to +3.6V. All devices have VCC ranging from +1.5V to +3.6V, making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX13000E–MAX13005E feature low VCC quiescent supply current of less than 4µA, and VL quiescent supply current of less than 2µA when in shutdown. The MAX13000E–MAX13005E have ±15kV ESD protection on the VCC side for greater protection in applications that route signals externally. The ESD protection is specified using the Human Body Model (HBM).The MAX13000E/MAX13001E/MAX13002E operate at a guaranteed 230kbps data rate. The MAX13003E/ MAX13004E/MAX13005E operate at a guaranteed 20Mbps data rate when VCC > +1.65V. Level Translation For normal operation, ensure that +1.5V ≤ VCC ≤ +3.6V, and +0.9V ≤ VL ≤ VCC. During power-up sequencing, VL ≥ VCC does not damage the device whenever VL is within the absolute maximum ratings (see the Absolute Maximum Ratings section). During power-supply sequencing, when VCC is floating and VL is powered up, 1mA of current can be sourced to each load on the VL side, yet the device does not latch up. The MAX13000E–MAX13005E are designed to have VCC ≥ VL at all times; however, if VCC is turned off, the part will not be damaged and will not latch up. To prevent excessive leakage currents in either the I/O or supply lines, the I/O on the VL side must be left in the high state. 14 The maximum data rate for the MAX13000E– MAX13005E depends heavily on the load capacitance (see the Typical Operating Characteristics), output impedance of the driver, and the operational voltage range (see the Timing Characteristics table). Open-Drain Operation The MAX13001E/MAX13002E/MAX13004E/MAX13005E have input stages specifically designed to accommodate external open-drain drivers. When using opendrain drivers, the MAX13001E/MAX13002E/ MAX13004E/MAX13005E operate in a unidirectionalonly mode, translating from the OD side to the CMOS side. For improved performance, the rise- and fall-time accelerators are present on both the CMOS and the OD side. See the Input-Driver Requirement section. Do not use pullup resistors greater than 15kΩ for proper operation, and smaller pullup resistance may be needed for higher speed operation. Input-Driver Requirements The MAX13000E–MAX13005E feature four different architectures based on the speed of the part, as well as on whether the translator is a CMOS-to-CMOS translator, or whether it is an OD-to-CMOS translator. 20Mbps CMOS-to-CMOS Bidirectional Translator (MAX13003E) The MAX13003E architecture is based on a one-shot accelerator output stage (Figure 5). Accelerator output stages are always in tri-state, except when there is a transition on any of the translators on the input side, either I/OVL or I/OVCC. A short pulse is generated during which the one-shot output stage becomes active and charges/discharges the capacitances at the I/Os. Due to its bidirectional nature, the accelerator stages on both the I/OVCC and the I/OVL become active during an I/O transition from low to high or high to low. This can lead to some current feeding into the external source that is driving the translator. However, this behavior helps speed up the transition on the driven side. The type of devices that drive the inputs of the MAX13003E is usually specified with an output drivecurrent capability (IOUT). When driving the inputs of the MAX13003E, the maximum achievable speed is constrained by the drive current of the external driver. To insure the maximum possible throughput of 20Mbps, the external driver should meet the following requirement: IOUT ≥ 1.67 × 108 × V × (CIN + CP) ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators MAX13000E–MAX13005E VL VCC P ONE-SHOT 5kΩ I/OVL I/OVCC INVERTER 2 INVERTER 1 N ONE-SHOT P ONE-SHOT 5kΩ INVERTER 3 INVERTER 4 N ONE-SHOT Figure 5. Architecture of 20Mbps, CMOS-to-CMOS Bidirectional Translators where, CP is the parasitic capacitance of the traces, V is the supply voltage of the driven side (i.e., VL or VCC), and CIN is the input capacitance of the driven side (CIN = 10pF for VL side, CIN = 20pF for VCC side). 20Mbps OD-to-CMOS Unidirectional Translators (MAX13004E/MAX13005E) The MAX13004E/MAX13005E architecture is virtually the same as that for the bidirectional CMOS-to-CMOS translators, the only difference being that the output inverter (inverter 4) at the driving side accommodates the driving capabilities of an open-drain output (Figure 6). For proper operation, a pullup resistor needs to be connected from the open-drain output to the power supply of the driving side. Use pullup resistors no larger than 15kΩ. 230kbps CMOS-to-CMOS Bidirectional Translator (MAX13000E) The architecture of the MAX13000E lacks the one-shot accelerator output stages since the transitions that this device handles are limited by its data rate, 230kbps (Figure 7). For proper operation, the driver must meet the following conditions: 1kΩ maximum output impedance and 1mA minimum output current. 230kbps OD-to-CMOS Unidirectional Translators (MAX13001E/MAX13002E) The architecture of the MAX13001E/MAX13002E is similar to that of the 230kbps CMOS-to-CMOS part, with the difference that it accommodates the driving capability of an open-drain output on the driving side, and also that it has only a single one-shot output stage (Figure 8). For proper operation, a pullup resistor needs to be connected from the open-drain output to the power supply of the driving side. Use pullup resistors no larger than 15kΩ. Figure 9 shows a graph of the typical input current versus input voltage for all of the above configurations. Enable Output Mode (EN) The MAX13000E–MAX13005E feature an enable (EN) input. Drive EN low to set the MAX13000E–MAX13005E I/Os in tri-state mode. Drive EN high (VL) for normal operation. ±15kV ESD Protection As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/OV CC lines have extra protection against static discharge. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD ______________________________________________________________________________________ 15 MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators 20Mbps OPEN-DRAIN-TO-CMOS UNIDIRECTIONAL LEVEL TRANSLATOR VCC/VL VL/VCC P ONE-SHOT 5kΩ IVCC/IVL OVL/OVCC INVERTER 2 OPEN-DRAIN COMPATIBLE INPUT INVERTER 1 CMOSCOMPATIBLE INPUT N ONE-SHOT P ONE-SHOT INVERTER 3 5kΩ 75kΩ INVERTER 4 N ONE-SHOT Figure 6. Architecture of 20Mbps, OD-to-CMOS Unidirectional Translators 230kbps Bidirectional CMOS-TO-CMOS Level Translator VL VCC 5kΩ I/OVL I/OVCC INVERTER 1 INVERTER 2 5kΩ INVERTER 4 INVERTER 3 Figure 7. Architecture of 230kbps, CMOS-to-CMOS Bidirectional Translator 16 ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators MAX13000E–MAX13005E 230kbps OPEN-DRAIN-TO-CMOS UNIDIRECTIONAL LEVEL TRANSLATOR VCC/VL VL/VCC 5kΩ IVCC/IVL OVL/OVCC INVERTER 1 OPEN-DRAIN COMPATIBLE INPUT INVERTER 2 CMOSCOMPATIBLE INPUT INVERTER 3 5kΩ 75kΩ INVERTER 4 5kΩ N ONE-SHOT Figure 8. Architecture of 230kbps, OD-to-CMOS Unidirectional Translator structures withstand high ESD in all states: normal operation, tri-state output mode, and power-down. After an ESD event, Maxim’s E-versions keep working without latchup, whereas competing products can latch and must be powered-down to remove latchup. ESD protection can be tested in various ways. The I/OVCC lines of the MAX13000E–MAX13005E are characterized for protection to ±15kV using the Human Body Model. IIN VTH_IN / RIN1 ESD Test Conditions 0 VTH_IN VIN VS WHERE, VS = VCC OR VL (VS - VTH_IN) / RIN2 RIN1 = RIN2 = 5kΩ FOR CMOS-TO-CMOS TRANSLATORS RIN1 = 75kΩ FOR OD-TO-CMOS TRANSLATORS Figure 9. Typical IIN vs. VIN ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. Human Body Model Figure 10 shows the Human Body Model and Figure 11 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5kΩ resistor. ______________________________________________________________________________________ 17 MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators RC 1MΩ CHARGE-CURRENTLIMIT RESISTOR HIGHVOLTAGE DC SOURCE CS 100pF RC 50Ω TO 100Ω RD 1500Ω DISCHARGE RESISTANCE CHARGE-CURRENTLIMIT RESISTOR DEVICE UNDER TEST STORAGE CAPACITOR HIGHVOLTAGE DC SOURCE Cs 150pF RD 330Ω DISCHARGE RESISTANCE DEVICE UNDER TEST STORAGE CAPACITOR Figure 10. Human Body ESD Test Model Figure 12. IEC 61000-4-2 Contact Discharge Test Model IP 100% 90% Ir PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) UCSP Package Considerations AMPERES For general UCSP package information and PC layout considerations, please refer to Maxim application note: Wafer-Level Chip-Scale Package. 36.8% 10% 0 0 tRL UCSP Reliability TIME tDL CURRENT WAVEFORM Figure 11. Human Body Current Waveform IEC 61000-4-2 Standard ESD Protection The IEC 61000-4-2 standard (Figure 12) specifies ESD tolerance for electronic systems. The IEC61000-4-2 model specifies a 150pF capacitor that is discharged into the device through a 330Ω resistor. The MAX13000E–MAX13005E’s I/O on the V CC side are rated for IEC 61000-4-2 standard, (8kV Contact Discharge and ±10kV Air-Gap Discharge). The IEC 61000-4-2 model discharges higher peak current and more energy than the HBM due to the lower series resistance and larger capacitor. Applications Information The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process. Mechanical stress performance is a greater consideration for a UCSP package. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim’s qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim’s website at www.maxim-ic.com. Power-Supply Decoupling To reduce ripple and the chance of transmitting incorrect data, bypass VL and VCC to ground with a 0.1µF capacitor. To ensure full ±15kV ESD protection, bypass VCC to ground with a 1µF capacitor. Place all capacitors as close to the power-supply inputs as possible. 18 ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators VL VCC EN MAX13000E–MAX13005E I/OVL1 I/OVCC1 I/OVL2 I/OVCC2 I/OVL3 I/OVCC3 I/OVL4 I/OVCC4 I/OVL5 I/OVCC5 I/OVL6 I/OVCC6 GND ______________________________________________________________________________________ 19 MAX13000E–MAX13005E Functional Diagram Ultra-Low-Voltage Level Translators MAX13000E–MAX13005E Typical Operating Circuits +0.9V +2.8V 0.1μF 1μF VCC VL +0.9V SYSTEM CONTROLLER +2.8V SYSTEM MAX13001E DATA1 DATA2 EN MAX13004E OVL_1 IVCC_1 OVL_2 IVCC_2 DATA3 OVL_3 IVCC_3 DATA3 DATA4 OVL_4 IVCC_4 DATA4 DATA5 OVL_5 IVCC_5 DATA5 DATA6 OVL_6 IVCC_6 DATA6 DATA1 DATA2 GND +0.9V +2.8V 0.1μF 1μF VCC VL +0.9V SYSTEM CONTROLLER +2.8V SYSTEM MAX13002E DATA1 DATA2 EN MAX13005E IVL_1 OVCC_1 IVL_2 OVCC_2 DATA3 IVL_3 OVCC_3 DATA3 DATA4 IVL_4 OVCC_4 DATA4 DATA5 IVL_5 OVCC_5 DATA5 DATA6 IVL_6 OVCC_6 DATA6 DATA1 DATA2 GND 20 ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators +0.9V +2.8V 0.1μF 1μF VL +0.9V SYSTEM CONTROLLER VCC +2.8V SYSTEM MAX13000E DATA1 EN MAX13003E I/OVL_1 I/OVCC_1 DATA1 DATA2 I/OVL_2 I/OVCC_2 DATA2 DATA3 I/OVL_3 I/OVCC_3 DATA3 DATA4 I/OVL_4 I/OVCC_4 DATA4 DATA5 I/OVL_5 I/OVCC_5 DATA5 DATA6 I/OVL_6 I/OVCC_6 DATA6 GND Selector Guide PART DATA RATE (bps) NUMBER OF BIDIRECTIONAL TRANSLATORS NUMBER OF VL → VCC TRANSLATORS NUMBER OF VCC → VL TRANSLATORS TRANSLATOR CONFIGURATION MAX13000E 230k 6 — — CMOS-to-CMOS MAX13001E 230k — — 6 OD-to-CMOS MAX13002E 230k — 6 — OD-to-CMOS MAX13003E 20M 6 — — CMOS-to-CMOS MAX13004E 20M — — 6 OD-to-CMOS MAX13005E 20M — 6 — OD-to-CMOS ______________________________________________________________________________________ 21 MAX13000E–MAX13005E Typical Operating Circuits (continued) Ultra-Low-Voltage Level Translators MAX13000E–MAX13005E Pin Configurations (continued) BOTTOM VIEW MAX13001E/MAX13004E IVCC3 VCC GND MAX13002E/MAX13005E IVCC4 D OVCC3 VCC GND OVCC4 OVCC1 OVCC2 OVCC5 OVCC6 IVL1 IVL2 IVL5 IVL6 IVL3 VL EN IVL4 2 3 4 D IVCC1 IVCC2 IVCC5 IVCC6 C C OVL1 OVL2 OVL5 OVL6 B B OVL3 VL EN OVL4 A A 1 2 3 4 1 4 X 4 UCSP 4 X 4 UCSP TOP VIEW I/OVL1 1 16 I/OVCC1 OVL1 1 16 IVCC1 IVL1 1 16 OVCC1 I/OVL2 2 15 I/OVCC2 OVL2 2 15 IVCC2 IVL2 2 15 OVCC2 I/OVL3 3 14 I/OVCC3 OVL3 3 14 IVCC3 IVL3 3 14 OVCC3 VL 4 EN 5 13 VCC MAX13000E MAX13003E EN 5 13 VCC MAX13001E MAX13004E VL 4 12 GND EN 5 13 VCC MAX13002E MAX13005E 12 GND I/OVL4 6 11 I/OVCC4 OVL4 6 11 IVCC4 IVL4 6 11 OVCC4 I/OVL5 7 10 I/OVCC5 OVL5 7 10 IVCC5 IVL5 7 10 OVCC5 I/OVL6 8 9 I/OVCC6 OVL6 8 9 IVCC6 IVL6 8 9 TSSOP 22 12 GND VL 4 TSSOP TSSOP ______________________________________________________________________________________ OVCC6 Ultra-Low-Voltage Level Translators PART TEMP RANGE PINPACKAGE MAX13000EEBE+T* -40°C to +85°C 16 UCSP (4mm × 4mm) MAX13001EEUE+ -40°C to +85°C 16 TSSOP MAX13001EEBE+T* -40°C to +85°C 16 UCSP (4mm × 4mm) MAX13002EEUE+ -40°C to +85°C 16 TSSOP MAX13002EEBE+T* -40°C to +85°C 16 UCSP (4mm × 4mm) MAX13003EEUE+ -40°C to +85°C 16 TSSOP MAX13003EEBE+T* -40°C to +85°C 16 UCSP (4mm × 4mm) MAX13004EEUE+ -40°C to +85°C 16 TSSOP MAX13004EEBE+T* -40°C to +85°C 16 UCSP (4mm × 4mm) MAX13005EEUE+ -40°C to +85°C 16 TSSOP Chip Information PROCESS: BiCMOS 16 UCSP (4mm × 4mm) *Future Product—contact factory for availability. +Denotes a lead(Pb)-free/RoHS-compliant package. T =Tape and reel. MAX13005EEBE+T* -40°C to +85°C ______________________________________________________________________________________ 23 MAX13000E–MAX13005E Ordering Information (continued) MAX13000E–MAX13005E Ultra-Low-Voltage Level Translators Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. 24 PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 16 TSSOP U16+2 21-0066 90-0117 16 UCSP B16+1 21-0101 Refer to Application Note 1891 ______________________________________________________________________________________ Ultra-Low-Voltage Level Translators REVISION NUMBER REVISION DATE 0 6/05 Initial release 1 5/11 Added lead-free information to the Ordering Information DESCRIPTION PAGES CHANGED — 1, 23 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25 © 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX13000E–MAX13005E Revision History